
Deterministic Finite-Automata Abstractions
of Time-Variant Sequential Behaviours

Thomas Moor and Stefan Götz

Lehrstuhl für Regelungstechnik,
Friedrich-Alexander Universität Erlangen-Nürnberg, Germany,

e-mail: lrt@fau.de

Abstract: A sequential behaviour is a set of infinite length words. Following J.C. Willems behavioural
systems theory, we interpret the behaviour as the relevant outcome when modelling a phenomenon
w.r.t. the progress of discrete time. We propose the notion of an experiment as a particular form of
inspecting a provided behaviour and ask for a strongest model that can be derived therefrom. The overall
construct establishes a behavioural abstraction from the original model which, for finite signal ranges,
can be realised as a deterministic finite automaton. The proposed method includes a flexible scheme for
abstraction refinement that can be tailored to meet application requirements.
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INTRODUCTION

If for a synthesis or verification task at hand the provided
system turns out too complex, one option is to resort to a less
involved abstraction of the original system. For hybrid systems,
there is a particular interest of abstractions with finite automata
realisation, as they enable the application of well studied enu-
meration based methods for both controller synthesis as well as
formal verification. Regarding synthesis, a common additional
requirement is determinism in the sense that the state of the
abstraction is uniquely defined by the past sequence of external
symbols. Thus, deterministic abstractions can also be conceived
as an alternative to computationally costly exact determinisation
procedures for finite automata with large state sets.

A well established approach to obtain an abstraction is to utilise
a simulation relation and to base the abstraction on the quotient
state set. This is commonly referred to as quotient based ab-
straction and has been extensively studied for various classes of
hybrid systems, see e.g. Alur et al. (2000); Pola et al. (2008)
and the textbook Tabuada (2009). Provided that the ranges
of the external signals are finite and that the quantisation is
not considered a degree of freedom in the synthesis problem,
an alternative approach are so called behavioural abstractions
that are defined exclusively in terms of the external signals.
Here, l-complete approximations, l ∈ N, as originally proposed
by Moor and Raisch (1999); Raisch and O’Young (1998), are
realised on a state set that memorises the l most recent external
symbols. A comparative study that elaborates the relationship
between behavioural abstractions and quotient based abstrac-
tions is given in Schmuck et al. (2015).

In this paper, we further discuss a generalisation of l-complete
approximations to memorise a non-uniform number of external
symbols which was introduced by Moor et al. (2006). While
the given reference is restricted to time-invariant systems and
formally requires an exact reachability analysis, we now also
address abstractions of time-variant systems that can be ob-
tained by a conservative reachability analysis, and, hence, are
applicable to more general classes of hybrid systems. From a

practical perspective, we also complement Moor et al. (2006)
by establishing an explicit automaton representation. We note
that time variant systems are also addressed by asynchronous
l-complete approximations Schmuck and Raisch (2014). In this
regard, the present paper provides a uniform framework for the
two independent generalisations of l-complete approximations.

This paper is organised as follows. In Section 1 we develop
the notion of an experiment on a behaviour from which we
obtain a strongest model, and we do so for time-variant and
for time-invariant systems. This leads to a class of behavioural
abstractions that can be refined by adjusting the experiment
to the application at hand. In Section 2, we consider the
situation where the original system is provided as a state
machine. Technically, conducting an experiment then amounts
to a recursion of a conservative one-step reachability operator.
In Section 3, we establish a deterministic finite automaton
realisation of the behavioural abstraction directly in terms of
experiments.

NOTATION

Given a signal space W and considering discrete time, we
denote WNo := {w |w : No → W } the universe of signals. The
left-shift operator σl, l ∈ No, is defined for signals w ∈ WNo

by σlw ∈ WNo with (σlw)(k) := w(k + l) for all k ∈ No, and
we let σ := σ1. For a signal w ∈ WNo , the restriction to an
integer interval D ⊆ No is denoted w|D with, e.g., D = [k1, k2) :=
{ k ∈ No | k1 ≤ k < k2 } and left-open and/or right-closed intervals
defined likewise.

