
Natural Projections for the Synthesis of
Non-Conflicting Supervisory Controllers

Thomas Moor ∗

∗ Lehrstuhl für Regelungstechnik
Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Abstract: A common strategy in the design of discrete-event systems is to apply synthesis algorithms
not to the actual plant model but to an abstraction that is realised on a significantly smaller state set.
Depending on the control objectives, certain conditions are imposed on the plant and on the abstraction,
in order to end up with an appropriate controller. A well known result from the literature is that
abstractions obtained by a so called natural observer can be used for the purpose of non-blocking
supervisory control. Despite additional favourable properties of natural observers regarding state count
and composed plants, as a condition for non-blocking supervisory control it is restrictive, i.e., sufficient
but not necessary. This contrasts the sufficient and necessary condition developed in this paper.

Keywords: Discrete-event systems, supervisory control, abstraction-based synthesis, liveness properties.

1. INTRODUCTION

When the plant model provides more detail than required for
the controller design problem at hand, one may resort to an
appropriate plant abstraction instead. A crucial question in such
an abstraction-based controller design is whether the resulting
controller enforces relevant control objectives not only for the
abstraction but also for the original plant model.

More specifically, we consider the situation where the plant
model is given as a formal language and the natural projection
to strings of high-level events is considered as a candidate for
an abstraction; see also (Feng and Wonham, 2008, 2010). This
setting applies to the design of hierarchical control architec-
tures when a group of plant components, each subject to low-
level control (Ramadge and Wonham, 1987, 1989), are com-
posed and the subsequent task is the synthesis of a supervisor
that addresses cooperative behaviour, specified w.r.t. high-level
events. For computational procedures, including the choice of
a suitable high-level alphabet, see e.g. (Schmidt et al., 2008;
Feng and Wonham, 2010). In the present paper, we rephrase
the question, whether the abstraction-based design solves the
original problem as a requirement imposed on the high-level
alphabet and we develop an implementable test to verify this
requirement.

Our study relates to (Wong and Wonham, 1996), where within
a general framework the notion of an observer is defined and
proven to be a sufficient condition for the purpose of non-
blocking hierarchical controller synthesis. Variations of the nat-
ural observer property that explicitly take into account con-
trollability are presented in (Feng and Wonham, 2008) and
address minimal restrictive hierarchical supervision (Schmidt
and Breindl, 2011). In (Malik et al., 2007), it is shown that
the observer property is not only sufficient but also neces-
sary to obtain a conflict equivalent abstraction used for com-
positional non-blocking verification. The present paper is a
further development of the reachability analysis presented in
(Moor et al., 2013). In contrast to the earlier results, the
novel condition obtained in the present paper is not only suffi-

cient but also necessary for non-conflicting controller synthesis,
i.e., we characterise precisely those projections, for which an
abstraction-based controller design is guaranteed to exhibit a
non-conflicting closed-loop behaviour.

The paper is organised as follows. Preliminaries and notational
conventions are given in Section 2 and prepare for the technical
problem statement in Section 3. To obtain a characterisation of
a non-conflicting closed-loop configuration, Section 4 relates
individual conflicts to the minimal restrictive solution of a
particular controller synthesis problem. Consequences for the
situation of regular languages are drawn in Section 5 to provide
the basis for a software implementation. Finally, Section 6
interprets the results in the context of the reachability analysis
proposed in (Moor et al., 2013).

2. PRELIMINARIES AND NOTATION

Let Σ be a finite alphabet, i.e., a finite set of symbols σ ∈ Σ. The
Kleene-closure Σ

∗ is the set of finite strings s = σ1σ2 · · ·σn,
n ∈ �, σi ∈ Σ, and the empty string ε ∈ Σ

∗, ε < Σ. If, for two
strings s, r ∈ Σ

∗, there exists t ∈ Σ
∗ such that s = rt, we say r is

a prefix of s, and write r ≤ s.

A formal language (or short a language) over Σ is a subset
L ⊆ Σ

∗. Given a language L ⊆ Σ
∗, the equivalence relation [≡L]

on Σ
∗ is defined by s′ [≡L] s′′ if and only if (∀ t ∈ Σ

∗)[s′t ∈
L ↔ s′′t ∈ L]. The language L is regular if [≡L] has only
finitely many equivalence classes.

The prefix of a language L ⊆ Σ
∗ is defined by pre L :={r ∈

Σ
∗
| ∃ s ∈ L : r ≤ s}. A language L is prefix-closed (or short

closed) if L = pre L. A language K is relatively closed w.r.t. L if
K = (pre K) ∩ L. The languages L and K are non-conflicting if
pre (L ∩ K) = (pre L) ∩ (pre K). The prefix operator distributes
over arbitrary unions of languages.

For the observable events Σo ⊆ Σ, the natural projection
po : Σ

∗
→ Σ

∗
o is defined iteratively: (1) let poε := ε; (2) for

s ∈ Σ
∗, σ ∈ Σ, let po(sσ) :=(pos)σ if σ ∈ Σo, or, if σ < Σo,

let po(sσ) := pos. The set-valued inverse p−1
o of po is defined

by p−1
o (r) :={s ∈ Σ

∗
| po(s) = r } for r ∈ Σ

∗
o. When applied

to languages, the projection distributes over unions, and the
inverse projection distributes over unions and intersections.
The prefix operator commutes with projection and inverse
projection.

The projection po : Σ
∗
→ Σ

∗
o is a natural observer for a

language L ⊆ Σ
∗, if for all s ∈ pre L and all u ∈ Σ

∗
o with

(pos)u ∈ poL there exists t ∈ Σ
∗ such that st ∈ L and pot = u;

see e.g. Feng and Wonham (2010).

