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Abstract: Reactive synthesis (RS) and supervisory control theory (SCT) both provide a design
methodology for digital systems. RS takes a computer science perspective and seeks to synthesise
a system that interacts with its environment in computation cycles and which, doing so, satisfies a
prescribed specification. SCT takes a control theoretic perspective and seeks to synthesise a controller
that – in closed-loop configuration with a plant – enforces a prescribed specification, where all dynamics
are driven by discrete events. While both synthesis techniques seem superficially very similar, their
technical details differ significantly. We provide a formal comparison allowing us to identify conditions
under which one can solve one synthesis problem via the other one and we discuss how the resulting
solutions compare. To facilitate this comparison, we give a unified introduction to RS and SCT and derive
formal problem statements and a characterisation of their solutions in terms of ω-languages. As recent
contributions to the two fields focus on different aspects of the respective problem, our translational
theorems can be used to guide the application of algorithmic techniques from one field in the other.

1. INTRODUCTION

Reactive synthesis (RS) is a branch of computer science and
addresses the automated synthesis of digital systems that dy-
namically interact with their environment in a feedback config-
uration s.t. some prescribed specification is met. The problem
of RS was first proposed by Church (1957) with solutions pro-
vided by Büchi and Landweber (1969), and Rabin (1972). It is
since then an active field of research, addressing temporal logic
specifications (e.g. Gurevich and Harrington (1982); Pnueli and
Rosner (1989); Emerson and Jutla (1991)), partial observation
(e.g. Kupferman and Vardi (2000)), and, most relevant for
the present report, environment assumptions (see Bloem et al.
(2014) and Brenguier et al. (2017) for an overview). For a
comprehensive introduction to the field see e.g. Thomas (1995);
Finkbeiner (2016).

Supervisory Control Theory (SCT) is a branch of control theory
that addresses discrete-event systems, i.e., dynamical systems
in which relevant variables are of finite range and in which
changes of their respective values are referred to as events. The
synthesis problem in SCT is to construct a controller that pro-
vides causal feedback to a given plant such that the closed-loop
system satisfies a prescribed specification. SCT was originally
proposed by Ramadge and Wonham (1987) and now is an es-
tablished field of research with relevant contributions by many
research groups. Topics addressed include partial observation
(e.g. Lin and Wonham (1988); Cai et al. (2015); Yin and Lafor-
tune (2016)), robustness (e.g. Cury and Krogh (1999); Bourdon
et al. (2005)), modularity (e.g. Ramadge and Wonham (1989);
de Querioz and Cury (2000)), hierarchical control architectures
(e.g. Zhong and Wonham (1990); Wong and Wonham (1996);
Schmidt et al. (2008)), fault-tolerance (e.g. Wen et al. (2008);
Paoli et al. (2011); Moor (2016)), and, most relevant for this
report, infinite behaviours (e.g. Ramadge (1989); Thistle and
Wonham (1994b)).

Both design methodologies seek to synthesize a causal feed-
back map that operates on a finite alphabet and that satisfies
a formal specification. When used to synthesize solutions for
particular instances of a given synthesis problem, both tech-
niques and their obtained solutions seem superficially very sim-
ilar. However, the technical details differ significantly. In this
paper we provide a formal comparison, allowing us to identify
conditions under which one can solve one synthesis problem
via the respective other one and discuss how the resulting so-
lutions compare. As recent contributions to the two fields of
research focus on different aspects of the respective problem,
our translational theorems can be used to guide the application
of other algorithmic techniques from one field in the other.

Scope Regarding RS, our study considers a variant that ex-
plicitly addresses assumptions on the environment behaviour,
which correspond to the prescribed plant behaviour in SCT.
RS typically uses specifications given in linear temporal logic
(LTL); it is well understood how such formula can be trans-
lated into ω-regular languages (Safra (1988); Vardi and Wolper
(1986)). For ease of presentation, we consider both the as-
sumption and the specification to be given either abstractly as
ω-languages, i.e., formal languages of infinite words, or, for
illustration purposes, as deterministic Büchi automata.

Regarding SCT, most of the literature, including the original
work by Ramadge and Wonham (1987), refers to ∗-languages
as their base model, i.e., formal languages over finite words.
In this setting, synthesis can enforce safety properties while
maintaining liveness properties present in the plant behaviour.
This contrasts RS where the synthesis of liveness properties
is conceived a relevant challenge. We therefore consider a
branch of SCT that addresses the synthesis problem for ω-
languages; see Ramadge (1989); Thistle and Wonham (1994b),
where the authors relate their work to Church’s problem. For



a comprehensive introduction to SCT for ω-languages see also
Moor (2017).

Contribution Within this perspective of our choice, our contri-
bution is twofold: (I) We show that one can solve the considered
RS problem using SCT to obtain a reactive module which will
not falsify the assumptions on the environment. (II) We show
that one can solve the considered synthesis problem from SCT
using RS if the given assumptions are not falsifiable.

Intuitively, the considered RS problem is formalised by an
implication style logic formula, i.e., if the assumptions are
satisfied, then the specification must be enforced. Hence, a valid
solution to the synthesis problem might falsify the assumption.
SCT seeks to avoid this issue by requiring that valid solutions
to the synthesis problem need to be non-conflicting, i.e., at
any point both the plant and the supervisor can fulfill their
liveness properties eventually. Due to this additional property
of solutions, our transformation in result (I) achieves reactive
modules which do not falsify the assumption. For the reverse
transformation (result (II)), however, we have to assume that
the given assumptions are not falsifiable by a reactive module
to ensure that RS returns solutions which are non-conflicting
and hence a solution to the initial SCT synthesis problem.