When taking finite restrictions we drop absolute time, i.e., we as-
sociate w|[k1, k2) with the finite sequence 〈w(k1), . . . , w(k2−1)〉 ∈
W l of length l := k2 − k1 > 0 for k1 < k2. We denote the empty
sequence ε < W to let w|∅ := ε and W0 := {ε}. The set of all finite
sequences is defined as W∗ := ∪{W l | l ∈ No}. For a sequence
s ∈W l ⊆W∗, let |s| denote its length l. For two finite sequences
s = 〈ω1, . . . , ωl〉 ∈W l and r = 〈%1, . . . , %n〉 ∈Wn, the concate-
nation is defined by 〈s, r〉 := 〈ω1, . . . , ωl, %1, . . . , %n〉 ∈ W l+n.
For the empty sequence, let 〈s, ε〉 := s =: 〈ε, s〉. The concatena-



tion of the finite sequence s = 〈ω1, . . . , ωl〉 ∈W l with a signal
w ∈ WNo is denoted v = 〈s, w〉, with v(k) = ωk+1 for k < l and
v(k) = w(k − l) for k ≥ l. Again, for the empty sequence let
〈ε, w〉 := w.

A sequence r ∈W∗ is a prefix of s ∈W∗ if there exists u ∈W∗
such that 〈r, u〉 = s; we then write r ≤ s. If, in addition, r , s.
we say that r is a strict prefix of s and write r < s. Likewise,
r ∈ W∗ is a prefix of a signal w ∈ WNo , if there exits v ∈ WNo

such that 〈r, v〉 = w; we then write r < w. The set of all prefixes
of a given sequence s ∈W∗ or a given signal w ∈WNo is denoted
pre s ⊆W∗ or pre w ⊆W∗, respectively. A sequence u ∈W∗ is a
suffix of s ∈W∗ if there exists r ∈W∗ such that 〈r, u〉 = s.

Taking point-wise images, all operators and set-valued maps in
this paper are identified with their respective extension to set-
valued arguments; e.g., 〈S ,WNo〉 = {〈s,w〉 | s ∈ S , w ∈WNo } for
S ⊆W∗, and preB = ∪{ pre w |w ∈B } for B ⊆WNo .

1. BEHAVIOURAL ABSTRACTIONS BY EXPERIMENTS

Following the terminology from Willems (1991), a dynamical
system is a mathematical model of a phenomenon with a partic-
ular focus on variables that change their respective value over
time. Formally, a dynamical system amounts to a mathematical
expression, such as a conjunction of equations, that encodes
on which trajectories the variables may evolve. We associate a
dynamical system with the set of all trajectories that satisfy the
expression and refer to this set as the behaviour. J.C. Willems’
behavioural systems theory proposes to discuss and to cate-
gorise dynamical systems in terms of their behaviours. For the
scope of this paper, we restrict considerations to the time axis
No and use the following definition of a sequential behaviour.
Definition 1. Given some set W, referred to as the signal space,
a sequential behaviour over W is a set B ⊆WNo . �

Prototypical representations of sequential behaviours are sam-
pled data systems, finite automata or other variants of transition
systems. Here, we think of the state variable as “internal” and
use W as the range of transition labels. To this end, we only as-
sume that the representation provided allows us to test whether
or not s ∈ preB for any specific finite sequence s ∈ W∗. We
follow a method proposed by Moor et al. (2006) and examine
the behaviour by suitably chosen tests to derive an alternative
representation. The outcome of the examination is then referred
to as an experiment conducted on the behaviour.
Definition 2. A conservative experiment on a behaviour B ⊆
WNo is a set S ⊆W∗ of sequences such that B ⊆ 〈S , WNo〉. 1 �

The technical condition B ⊆ 〈S , WNo〉 requires the tests to be
“exhaustive” in the sense that we identify at least some prefix
s < w of every possible trajectory w ∈ B; see Fig. 1 for an
illustration.

1.1 Naive Abstractions

We consider the situation where we are provided an experiment
S but not the original modelB, and we ask what S reveals about
B. While we can not expect to recover B exactly, the condition
B ⊆ 〈S , WNo〉 enables us to obtain a behavioural abstraction,
i.e., a model BS ⊆WNo that satisfies the inclusion B ⊆BS.
1 In the original definition, as proposed by Moor et al. (2006), there is an
additional requirement, namely that S ⊆ pre B. Practically, this implies that the
test on an individual sequence s ∈W∗ for containment in preB must not report
“false positives”. We drop the additional requirement for the present paper.
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Fig. 1. Experiment S ⊆W∗ on B ⊆WNo

Definition 3. Given an experiment S ⊆W∗ on a behaviour over
W, we say that BS ⊆WNo is a model obtained from S if

∀B′ ⊆WNo : S is experiment on B′ ⇒ B′ ⊆BS . (1)

If, in addition, we have BS ⊆ B′S for all models B′S obtained
from S , then BS is a strongest model obtained from S . �

Given an experiment S on a behaviourB, the following proposi-
tion establishes the unique existence of the strongest model BS
obtained from S . Thus, BS is the tightest behavioural abstrac-
tion of B that can be stated exclusively in terms of S .
Proposition 4. Given an experiment S ⊆W∗ on some behaviour
over W, then

BS := {w ∈WNo | ∃ s ∈ S : s < w } (2)

is the unique strongest model obtained from S .

Proof. As a preliminary observation, note that strongest models
obtained from S include each other. Hence, if a strongest model
exists, it must be unique. Moreover, it is immediate from Eq. (2)
that S is an experiment on BS. Thus, we have BS ⊆B′S for any
model B′S obtained from S . If BS is a model obtained from S , it
must be the strongest such model. Now consider any behaviour
B′ such that S is an experiment on B′ and pick an arbitrary
w ∈ B′. By Definition 2, we can choose s ∈ S such that s < w.
This implies w ∈ BS and, hence, B′ ⊆ BS. Therefore, BS is
indeed a model obtained from S . �

An intuitive interpretation of Eq. (2) is thatBS tracks a sequence
within pre S until it first reaches S and from then on allows for
any arbitrary behaviour. For its simplicity, we also refer to BS
as the naive abstraction of B obtained from S .

We point out some technical consequences of Eq. (2). Provided
an experiment S ⊆ W∗ consider S ′ ⊆ S by removing all se-
quences from S that have a strict prefix within S :

S ′ := { s ∈ S | ∀ t ∈W∗ : 〈s, t〉 ∈ S ⇒ t = ε } . (3)

Then the naive abstraction BS ′ obtained from S ′ matches BS
and, as long as the only concern is the naive abstraction, we
may without loss of generality restrict considerations to prefix-
free experiments, i.e experiments S ∈W∗ that satisfy

∀s, r ∈ S : s ≤ r ⇒ s = r . (4)

Another consequence observed from Eq. (2) is that ε ∈ S
implies BS = WNo , i.e., from a trivial experiment S , ε ∈ S , we
obtain the trivial abstraction BS = WNo as the strongest model.
Hence, trivial experiments are of little practical value.

For a prefix-free experiment S ⊆ W∗ on B ⊆ WNo we can
construct a refinement S ′ ⊆W∗ by replacing an arbitrary finite



sequence s ∈ S by all one-symbol extensions that pass the test
for containment in preB, i.e.,

S ′ := ( S \ {s} ) ∪ { 〈s, ω〉 |ω ∈W and 〈s, ω〉 ∈ preB } , (5)

where, by Eq. (2), we obtain BS ′ ⊆ BS for the respective
naive abstractions. The construction of an experiment can be
organised as successive refinements of the trivial experiment
S := {ε}, where the refinements can either be uniform or guided
by application specific requirements.

1.2 Abstractions under the assumption of time-invariance

The situation becomes more interesting when we assume that
the original behaviour, on which the experiment is conducted,
exhibits certain structural properties and if we then exploit
these properties when recovering the strongest model. A natural
candidate for a structural property here is time invariance and
this matches the situation discussed in Moor et al. (2006).
Definition 5. A behaviour B ⊆ WNo is time invariant if σB ⊆
B; see also Willems (1991). �

Time-invariant linear systems satisfy the above condition as
well as automata with unrestricted initial state. Transition sys-
tems with non-trivial initial condition do in general not comply
with the above notion of time invariance; this is followed up
further below in this section. We adapt Definition 3 to obtain
models from experiments on time-invariant behaviours.
Definition 6. Given an experiment S ⊆ W∗ on some time-
invariant behaviour over W, we say that BS ⊆WNo is a model
obtained from S under the assumption of time-invariance if

∀B′ ⊆WNo :
S is an exp. on B′ and σB′ ⊆B′ ⇒ B

′ ⊆BS . (6)

If, in addition, BS ⊆ B′S holds for all likewise obtained models
B′S, we say that BS is a strongest model obtained from S under
the assumption of time invariance. �

Again, the strongest model BS exists uniquely, referred to as
the abstraction obtained from S under the assumption of time
invariance, and we obtain the following characterisation.
Proposition 7. Given an experiment S ⊆ W∗ on some time-
invariant behaviour over W, then

BS := {w ∈WNo | ∀ k ∈ No ∃ l ∈ No : w|[k, k+l) ∈ S } (7)

is the unique strongest model obtained from S under the
assumption of time invariance.