Both synthesis algorithms are formalized as fixed-points in µ-
calculus. The RS algorithm uses a 3-nested fixed-point while
in SCT synthesis amounts to a 4-nested fixed-point. Result (I)
clarifies that this additional iteration indeed generates an addi-
tional property on the solution. Regarding result (II), we may
expect computational benefits as a trade-off when imposing
additional conditions for the synthesis problem in SCT.

Related work The question of how to synthesize solutions to an
RS problem which do not falsify the assumptions has recently
gained some attention from the reactive synthesis community,
see e.g. Chatterjee and Henzinger (2007); Chatterjee et al.
(2008, 2010); Bloem et al. (2015); Brenguier et al. (2017).
Interestingly, it turns out that all these synthesis methods in
general result in different solutions to a given reactive synthesis
problem compared to our solution via result (I) based on the
SCT perspective; see Schmuck et al. (2017) for a detailed
discussion.

Our study complements the recent comparison between RS and
SCT by Ehlers et al. (2017). There, the authors focus attention
on SCT over ∗-languages and discuss maximal permissiveness
of a solution to the synthesis problem. This contrasts our choice
of ω-languages, where a maximally permissive solution fails
to exist in general and, taking a perspective common in RS,
we resort to computing some solution provided that one exists.
Moreover, Ehlers et al. (2017) encode the requirement of a
non-conflicting closed-loop configuration, as it is commonly
discussed in the context of SCT, by a specific CTL formula and
solve the synthesis problem by a specialised variant of RS. In
contrast, to obtain our result (II), we address a non-conflicting
closed loop by structural assumptions on the problem param-
eters which imply that for the corresponding RS problem the
assumptions are non-falsifiable by any reactive module.

Observing page constraints, we provide supporting technical
propositions, proofs of our main results and many illustrative
examples in the technical report 1 by Schmuck et al. (2017).

1 Available from the first authors’ home page.

2. PRELIMINARIES 2

Formal Languages Let Σ be a finite alphabet. Then we write
Σ∗, Σ+, and Σω for the sets of finite sequences, non-empty
finite sequences, and infinite sequences over Σ, respectively. We
define Σ∞ = Σ∗∪Σω. The subsets L ⊆ Σ∗ andL ⊆ Σω are called
the ∗- and ω-languages over Σ, respectively. For Ψ ⊆ Σ, the
natural projection of w ∈ Σ∗ on Ψ∗ is denoted by pΨ w. As with
all other operators on words used in this paper, we take point-
wise images for an extension to languages over Σ, i.e., we write
pΨ L for { pΨ s | s ∈ L } with L ⊆ Σ∗. For two words s ∈ Σ∗ and
t ∈ Σ∞ we write st ∈ Σ∞ for the concatenation. We write s ≤ t
and s < t if s is a prefix of t or a strict prefix of t, respectively.
All prefixes of a word t ∈ Σ∞ are denoted pfx t ⊆ Σ∗. For
L ⊆ Σ∗, we have L ⊆ pfx L, and, if equality holds, we say
that L is prefix closed. The limit lim L of L ⊆ Σ∗ contains all
words α ∈ Σω which have infinitely many prefixes in L and we
define cloL := lim pfxL as the topological closure of L ⊆ Σω.
L is said to be topologically closed if L = cloL, and relatively
topologically closed w.r.t.M ⊆ Σω, if L = (cloL) ∩ M.

Automata An automaton over the alphabet Σ is a tuple M =
(Q, Σ, δ, Qo) with the state set Q, the transition relation δ ⊆
Q×Σ×Q and the set of initial states Qo ⊆ Q. M is called finite
if Q and δ are finite. We identify δ with its respective set-valued
map δ : Q × Σ { Q where δ(q, σ) := { q′ | (q, σ, q′) ∈ δ }, and
with the common inductive extension to a word-valued second
argument s ∈ Σ∗. If |Qo| ≤ 1 and |δ(q, s)| ≤ 1 for all q ∈ Q,
s ∈ Σ∗, then M is said to be deterministic. For deterministic
automata, we interpret δ as partial function and write δ(q, s) =
q′ and δ(q, s)! as short forms for δ(q, s) = {q′} and δ(q, s) , ∅,
respectively. We define L = L∗(M) := { s ∈ Σ∗ | δ(Qo, s) , ∅ }
and L = Lω(M) := {α ∈ Σω | pfxα ⊆ L∗(M) } as the ∗- and
ω-languages generated by M, respectively, which are prefix
closed and topologically closed, respectively.

Accepted Languages Generated languages can be restricted
by acceptance conditions. Given a set of final states F ⊆ Q
and the extended automaton tuple M = (Q, Σ, δ, Qo, F), the
accepted ∗-language is defined L∗m(M) := { s ∈ Σ∗ | δ(Qo, s) ∩
F , ∅ }. Regular ∗-languages are those that are accepted by
a finite automaton. For ω-languages, we consider the Büchi
and the generalized Büchi acceptance condition, given by a
set F ⊆ Q and a family of sets F = {F1, F2, . . ., Fk} with
Fi ⊆ Q, respectively. An automaton M = (Q, Σ, δ, Qo, F )
with (generalized) Büchi acceptance condition is referred to
as a (generalized) Büchi automaton; every generalized Büchi
automaton with F = {F} (i.e., k = 1) can be redefined to a
Büchi automaton with final state set F = F. A run π of M is an
infinite sequence of states q1q2q3 · · · ∈ Qω and corresponds to
the ω-word α = σ1σ2σ3 · · · ∈ Σω if q1 ∈ Qo and (qi, σi, qi+1) ∈
δ for all i ∈ N. The run π is accepted by a (generalized) Büchi
automaton, if (Inf π) ∩ Fi , ∅ for all i ∈ {1, . . ., k}, where
Inf π denotes the set of states that occur infinitely often in π.
The accepted ω-language Lω

m(M) consists of all words α ∈ Σω

for which there exists a corresponding accepting run over M.
For deterministic automata, we have Lω

m(M) = lim L∗m(M).
The class of ω-languages that is accepted by a finite Büchi
automaton is referred to as the ω-regular languages; the class
of ω-languages that is accepted by a deterministic finite Büchi
automaton is a strict subset of the former.