Proof. As a preliminary observation, we note by Eq. (7) that
σBS ⊆ BS and BS ⊆ 〈S , WNo〉. Hence, S is an experiment on
the time invariant behaviour BS. Thus, we have BS ⊆ B′S for
any model B′S obtained from S under the assumption of time-
invariance. We now show that BS is a model obtained from S
under the assumption of time invariance. Consider an arbitrary
time-invariant behaviour B′ such that S is an experiment on
B′, i.e, B′ ⊆ 〈S , WNo〉. Now pick arbitrary w ∈ B′ and k ∈ No.
By time invariance, we have that σkw ∈ σkB′ ⊆B′ ⊆ 〈S , WNo〉,
and, hence, there exists s ∈ S and v ∈ WNo such that σkw =
〈s, v〉, This implies w|[k,l) = s ∈ S for l = |s|. By the arbitrary
choice of w and k, we conclude B′ ⊆ BS, and, hence, BS
is indeed a model obtained from S under the assumption of
time invariance. Together with the preliminary observation, this
implies that BS is a strongest model. By definition, strongest
models include each other and this implies uniqueness. �

The abstraction BS obtained from an experiment effectively
tracks a sequence within pre S until it reaches S , but instead
of allowing for any arbitrary behaviour thereafter, it will drop
some prefix of the tracked sequence to continue tracking within
pre S . This is illustrated in Figure 2 and we will discuss this
mechanism in more detail in Section 3. To this end, we note
from the characterisation Eq. (7) that BS itself is time invariant
and that for the special case of S =B|[0,l] with l ∈ No, the model
BS matches the strongest l-complete approximation from Moor
and Raisch (1999).

preBS

pre S

w ∈ BS

w|[k, l) ∈ S

S preB

0 k + l − 1k

Fig. 2. Abstraction BS ⊆WNo obtained from S ⊆W∗ under the
assumption of time-invariance

As with the naive abstractions, the characterisation by Eq. (7)
implies that we may without loss of generality assume experi-
ments to be prefix-free, and that for trivial experiments ε ∈ S we
obtain the trivial abstractionBS = WNo . Also, for refinements by
Eq. (5) we again obtain BS ′ ⊆BS, i.e., refined experiments lead
to potentially better abstractions.

Moreover, certain “false positives” of the underlying test can
be identified and eliminated. More specifically, provided an
experiment S ⊆ W∗ we may remove all sequences s that do
not contribute to the model, i.e. s < preBS, since we know by
B ⊆ BS that such sequences can not occur within the prefix
preB of the original behaviour. Technically, let

S ′ := S ∩ (preBS) , (8)

to observe BS ′ = BS for the abstraction BS ′ obtained from S ′.
As long as the derived abstractions are the only concern, one
may without loss of generality restrict considerations to trim
experiments in the sense of S ⊆ preBS.

1.3 Abstractions of time-variant behaviours

In the case that the underlying phenomenon is considered time
invariant except for restricted initial conditions, the naive ab-
straction from Section 1.1 and its more advanced time-invariant
variation from Section 1.2 can be combined to abstract the start-
up behaviour and the long-term behaviour individually. For the
latter, we propose the following time-invariant abstraction.
Definition 8. Given B ⊆WNo , a time-invariant abstraction is a
time-invariant behaviour B′ with B ⊆ B′ ⊆ WNo . A strongest
time-invariant abstraction is a time-invariant abstraction Btia
with Btia ⊆B′ for any time-invariant abstraction B′. �

The strongest time-invariant abstraction exists uniquely and is
characterised by the following proposition.



Proposition 9. Given a behaviour B ⊆WNo , the strongest time-
invariant abstraction Btia exists uniquely with

Btia = ∪{σkB | k ∈ No } . (9)

Proof. With k = 0 we observe that B ⊆Btia. Moreover, σBtia =
∪{σ(σkB) | k ∈ No } = ∪{σkB | k ∈ N } ⊆ Btia. Thus, Btia is
a time-invariant abstraction of B. Let B′ denote any time-
invariant abstraction of B and pick an arbitrary w ∈ Btia. Then
w ∈ σkB for some k ∈ No, and, hence, w ∈ σkB′. By time-
invariance of B′ we obtain w ∈ σkB′ ⊆B′. We conclude Btia ⊆
B′ and have established that Btia is a strongest time-invariant
abstraction. Uniqueness follows from strongest time-invariant
abstractions to include each other. �

We conclude this section by proposing a behavioural abstraction
Babs of a not-necessarily time-invariant behaviour B.