2 A general introduction to these topics can be found in e.g. Hopcroft and
Ullman (1979); Thomas (1990); Bradfield and Stirling (2006).



Fixpoint Calculus We utilise the following notational conven-
tions from the µ-calculus. Let f denote a monotone operator on
a finite set Q, i.e., f (P′) ⊆ f (P′′) ⊆ Q for all P′ ⊆ P′′ ⊆ Q.
Then the least and the greatest fixed point exist uniquely and
are denoted µP. f (P) and νP. f (P), respectively. They can be
computed by the iterations P1 := ∅, Pi+1 := Pi ∪ f (Pi), with
µP. f (P) = ∪{ Pi | i ∈ N }, and P1 := Q, Pi+1 := Pi ∩ f (Pi), with
νP. f (P) = ∩{ Pi | i ∈ N }. If f is given as an expression in terms
of multiple set-valued parameters with range Q, and if this
expression is monotone in each parameter, so are the respective
fixed points, hence, fixed-point formulae can be nested.

3. REACTIVE SYNTHESIS

Reactive Modules A reactive module is a device that reads
input variables in order to assign values to output variables,
and that, over time, does so once in every computation cycle.
A reactive module is commonly represented as a function r
that maps the sequence of past input readings s ∈ U+, to the
current output assignment y ∈ Y , i.e, r : U+→Y . Considering
infinitely many computation cycles, the interaction of a reactive
module with its environment generates an infinite sequence α ∈
(UY)ω of alternating input readings and output assignments.
Therefore, the behaviour of a reactive module r : U+→Y is
defined as the ω-language L of all sequences α that comply
with r over all computation cycles:

L := {α ∈ (UY)ω |
∀ s ∈ (U ∪ Y)∗, y ∈ Y . sy < α ⇒ y = r(pU(s)) } . (1)

Note that, by construction,L is topologically closed. Moreover,
if r is realised as a finite automaton, then L is ω-regular.

For our subsequent discussion we eliminate the explicit ref-
erence to the system r : U+→Y by utilizing a more direct
characterisation of those languages L that qualify for a rep-
resentation by (1). For this purpose, we adapt the notion of
input-output systems from behavioural systems theory, Willems
(1991), for the special case of topologically closed languages
and input/output behaviours.
Definition 1. Given two ω-languages L,M ⊆ (UY)ω or
L,M ⊆ (YU)ω of alternating inputs and outputs, with non-
empty ranges U and Y , U ∩ Y = ∅, respectively, we say that

(i) U is a locally free input for L if for all s ∈ pfxL and
u′, u′′ ∈ U we have that su′ ∈ pfxL implies su′′ ∈ pfxL ;

(ii) the output locally processes the input if for all s ∈ pfxL
and y′, y′′ ∈ Y with sy′, s′′y ∈ pfxL we have y′ = y′′ . �

The above notions enable the following characterisation of
behaviours associated with a reactive module.
Lemma 1. Let U and Y , U ∩ Y = ∅, denote the non-empty
ranges of inputs and outputs, respectively. For a reactive module
r : U+→Y , the associated behaviour L ⊆ (UY)ω defined by (1)
is non-empty and possesses the following properties:

(RM1) L is topologically closed,
(RM2) the input is locally free, and
(RM3) the output processes the input.

Vice versa, if a non-empty language L ⊆ (UY)ω satisfies
conditions (RM1) – (RM3), then there exists a reactive module
r : U+→Y with associated behaviour L s.t. r(v) is the unique
element of the singleton set

{ y ∈ Y | ∃ s ∈ (UY)∗U . pU s = v ∧ sy ∈ pfxL } (2)
for all v ∈ U+. �

Problem Statement The problem commonly referred to as
reactive synthesis is about the systematic design of a reactive
module, such that its behaviour satisfies an upper-bound spec-
ification 3 G ⊆ (UY)ω. The crucial point here is that G is ω-
regular, but in general fails to be topologically closed.

In the basic setting of reactive synthesis, the behaviour of the
environment is unrestricted which makes the synthesis problem
hard to solve. However, in many applications one has prior
knowledge about the behaviour of the environment. This can be
incorporated into the synthesis problem by defining a language
A ⊆ (UY)ω, which models the assumptions on the genera-
tion of inputs to the system. If environment assumptions are
given, the reactive synthesis problem amounts to designing a
reactive module r whose behaviour L satisfies the specification
G whenever the assumptionsA are fulfilled. To ensure that the
designed reactive module r can interact with the environment in
non-terminating computation cycles, it is required that the local
interaction of environment and system does not deadlock, i.e.,

∀ s ∈ (pfxA) ∩ (pfxL) .∃σ ∈ U ∪ Y :
sσ ∈ (pfxA) ∩ (pfxL) . (3)

These two requirements are formalized in the following formal
problem statement.
Problem 1. (Reactive Synthesis). Given two non-empty finite
sets U and Y , U ∩ Y = ∅, and the ω-languages G ⊆ (UY)ω
and A ⊆ (UY)ω, either construct a system r : U+→Y such
that the associated behaviour L does not deadlock with A, see
Eq. (3), and such that

∅ , L ⊆ A → G , (4)
or verify that no such system exists. �

Note that, forA = ∅, the upper boundA → G degenerates and
the specification becomes L ⊆ (UY)ω. Thus, in our discussion
of the above problem we may whenever convenient assume
that A , ∅ and, likewise, G , Σω. Moreover, we have that
A → (G ∩ A) = (Σω −A) ∪ (G ∩ A) = A → G, and, hence,
we can restrict our discussion without loss of generality to the
case G ⊆ A.