(A1) Conduct an experiment Ssux on B to obtain the naive
abstraction Bsua to address the start-up behaviour.

(A2) Conduct an experiment S ltx on the strongest time-invariant
abstraction Btia of B to obtain the abstraction Blta under
the assumption of time-invariance to address the long-
time behaviour.

(A3) Report Babs :=Bsua ∩Blta as abstraction of B.

By construction, we have B ⊆ Btia ⊆ Blta and B ⊆ Bsua and,
hence, Babs indeed is a behavioural abstraction of B in that
it satisfies the inclusion B ⊆ Babs. It can be seen that for the
special case of Ssux =B|[0, l] and S ltx =Btia|[0, l], the behavioural
abstractionBabs matches the strongest asynchronous l-complete
approximation proposed in Schmuck and Raisch (2014).

2. EXPERIMENTS ON STATE MACHINES

We recall from Moor and Raisch (1999) how, when conducting
an experiment on B ⊆ WNo , the test for s ∈ preB can be
organised for the case that B is realised by a state machine.
Definition 10. A state machine is a tuple P = (X, W, δ, Xo) with
the (not necessarily finite) state set X, the external signal space
W, the transition relation δ ⊆ X ×W × X and the initial states
Xo. With a state machine P, we associate the full behaviour

Bfull := { (w, x) ∈WNo × XNo | ∀ k ∈ No :
x(0) ∈ Xo and (x(k),w(k), x(k + 1)) ∈ δ } , (10)

and we say that P realises the external behaviour

Bex := {w ∈WNo | ∃ x ∈ XNo : (w, x) ∈Bfull } . (11)

We write Q �B to indicate that a state machine Q with external
signal space W realises an external behaviour B over W. �

For a state machine P = (X, W, δ, Xo), a state ξ ∈ X can only
contribute to the full behaviour Bfull if it can be reached from
an initial state and if it can be continued to an infinite-time
trajectory, i.e., if there exists (w, x) ∈Bfull and k ∈ No such that
x(k) = ξ. If every state exhibits this property, P is said to be trim.
In this section, we focus attention on trim state machines.

For a state machine P �Bex with full behaviourBfull and a finite
external sequence s ∈W∗, the set of compatible states is defined

Xs := { ξ ∈ X | ∃ (w, x) ∈Bfull : w|[0,|s|) = s , ξ = x(|s|) } , (12)

i.e., the set of states in which the state machine can possibly
reside after the occurrence of s. In particular, for any state

ξ ∈ Xs, there exists (w, x) ∈ Bfull with s < w, and, thus, s ∈
preBex. Vice versa, if s ∈ preBex, we choose v ∈ WNo such
that w := 〈s, v〉 ∈ Bex, and, hence, there exists x ∈ XNo with
(w, x) ∈ Bfull. This implies x(|s|) ∈ Xs, and we conclude that
s ∈ preBex if and only if Xs , ∅.
Provided that P is trim, sets of compatible states can be com-
puted by a recursion with the one-step forward reachability
operator post( · ):

X〈s,ω〉 = postωXs := { ξ′ | ∃ ξ ∈ Xs : (ξ, ω, ξ′) ∈ δ } , (13)

where s ∈W∗, ω ∈W, and Xε = Xo. If P is not trim, we can still
run the above iteration, however, due to blocking states we may
then obtain “false positives” if we test for s ∈ preBex by Xs , ∅.

When we have Xo = X for a state machine P = (X, W, δ, Xo),
then the external behaviour Bex, P � Bex, is time invariant. If,
on the other hand, Xo , X, Bex may fail to be time invariant. In
this case, Section 1 proposes to perform experiments also on
the time-invariant abstraction Btia = ∪{σkBex | k ∈ No }. Now
consider v ∈ σkBex for some k ∈ No. Then v = σkw for some
w ∈Bex and we can choose x such that (w, x) ∈Bfull. Here, we
observe that σl(w, x) with any l ∈ No is in the full behaviour
of Ptia := (X, W, δ, X). In particular v = σkw is in the external
behaviour of Ptia. Vice versa, consider a signal w in the ex-
ternal behaviour of Ptia and denote x ∈ XNo a corresponding
state trajectory. Provided that P is trim, there exists (v, z) ∈
Bfull, such that z(l) = x(0) for some l ∈ No. This implies that
(〈v|[0,l), w〉, 〈z|[0,l), x〉) ∈ Bfull, and, hence, w = σl〈v|[0,l), w〉 ∈
σlBex ⊆ Btia. We conclude that Ptia � Btia. In other words, a
realisation Ptia of the strongest time-invariant abstraction Btia
can be obtained by dropping the initial condition. Therefore,
experiments on the time-invariant abstraction of an external
behaviour Bex realised by P amount to the same recursion
Eq. (13), however, now initialised by Xε = X.