With Lemma 1, the problem of reactive synthesis, Problem 1,
amounts to the construction of a non-empty subsetL ⊆ A → G
that satisfies (RM1) – (RM3), or to the verification that no
such subset exists. Henceforth, we may refer to a qualifying
behaviour L as a solution of Problem 1.

Algorithmic Solution The interaction of the system and its
environment can be viewed as a turn-based two player game:
in every round the environment player selects an arbitrary input
u ∈ U and the system selects the output y ∈ Y according to r.
It was shown by Gurevich and Harrington (1982); Pnueli and
Rosner (1989) that for ω-regular specifications there exists a
winning strategy for the system player in this game if and only
if Problem 1 has a ω-regular solution L. Based on this result,
Problem 1 can be solved by constructing a deterministic game,
finding a winning strategy for the system player and translating
this strategy into a finite automaton representing the reactive
module r. For a concise presentation of this construction, we
consider the special case in which both G and A are realised
as deterministic Büchi automata and in which we assume that
G ⊆ A. In this case there is a direct and simple procedure to
solve Problem 1 which we briefly recall.
3 Note that specifications given in Linear Temporal Logic (LTL) effectively
amount to such upper bound specifications.



Consider the generalized Büchi automaton
M = (Q0 ∪ Q1,U ∪ Y , q0, γ

0 ∪ γ1, {T 0,T 1}) (5)
s.t. q0 ∈ Q0, γ0 ⊆ Q0 × U × Q1 and γ1 ⊆ Q1 × Y ×
Q0. Furthermore, M exhibits no deadlocks, generates the ∗-
language pfx(A) = L∗(M) and accepts the ω-languages A =
Lω

m(M0) and G = Lω
m(M1) where M0 and M1 refer to the simple

Büchi automaton obtained from M by using the single winning
state set T 0 and T 1, respectively. M directly defines a turn based
deterministic two player game graph H = (Q0,Q1,U,Y, γ0, γ1).
Recalling Problem 1, a system winning strategy for this game
must ensure that all plays on H that visit T 0 infinitely often,
must also visit T 1 infinitely often, which can be formalized as
a deterministic parity game with three colours. Such games can
be solved using the three-nested fixed point

Win1(C) = νX4 . µX3 . νX2 ∪
4
k=2 ( Ck ∩ Pre1(Xk) ) . (6)

where C2 = Q \ T 0, C3 = T 0, C4 = T 1, and

Pre1(X) := { v0 ∈ V0 | ∀ u ∈ U . δ0(v0, u) ∈ X }

∪ { v1 ∈ V1 | ∃ y ∈ Y . δ1(v1, y) ∈ X }. (7)

If q0 ∈ Win1(C), the module solving Problem 1 can be extracted
from the iterations over Xk in (6), which constitutes a special
case of the construction presented in Bloem et al. (2012).
Remark 1. For the special case of a topologically closed as-
sumption A we can assume without loss of generality that
T 0 = Q and, hence, C2 = ∅ and C3 = Q. Then, the synthesis
formula in (6) simplifies to

Win1(C) = νX4.µX3.Pre1(X3) ∪ (F1 ∩ Pre1(X4)) . (8)
Note that (8) solves the Büchi game (H,T 1), which is obtained
when solving the original version of Problem 1 where the
environment behaviour is unconstrained and hence given by
A = (UY)ω (see e.g. Maler et al. (1995); Zielonka (1998)).

4. SUPERVISORY CONTROL

Supervisors A supervisory controller is a device that takes as
input a finite sequence of events from the alphabet Σ generated
by a process which is commonly referred to as the plant and, in
turn, outputs a control pattern γ ⊆ Σ. Formally, the supervisor
is defined as a map

f : Σ∗ → Γ , with Γ := { γ ⊆ Σ |Σuc ⊆ γ } , (9)
where Σuc ⊆ Σ are so called uncontrollable events. On start-up,
the supervisor applies the control pattern γ = f (ε) and thereby
restricts the plant to generate an event σ ∈ γ. After the plant has
generated its event, the control pattern is updated accordingly,
and so forth. In this process, the role of the uncontrollable
events Σuc is that, by the definition of Γ, their occurrence cannot
be prevented by the supervisor. From a reactive synthesis point
of view, the supervisor is the system we seek to design and,
for practical purposes, a realisation as a finite automaton is of a
particular interest.

For the subsequent discussion, we define the behaviour associ-
ated with the supervisor f as the ω-language 4

L := {α ∈ Σω | ∀s ∈ Σ∗, σ ∈ Σ . sσ < α⇒ σ ∈ f (s) }. (10)
The following lemma characterises languages that match the
behaviour of some supervisor.
4 The proposed representation of a supervisor f by the ω-language L does
not account for supervisors which deadlock, i.e., supervisors that output an
empty control pattern. However, assuming a non-empty Σuc is not restrictive
and technically rules out the degenerated case of empty control patterns.

Lemma 2. Given Σ, denote Σuc ⊆ Σ the non-empty set of
uncontrollable events. A behaviour L ⊆ Σω associated with
some supervisor f : Σ∗ → Γ is non-empty and exhibits the
following properties:

(SC1) L is topologically closed, and
(SC2) L is universally controllable, i.e., (pfxL)Σuc ⊆ pfxL.