As a special case, consider W = U × Y with U the input range
and Y the output range, a set-valued transition function f : X ×
U { X and a set-valued output function g : X { Y . To obtain a
transition relation, we let (ξ, (µ, ν), ξ′) ∈ δ ⊆ X ×W × X if and
only if ξ′ ∈ f (ξ, µ) and ν ∈ g(ξ′). The resulting state machine
P = (X, W, δ, Xo) is referred to as input-output state machine
and the recursion Eq. (13) can be rewritten as

X〈s,(µ,ν)〉 = post(µ,ν)Xs = f (Xs, µ) ∩ g−1(ν) , (14)

where s ∈W∗, µ ∈ U, ν ∈ Y , and g−1(ν) := { ξ′ | ν ∈ g(ξ′) }. This
class of transition systems can be used to represent hybrid
dynamics with a discrete-event external interface, i.e., X = V ×
Rn and V , U and Y being finite sets. Note that this setting
accounts for physical time obtained by a regular sampling pe-
riod as well as logic time obtained by triggering events via
thresholds or mode invariants and guard regions. For either
case, reachability has been extensively studied and the literature
provides effective procedures for the evaluation of Eq. (14),
including exact evaluation for restricted classes of continuous
dynamics, e.g. Alur et al. (1996, 2000); Lafferriere et al. (2000),
as well as safe over-approximations for richer classes of contin-
uous dynamics, e.g., Althoff et al. (2010); Chutinan and Krogh
(1998); Frehse (2008); Henzinger et al. (2000); Maler and Dang
(1998); Mitchell et al. (2005); Reissig (2011). For finite-state
abstractions based on experiments, we may via Eq. (14) utilise



any exact or safe over-approximation method as an underlying
computational procedure.

3. REALISATIONS OF STRONGEST MODELS

Provided that the signal space W is finite and provided that an
experiment S ⊆W∗ is bounded-in-time by an integer maximum
length over all sequences, then S is a finite set. In this case,
a deterministic finite-automaton realisation of the strongest
model BS can be constructed directly from S .

3.1 Realisations of naive abstractions

Given a prefix-free experiment S ⊆ W∗, we first seek for a
realisation of the naive abstraction BS obtained from S , as
characterised by Eq. (2). For our candidate Q = (Z, W, η, Zo),
we choose the state set Z = pre S and organise transitions such
that the state records past values of the external signal until it
passes S . More precisely, we define η as the set of all transitions
(ζ, ω, ζ′) ∈ Z ×W ×Z that satisfy

ζ′ =
{
ζω if ζ ∈ pre S and ζ < S ,
ζ if ζ ∈ S ,

(15)

and we initialise the record with Zo := {ε}, i.e., no past signal
values so far. Note that the proposed candidate is deterministic,
i.e., it exhibits one initial state and for every state ζ and every
external symbol ω, there is at most one successor state ζ′ with
(ζ, ω, ζ′) ∈ η.
Lemma 11. For a prefix-free and bounded-in-time experiment
S over W with the strongest model BS obtained from S ,
consider Q = (Z, W, η, Zo) with Z = pre S , η as in Eq. (15) and
Zo = {ε}. Then we have Q �BS.

Proof. Let Bex and Bfull denote the external behaviour and
the full behaviour associated with Q, respectively. Pick an
arbitrary w ∈Bex and choose z ∈ ZNo such that (w, z) ∈Bfull. By
construction, we have z(0) = ε and z(k + 1) = 〈w(0), . . . , w(k)〉
for all k with z(k) ∈ (pre S )\S . Since the length of the sequences
of S is bounded, this implies the existence of l such that
s =: z(l) ∈ S . Observe that s < w, and, hence, w ∈BS by Eq. (2).
To this end, we conclude that Bex ⊆ BS. Now pick an arbitrary
w ∈BS to establish the converse inclusion. By Eq. (2), we pick
s < w such that s ∈ S , and let l := |s|. Consider the candidate
state trajectory z defined by z(0) := ε, z(k) := 〈w(0), . . . ,w(k −
1)〉 for all k ∈ No, 0 < k ≤ l, and z(k) := z(l) for all k ∈ No,
l < k. Note that the range of z, by construction, consists of
all prefixes of s and we have indeed z ∈ ZNo . Moreover, for
k < l, we have that z(k) is a strict prefix of s, and, since S is
prefix-free, we have that z(k) < S for all k < l. By Eq (15), first
case, this amounts to (z(k), w(k), z(k + 1)) ∈ η for all k ∈ No,
0 ≤ k < l. For k ∈ No, k ≥ l, we have by definition z(k) = z(l) = s
and we refer to Eq (15), second case, in order to conclude
(z(k), w(k), z(k + 1)) ∈ η. We therefore have that (w, z) ∈ Bfull,
and, hence, w ∈Bex. This concludes the proof of BS ⊆Bex. �

3.2 Realisations of abstractions assuming time-invariance

We now turn to the abstraction BS under the assumption of
time-invariance obtained from a prefix-free experiment S ⊆W∗.
Here, we additionally assume that S is non-trivial, i.e., ε < S ;
see Eq. (7). Our candidate Q = (Z, W, η, Zo) to realise BS is
defined by the same state space Z = pre S as for the naive

abstraction, however, we now define η as the set of all transitions
(ζ, ω, ζ′) ∈ Z ×W ×Z that satisfy

ζ′ = 〈ζ/, ω〉 for the longest suffix ζ/ of ζ with ζ/ < S . (16)

Indeed, if ζ < S the longest qualifying suffix ζ/ < S is identified
ζ/ = ζ, and Eq. (16) effectively collapses to the first case in
Eq. (15) and encodes the state to record one more external
symbol ω. If, on the other hand, ζ/ ∈ S , the transition relation
encodes that first a minimum number of symbols are dropped
from ζ to become a strict prefix ζ/ in S , and that then appending
ω complies with S in the sense of ζ′ = 〈ζ/, ω〉 ∈ pre S . In
particular, our candidate Q is again deterministic. We establish
that Q in fact realises BS by two technical propositions.
Proposition 12. For a non-trivial and prefix-free experiment S
over W and the strongest model BS obtained from S under
the assumption of time-invariance, let Q = (Z, W, η, Zo) with
Z = pre S , η as in Eq. (16) and Zo = {ε}. Then the external
behaviour Bex satisfies BS ⊆Bex.

Proof. We pick an arbitrary w ∈ BS and refer to Eq. (7) to
make two preliminary observations. First, given k ∈ No, we can
choose H(k) ∈ No such that

w|[k,H(k)) ∈ S ; (17)

since S is prefix-free, the choice is unique. Second, given k let

L(k) := min{ t ∈ No |H(t) ≥ k } ; (18)

since k itself is in the former set, it is non-empty and the
minimum is well defined. Note also, that L( · ) is monotone. We
are now in the position to define our candidate state trajectory
z ∈ ZNo by z(k) := w|[L(k), k) for all k ∈ No; see Fig. 3 for the
construction so far.

w[k,H(k)) ∈ S

0

w ∈ B

H(k)H(L(k))L(k) k

w[L(k),H(L(k))) ∈ S

Fig. 3. Candidate state z(k) := w|[L(k), k) (green colour)

Observe that we have indeed z(k) ∈ Z = pre S for all k ∈
No, and, for k = 0, we also have z(0) = ε ∈ Zo. To establish
(z(k), w(k), z(k + 1)) ∈ η, we distinguish two cases. For case
(a), we assume that H(L(k)) > k. This implies by Eq. (18) that
L(k + 1) = L(k) and, hence, z(k + 1) = w|[L(k), k+1) = 〈z(k), w(k)〉.
Also by the case hypothesis, we have z(k) < S and, hence, z(k)
is the longest prefix of itself with z(k) < S . This demonstrates
that (z(k), w(k), z(k + 1)) ∈ η and we proceed with case (b).
Here, we formally assume that H(L(k)) ≤ k, which by Eq. (11)
collapses to H(L(k)) = k. From this we conclude L(k + 1) >
L(k) and z(k) = w|[L(k), k) = w|[L(k),H(L(k))) ∈ S . Then z(k + 1) =
w|[L(k+1), k+1) = 〈w|[L(k+1), k), w(k + 1)〉 with w|[L(k+1), k) a strict suf-
fix of z(k), and, hence w|(L(k+1), k) < S . If there was a longer suffix
w|(t, k) of z(k) with w|(t, k) < S this would contradict minimality of
L(k + 1). Thus, w|(L(k+1), k) is the longest qualifying suffix of z(k)
in Eq. (16) and we again obtain (z(k), w(k), z(k + 1)) ∈ η. This
concludes both cases (a) and (b). Therefore, (w, z) is in the full
behaviour of Q and we finally obtain w ∈Bex. �

Proposition 13. For a non-trivial, prefix-free, trim and bounded-
in-time experiment S over W and the strongest model BS
obtained from S under the assumption of time-invariance, let



Q = (Z, W, η, Zo) with Z = pre S , η as in Eq. (16) and Zo = {ε}.
Then the external behaviour Bex satisfies Bex ⊆BS.

Proof. Let Bfull denote the full behaviour of Q, pick an arbitrary
w ∈ Bex and choose z such that (w, z) ∈ Bfull. Inspecting the
construct in Eq. (16), at any time k the state z(k) ∈ Z = pre S
matches consecutive external symbols from the strict past of
k, i.e., we may write z(k) = w|[L(k),k) with L(k) ≤ k. Then there
exists a unique time H(k), L(k) ≤ k ≤ H(k), such that

z(H(k)) = w|[L(k),H(k)) ∈ S . (19)

To establish w ∈ BS, we fix an arbitrary k ∈ No and show by a
repeated argument that there exists l ∈ No such that w|[k,k+l) ∈ S .
For this purpose, consider any k′ ≥ k with L(k′) ≤ k, where
we know that such k′ exists by the witness k = k′. Referring
to our notation introduced above, we obtain s = z(H(k′)) =
w|[L(k′),H(k′)) ∈ S . Since S is trim, we can extend to v ∈BS, s < v.
SinceBS is time-invariant, we have that σk−L(k′)v ∈ σk−L(k′)BS ⊆
BS. As an immediate consequence of Eq. (7), we can uniquely
choose a prefix r < σk−L(k′)v with r ∈ S ; see Fig. 4 for an
illustration of the construction of r.

0

w ∈ B

H(k′)k′L(k′) k

s = z(H(k′)) = w[L(k′),H(L(k′))) ∈ S

s < v ∈ B

Fig. 4. Construction of r ∈ S (green colour), case (b)

The first H(k′) − k symbols of σk−L(k′)v are w|[k,H(k′)). We
distinguish two cases. For case (a), we assume that |r| ≤ H(k′)−
k. Then we can use l := H(k′) − k and obtain w|[k,k+l) = r ∈ S
as required. For case (b), we must have |r| > H(k′) − k. Here,
we observe that w|[k,H(k′)) ∈ (pre S ) \ S . Referring to Eq. (16),
z(H(k′) + 1) is constructed form the longest suffix of z(H(k′))
not in S and by appending w(H(k′)) to that suffix. We write
k′′ := H(k′) + 1 and z(k′′) = w|[L(k′′), k′′) to observe that L(k′′) ≤ k
for the maximal choice of the suffix. We then substitute k′ by k′′
and repeat the argument. Now assume that the argument went
on indefinitely by branching into case (b). Then H(k′) − L(k′)
would grow arbitrarily large to contradict the boundedness of S .
Hence, the argument terminates with case (a). �

Our main result on the realisation of models obtained under the
assumption of time invariance is an immediate consequence of
Propositions 12 and 13.
Lemma 14. For a non-trivial, prefix-free, trim and bounded-in-
time experiment S over W the strongest model BS obtained
from S under the assumption of time-invariance is realised by
Q = (Z, W, η, Zo) with Z = pre S , η as in Eq. (16) and Zo = {ε},
i.e., we have Q �BS. �

CONCLUSION

We have revisited a fairly general scheme of behavioural ab-
stractions based on experiments, originally proposed in Moor
et al. (2006) to address supervisory controller synthesis for hy-
brid systems with a prescribed discrete-event external interface.
Our present extension addresses time-variant behaviours and

accounts for a conservative reachability analysis in the under-
lying computational procedures, i.e., tolerates “false positives”
when testing whether a prescribed finite sequence is within the
prefix of the given behaviour. We also complement Moor et al.
(2006) in providing a detailed construction of a deterministic
finite automaton realisation for the abstraction.
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