Vice versa, if a non-empty languageL ⊆ Σω satisfies (SC1) and
(SC2), then f : Σ∗ → Γ defined by

f ′(s) := {σ ∈ Σ | sσ ∈ pfxL } ∪ Σuc (11)
for s ∈ Σ∗ is a supervisor with associated behaviour L. �

Problem Statement The problem commonly referred to as su-
pervisory controller synthesis is about the systematic design of
a supervisor, s.t. the resulting closed-loop system – established
by the feedback composition of this supervisor with the plant
– satisfies a given specification. Referring to the reactive syn-
thesis perspective, this identifies the plant as the environment,
formally represented as an ω-languageA ⊆ Σω.

Given a plant and a supervisor, the closed-loop configuration is
defined to evolve on words that comply with both component
behaviours. Technically, this amounts to the local closed-loop
behaviour Kloc := (pfxL) ∩ pfx(A) and the accepted closed-
loop behaviour K := L∩A . Regarding liveness of the closed-
loop configuration, supervisory control commonly addresses
not only deadlocks but also livelocks. The latter are charac-
terised by finite sequences s ∈ Kloc from the local closed-loop
behaviour that can be continued indefinitely within Kloc but
any such infinite extension fails to satisfy the plant acceptance
condition. Technically, we ask for a non-blocking supervisor,
i.e., we require that both languages are non-conflicting:

(pfxL) ∩ (pfxA) = pfx(L ∩A) . (12)
Consequently, we refer to K := L ∩ A as the model of the
closed-loop configuration and have Kloc = pfxK .

For the purpose of our discussion, we observe that an upper-
bound specification K ⊆ G can be interpreted as a guarantee
with the particular feature, that any supervisor enforcing this
guarantee on the closed loop behaviour cannot invalidate the
assumption A, i.e., K ⊆ A. Hence, if we establish a super-
visor such that the closed-loop behaviour K is non-empty and
satisfies K ⊆ G, we trivially obtain K ⊆ A ∩ G ⊆ A → G.

We summarize the above discussion in the following formal
statement of the synthesis problem for the supervision of non-
terminating processes.
Problem 2. (Supervisory Controller Synthesis). Given an alpha-
bet Σ with the non-empty set of uncontrollable events Σuc ⊆ Σ,
a plant A ⊆ Σω and an upper-bound specification G ⊆ Σω,
construct a supervisor with associated behaviour L ⊆ Σω that is
non-blocking, see Eq. (12), and that satisfies

∅ , A∩L ⊆ G , (13)
or verify that no such supervisor exists. �

Referring to the behavioural characterisation of supervisors in
Lemma 2, we identify a qualifying associated behaviourLwith
a solution to Problem 2. Note that the trivial case of Σ = Σuc
implies L = Σω and the synthesis problem collapses to the
verification ofA ⊆ G.

Controllability Prefix To solve Problem 2, Ramadge (1989)
characterises all closed-loop behaviours that can be achieved
by non-blocking supervisory control for a given plant.



Proposition 1. Given an alphabet Σ with uncontrollable events
Σuc ⊆ Σ, consider two languages A and K with ∅ , K ⊆ A ⊆
Σω. Then there exists a non-blocking supervisor f : Σ∗ → Γ for
the plantA with closed-loop behaviour K if and only if

(i) K is relatively topologically closed w.r.t.A, i.e.,
K = clo(K) ∩A, and

(ii) K is ∗-controllable w.r.t.A, i.e.,
((pfxK)Σuc) ∩ (pfxA) ⊆ (pfxK) . �

Since (i) is not retained under arbitrary union, a maximally per-
missive solution does not exist in general and this contrasts SCT
for ∗-languages. To compute specific closed-loop behaviours
solving Problem 2, we utilize the notion of the controllability
prefix introduced by Thistle and Wonham (1994b).
Definition 2. Given an alphabet Σ with uncontrollable events
Σuc ⊆ Σ and a plant A ⊆ Σω, consider the upper bound
specification G ⊆ Σω. The controllability prefix of G w.r.t. A
is denoted pfxA(G) and defined as the set of words s ∈ pfxG,
for which there existsVs ⊆ A ∩ G ∩ (sΣω) such that

(i) Vs is relatively topologically closed w.r.t.A∩ (sΣω), i.e.,
Vs = clo(Vs) ∩ (A∩ (sΣω)), and

(ii) Vs is ∗-controllable w.r.t.A∩ (sΣω), i.e.,
((pfxVs)Σuc) ∩ (pfxA) ∩ (sΣ∗) ⊆ (pfxVs) . �

Comparing the above conditions (i) and (ii) with Proposition 1,
we see that Vs is a closed-loop behaviour that can be enforced
by a non-blocking supervisor, if it “takes over to control the
plant” after the word s ∈ pfxA(G) was generated by the plant.
As Vs ⊆ G this supervisor is able to enforce the guarantee G.
In particular, the synthesis problem has a solution if and only if
ε ∈ pfxA(G). In Thistle and Wonham (1994b), the set pfxA(G)
is referred to as the “winning configurations of the supervisor”
for a game theoretic interpretation.

For practical purposes, these “winning configurations of the
supervisor” and, hence, the controllabilitry prefix pfxA(G),
can be computed by a fixed-point algorithm over a product
automaton induced byA and G which allows to directly extract
a supervisor solving Problem 2. This algorithm is conceptually
very similar to the reactive synthesis algorithm and is recalled
in the following section.

Synthesis Algorithm We state a solution procedure under the
assumption that ∅ , G ⊆ A. By (13), this is not restrictive:
if G = ∅ the problem has no solution; and substitution of G
by A ∩ G does not affect solutions. For sake of a concise
exposition, we also assume that we are given a trim generalized
Büchi automaton

M = (Q,Σ, q0, δ, {FA, FG}) (14)
s.t. A = Lω

m(MA), G = Lω
m(MG) and pfx(A) = L∗(M) where

MA and MG refer to the simple Büchi automaton obtained
from M by using the single winning state set FA and FG,
respectively. Given the generalized Büchi automaton M, a
winning configuration s ∈ pfxA(G) corresponds to the state
q = δ(q0, s) reachable by s from q0 in M, and hence q is called
a winning state. The winning state set is computed by the four-
nested fix-point
νZ . µY . νX . µW . Pre((W \FA)∪Y ∪ (FG∩Z), X \FA) , (15)

where Pre(T, D) is the inverse dynamics operator, i.e.,

Pre(T, D) := { q ∈ Q | (∃σ ∈ Σ : δ(q, σ) ∈ T ) ∧
(∀σ ∈ Σuc : δ(q, σ)! ⇒ δ(q, σ) ∈ T ∪ D) } . (16)

The fixed-point in (15) is derived from the algorithm by Thistle
and Wonham (1994a), which we adapted to address the special
case in which both the plant A and the specification G are
represented by deterministic Büchi-automata.

Given the set of winning states Win(M) computed via (15),
we have that ε ∈ pfxA(G) if and only if amounts to q0 ∈

Win(M). Hence, the latter condition characterises the existence
of solutions to Problem 2 and a supervisor can be obtained by
extracting suitable control patterns from the inner loop in the
fixed-point iteration.
Remark 2. For the special case in which the plant behaviour
A is topologically closed, we can assume without loss of
generality that FA = Q in M. In this case (15) collapses to

Win(M) = νZ . µY . Pre(Y ∪ (FG ∩ Z))
= νZ . µY . Pre(Y) ∪ (FG ∩ Pre(Z)) , (17)

where we use the short form Pre(T ) := Pre(T, ∅) for the
unconditional inverse dynamics operator. It should be noted
that (8) and (17) are describing the same fixed-point, and this
suggests a strong connection between Problem 1 and Problem 2
for the special case of a topologically closed languageA.

5. COMPARISON

This section provides a comparison between Problem 1 and
Problem 2. Both problems differ in the common interpretation
of how the system and the environment interact in detail. For
reactive synthesis, the system operates in computation cycles
with reading inputs and assigning outputs once per cycle. Thus,
the system is driven by some mechanism that triggers the cycle
and the input readings. In turn, the system drives its envi-
ronment by output assignments. In contrast, in the common
interpretation in the context of supervisory control, the system
passively observes past events to apply a control pattern, while
the environment is responsible for the actual execution of tran-
sitions. However, both forms of interaction do not show explic-
itly in the formal problem statement nor in the computational
solutions. Thus, we may very well consider a reactive system
where computation cycles are triggered by the environment
and we may also consider supervisors that effectively apply
singleton control patterns to actively execute plant transitions.
Thus, regarding causality, the different interpretation of system
interaction are irrelevant at this stage. Using this insight, we
demonstrate how one can formally transform synthesis prob-
lems 1 and 2 and their solutions into each other.

5.1 Reactive Synthesis via Supervisory Control.

In this section, we show how a solution to the reactive synthesis
problem, Problem 1, can be computed using supervisory con-
troller synthesis. This is done in three steps. Given a particular
instance of Problem 1, we (i) derive a corresponding instance
of Problem 2, (ii) compute a solution of the latter in terms of a
non-blocking supervisor and (iii) derive a reactive module that
solves the original instance of Problem 1. Step (ii) is already
addressed in Sec. 4 and we are left to discuss Steps (i) and (iii).

The Corresponding Problem Given an instance of Problem 1,
we are provided the non-empty finite sets U, Y , and two ω-
languages A ⊆ (UY)ω and G ⊆ (UY)ω defining the assump-
tions on the generation of inputs and the desired guarantee on
the generation of outputs, respectively. To derive a correspond-
ing instance of Problem 2, a natural choice is to associate A



with the plant behaviour and G with the specification, This
implies Σ = U ∪̇Y and our remaining choice is that of Σuc.
We let Σuc = U and, hence, Y = Σ − Σuc. Having set all
parameters, let f : Σ∗ → Γ denote a non-blocking supervisor
with associated behaviour L that solves Problem 2.

Extracting the Reactive Module As our first observation, we
recall from Lemma 2 that the behaviour L associated with the
supervisor f is topologically closed (SC1) and universally con-
trollable (SC2). In contrast, reactive modules are characterised
by (RM1) – (RM3) in Lemma 1, where topological closedness
(RM1) matches (SC1) and the locally free input (RM2) is im-
plied by universal controllability (SC2) and Y = Σ − Σuc. Thus,
to obtain a behaviour of a reactive module, we are left to address
that the output must locally process the input (RM3).

At a first stage, we trim f to only enable those controllable
events that can actually occur, i.e., we consider h : Σ∗ → Γ
with

h(s) := Σuc ∪ {σ ∈ f (s) | sσ ∈ pfxA} (18)
for all s ∈ Σ∗. This is not expected to affect the closed-
loop behaviour and, indeed, the supervisor f obtained from
the algorithmic solution of Problem 2 already possesses this
property. At a second stage, we ensure that at any instance of
time exactly one controllable event is enabled, i.e., we consider
f ′ : Σ∗ → Γ where

f ′(s) = Σuc ∪̇ {σ} s.t. h(s) , Σuc ⇒ σ ∈ h(s) (19)
with σ ∈ Σ − Σuc and for all s ∈ Σ∗. Although this second
post-processing stage at instances enables an arbitrarily chosen
additional controllable event, it does so only when the plant
at hand will not accept any controllable event at all. Thus,
the second post-processing stage is expected to restrict the
closed-loop behaviour. Technically, f ′ is a supervisor and,
by Lemma 2, the associated behaviour L′ is non-empty and
exhibits (SC1) and (SC2). In a third post-processing step, we
intersect L′ with (UY)ω in order to enforce alternating inputs
and outputs, i.e.,

L′′ := L′ ∩ (UY)ω . (20)
Although the latter construct will formally invalidate (SC2), it
retains (RM2) and it does not affect the closed-loop configura-
tionA∩L′ since we haveA ⊆ (UY)ω.

Result We can now state our first main result, i.e., L′′ indeed
solves the initial instance of the reactive synthesis problem.
Theorem 1. Given non-empty alphabets U, Y , U ∩ Y = ∅,
consider a particular instance of Problem 1, with assumption
A ⊆ (UY)ω to provide the guarantee G ⊆ (UY)ω. Let f :
Σ∗ → Γ with associated behaviour L be a solution to the
corresponding instance of Problem 2 with Σ := U ∪̇Y , Σuc :=
U, plant behaviour A and specification A ∩ G. Then L′′, as
defined by (18)-(20), solves the given instance of Problem 1.
Moreover,A and L′′ are non-conflicting.
If L is ω-regular, then f ′ can be chosen to be realisable by a
finite automaton, and, in turn, L′′ is ω-regular. �

By the above theorem, for any instance of Problem 1 whose
corresponding instance of Problem 2 has a solution in terms
of a supervisor, we can use this supervisor to construct a re-
active module solving the original reactive synthesis problem.
For practical purposes, this amounts to solving Problem 1 via
the synthesis algorithm presented in Sec. 4 (using the 4-nested
fixed-point in (15)) and the additional post-processing in (18)-
(20). As Thm. 1 ensures A and L′′ are non-conflicting, we

know that the resulting reactive module will not falsify the
assumptions. As mentioned in the introduction, this solution is
different to solutions obtained by recently proposed algorithms
synthesizing reactive modules which do not falsify the assump-
tions (e.g., Bloem et al. (2015); Brenguier et al. (2017)).

5.2 Supervisory Control via Reactive Synthesis

We now consider a supervisory control problem, Problem 2,
and aim for a solution in terms of a reactive module. Similar to
our approach in the previous Section 5.1, we proceed in three
steps. Given a particular instance of Problem 2 we (i) derive a
corresponding instance of Problem 1, (ii) compute a solution
of the latter in terms of a reactive module and (iii) derive a
non-blocking supervisor that solves the original instance of
Problem 2. Unfortunately, step (iii) cannot be performed in
general, as a non-blocking supervisor by definition requires that
L andA are non-conflicting and this can not be addressed by an
ω-regular specification in the RS problem under consideration.
Hence, we propose to impose additional assumptions on the
problem parameters that ensure that the instance of Problem 1
obtained in step (i) is such that the associated behaviour L of
the resulting reactive module does not conflict withA. Interest-
ingly, there exist two conditions which where developed inde-
pendently in both communities and which effectively ensure a
non-conflicting closed loop. Both conditions address the special
class of plant behaviours A ⊆ (Σuc(Σ − Σuc))ω with alternating
controllable and uncontrollable events, were all controllable
events Σ − Σuc are a locally free input to A. We restrict the
discussion in this section to this system class, referred to as
input/output plant behaviours with locally free input.

The Corresponding Problem Given an instance of Problem 2
we are provided with Σuc ( Σ, an input/output plant behaviour
A with locally free input, and a specification G ⊆ Σω. By the
alternation of controllable and uncontrollable events, we can
choose the correspondence U := Σuc and Y := Σ − Σuc to
obtain A, G ⊆ (UY)ω. Excluding the trivial case Σuc = Σ,
this constitutes qualifying parameters for the reactive synthesis
problem, Problem 1. For the following, we consider a reactive
module with behaviour L that solves Problem 1 and seek to
construct a solution to the initial instance of the supervisory
control problem, Problem 2.

Extracting the Supervisor The solution L of the reactive syn-
thesis problem satisfies (RM1)–(RM3) and we need to derive
a behaviour that satisfies (SC1) and (SC2) for a solution of the
supervisory control problem. Topological closedness (SC1) is
immediate by (RM1). Regarding (SC2), we propose the follow-
ing transformation:

L′ := L ∪ ((pfxL)(Σωuc)) . (21)
The above construct L′ indeed satisfies (SC1) and (SC2) and,
moreover, retains the closed-loop behaviour, i.e.,L′ ∩A = L∩
A and (pfxL′) ∩ (pfxA) = (pfxL) ∩ (pfxA).

For L′ to solve Problem 2, we are left to establish that its
corresponding supervisor is non-blocking and that it enforces
the language inclusion specification; technically, A and L′
must be non-conflicting with ∅ , A∩L′ ⊆ G.

Non-Falsifiable Assumptions in Reactive Synthesis As the
reactive module with behaviour L solves Problem 1 it fulfils
(3), and hence, the closed-loop configuration can continue for
infinitely many computation cycles to generate an ω-word α ∈



(cloA) ∩ (cloL). Since L is closed, we also have α ∈ L.
However, one may fail on α ∈ A, and, by the specification
L ⊆ A → G, risk that α < G. This undesirable situation is
referred to as falsifying the assumption.

This issue can be avoided by non-falsifiable assumptions 5 .
Given the two player game interpretation used in the algorith-
mic synthesis of reactive modules, an assumption cannot be
falsified by the module, if the environment player has a winning
strategy in the Büchi game (H, T 0) over the game graph H. In
this case, there exists a causal map by which the environment
can organise its moves, which ensures that for any infinite play
some final environment state q ∈ T 0 is attained infinitely often,
regardless of the moves chosen by the reactive module. In this
sense, both players win and we have α ∈ A ∩ L for anyω-word
generated in the closed-loop configuration.

Strong Non-Anticipation in Supervisory Control As Prob-
lem 2 asks for a non-blocking supervisor, we know that at no
specific instance of time the supervisor can prevent the plant to
attain its acceptance condition, i.e., for all s ∈ Kloc we require
that s ∈ pfx(A ∩ L′) and the existence of β ∈ Σω such that
sβ ∈ A ∩ L′. However, this does not rule out supervisors
which require the plant to eventually take certain transitions
that depend on future control patterns, i.e., the plant may need
to anticipate the moves of the supervisor. See Moor et al. (2011)
for an example that illustrates this subtle issue.

In many applications it is unrealistic to assume that the plant
knows about future control patterns. Thus, there is an interest
in plant behaviours that can attain their acceptance conditions
independently of a particular supervisor, and a class of such
plant behaviours has been characterised in Moor et al. (2011)
for the special case of input/output behaviours. The results
reported there amount to a representation of A as a union of
topologically closed components that each exhibit Y = Σ − Σuc
as a locally free input, and this construct is well motivated
for external behaviours of hybrid systems and abstractions
thereof. It is further shown that the condition is equivalent to
the controllability prefix ofA w.r.t. cloA to equal pfxA, i.e.,

pfxcloA(A) = pfxA (22)

where Y = Σ − Σuc take the role of the uncontrollable events
in the definition of the controllability prefix, Def. 2. The latter
property is referred to as strong non-anticipation. Referring to
the game theoretic interpretation of supervisory control, (22)
requires that the local plant pfxA is always in a winning
configuration regarding the satisfaction of its own acceptance
condition, i.e., at any time the plant can decide to internally use
a causal feedback map to choose the next event such that the
plant acceptance condition will be met regardless the control
imposed by the supervisor.

Result When comparing the two conditions, namely strong
non-anticipation and non-falsifiable assumptions, one can show
that the former is stronger then the latter. An intuition for
this result can be obtained by comparing the game theoretic
interpretations of both conditions. A non-falsifiable assumption
requires the “environment to play clever” from the very begin-
ning, whereas (22) allows the plant to start doing so eventually.
We provide a more technical comparison in Schmuck et al.
(2017). Our second main result is stated as follows.

5 See Brenguier et al. (2017), Sec. 3, for an illustrative explaination of this
phenomenon, called Win-under-Hype there.

Theorem 2. Given an alphabet Σ with the non-empty set of
uncontrollable events Σuc ( Σ, consider a particular instance
of Problem 2 with input/output plant behaviour A with locally
free input, and a specification G ⊆ A. Let r with associated
behaviour L be a solution to the corresponding instance of
Problem 1 with U = Σuc and Y = Σ − Σuc, assumptions A
and guarantee G. If A satisfies (22), the assumptions are non-
falsifiable and L′ defined by (21) solves the given instance of
Problem 2.
If L is ω-regular, then so is L′. �

By the above theorem we have the following result. Given an
instance of Problem 2 with a plant behaviour A which (i) is
strongly non-anticipating, (ii) has alternating controllable and
uncontrollable events, and (iii) where the controllable events
are a locally free input to A, any solution to the corresponding
instance of Problem 1 can be used to construct a non-blocking
supervisor solving the original supervisory controller synthesis
problem. For practical purposes, this amounts to solving Prob-
lem 2 via the reactive synthesis algorithm presented in Sec. 3
(using the 3-nested fixed-point in (8)) and the additional post-
processing in (21).
Remark 3. It should be noted that topologically closed plant
behaviours are always strongly non-anticipating. Hence, com-
bining the results form Thm. 1 and Thm. 2 with the observa-
tions from Rem. 1 and Rem. 2 we see that for topologically
closed plants with input/output behaviour both problems are
essentially equivalent and can be solved by the matching two-
nested fixed-points in (8) and (17).
Remark 4. A more general discussion for behaviours that do
not necessarily have an input/output structure is given in
Schmuck et al. (2017) and leads to a technically more involved
transformation when solving an SCT synthesis problem via
RS. This transformation amounts to using control patterns as
outputs and generated events as inputs to the reactive module
and requires a more subtle translation between supervisors and
reactive modules. In this situation, we can show that topo-
logical closedness of A is a prerequisite to ensure that the
resulting closed-loop is non-conflicting. This implies that the
result stated in Rem. 3 also holds for behaviours that do not
necessarily have an input/output structure.

6. CONCLUSION

This paper provides a formal comparison of reactive synthesis
under environment assumptions, Problem 1, and supervisory
control of input/output behaviours, Problem 2.

As our first main result, we have shown in Sec. 5.1 (Thm. 1)
that one can solve the considered RS problem, Problem 1,
by using supervisory controller synthesis to obtain a reactive
module which will not actively falsify the assumptions on the
environment. This provides a new perspective on algorithms
ensuring soltutions with this property, which is an active field
of research in the RS comunity.

As our second main result, we have shown in Sec. 5.2 (Thm. 2)
that the synthesis problem from SCT, Problem 2, with strongly
non-anticipating and input/output plant behaviour can be solved
using RS. Both properties are well motivated for hybrid systems
or abstractions thereof, see Moor et al. (2011), and strong non-
anticipation is conceptionally and technically closely related
to non-falsifiable assumptions. Using RS for supervisory con-
troller synthesis for this class of plants demonstrates that a



three nested fixed-point computation suffices. We may therefore
expect computational benefits as a trade-off when imposing
additional conditions on the synthesis problem from SCT.

In conjunction, Thms. 1 and 2 establish the equivalence of the
two problems regarding solvability for the subclass of strongly
non-anticipating plants with locally free input.
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