Given two languages L, K ⊆ Σ
∗, and a set of uncontrollable

events Σuc ⊆ Σ, we say K is controllable w.r.t. L, if (pre K)Σuc ∩

(pre L) ⊆ pre K. Note that, in contrast to e.g. (Ramadge and
Wonham, 1987) but in compliance with e.g. (Cassandras and
Lafortune, 2008), this variant of controllability does not insist
in K ⊆ L. Controllability, closedness and relative closedness
are each retained under arbitrary union.

Unless otherwise noted, the alphabets Σ, Σc, Σuc, Σo and Σuo
refer to the common partitioning Σ = Σc∪̇Σuc = Σo∪̇Σuo
in controllable, uncontrollable, observable and unobservable
events, respectively.

3. PROBLEM STATEMENT

For the purpose of this paper, let the plant and the controller
be represented by formal languages L ⊆ Σ

∗ and H ⊆ Σ
∗,

respectively, to obtain the closed-loop behaviour K ⊆ Σ
∗

by intersection, i.e., K = L ∩ H. The following definition
imposes conditions on the controller for a well-posed closed-
loop configuration.
Definition 1. Given a plant L ⊆ Σ

∗, Σ = Σc∪̇Σuc, a controller
H ⊆ Σ

∗ is admissible w.r.t. L, if

(i) H is prefix-closed;
(ii) H is controllable w.r.t. L; and,

(iii) L and H are non-conflicting. �

It is readily verified that a closed-loop behaviour K ⊆ L
can be achieved by an admissible controller H if and only if
K is controllable w.r.t. L and relatively closed w.r.t. L. This
corresponds to non-blocking supervision as originally proposed
by Ramadge and Wonham (1987). There, control is exercised
by a causal feedback map V : pre L → Γ, which maps the
respective past string s ∈ pre L to a control pattern γ = V(s),
Σuc ⊆ γ ⊆ Σ, to indicate the set of enabled successor events after
the occurrence of s. In this paper, the controller H is interpreted
as a representation of the feedback map V , and we omit explicit
references to V in the subsequent development.

When a language inclusion specification E ⊆ L is given,
controller design amounts to the computation of the supremal
achievable closed-loop behaviour K↑ ⊆ E in order to extract
a corresponding controller H := pre K↑; see e.g. (Wonham and
Ramadge, 1987) for a computational procedure. Now consider
the case, where the controller can only observe events from a
restricted alphabet Σo ⊆ Σ. This paper takes the perspective
of hierarchical control, see e.g. (Wong and Wonham, 1996),
where one motivation in the deliberate restriction of observable
events is to gain computational benefits. In this setting, one
may assume that any aspects of the specification that relates
to unobservable events has been dealt with by a low-level
controller and that the specification at hand exclusively refers
to Σo, i.e., E = p−1

o poE. It is then proposed to synthesise

an admissible controller Ho ⊆ Σ
∗
o for the projected plant

Lo := poL ⊆ Σ
∗
o to satisfy the projected specification Eo := poE.

In this approach, Lo is interpreted as an abstraction of the
plant L, and, in turn, H := p−1

o Ho as an implementation of the
high-level controller Ho to operate on the actual plant L. By
construction, we obtain

L ∩ H ⊆ p−1
o (Lo ∩ Ho) , Lo ∩ Ho = po(L ∩ H) ,

where the latter equality is referred to as hierarchical consis-
tency; see also (Zhong and Wonham, 1990). In particular, the
actual closed-loop behaviour K = L ∩ H satisfies the language
inclusion specification:

K = L ∩ H ⊆ p−1
o (Lo ∩ Ho) ⊆ p−1

o Eo = E .

It must be noted, that in the worst case the number of states
required to realise Lo is even larger when compared to L;
see (Wong, 1998). However, for relevant applications a sub-
stantial reduction of the required state set can be observed. In
such a prospective situation, there remains the question whether
admissibility of the high-level controller Ho implies admissibil-
ity of the implementation H := p−1

o Ho. This question is readily
rephrased as a formal requirement imposed on the abstraction.
Definition 2. Given a plant L ⊆ Σ

∗ with the common alphabet
partitioning, the plant abstraction Lo := poL is consistent for the
purpose of controller design (or short consistent), if admissibil-
ity is retained under implementation; i.e., if for all Ho ⊆ Σ

∗
o,

H := p−1
o Ho, the following implication holds:

Ho is admissible w.r.t. Lo

=⇒ H is admissible w.r.t. L . �

Regarding the individual properties closedness, controllability
and non-conflictingness, we recall well-known facts from the
literature.
Proposition 3. Given a plant L ⊆ Σ

∗ with the common alphabet
partitioning, consider the abstraction Lo := poL, a controller
candidate Ho ⊆ Σ

∗
o and its implementation H := p−1

o Ho. Then
each of the following three implications holds true individually:

Ho is prefix-closed
=⇒ H is prefix-closed ;

Ho is controllable w.r.t. Lo

=⇒ H is controllable w.r.t. L ;

and, provided that po is a natural observer for L,

Lo and Ho are non-conflicting
=⇒ L and H are non-conflicting .

Proof. For the first implication, recall that the prefix operator
pre (·) and the projection po(·) commute. The second and the
third implication are consequences of the more general results
given in (Zhong and Wonham, 1990), Theorem 4.1, and in
(Wong and Wonham, 1996), Theorem 6, respectively. For a
direct proof addressing the specific situation at hand, see also
(Moor et al., 2013). �

In particular, the above proposition identifies the natural ob-
server property as a sufficient condition for the consistency of
an abstraction.
Theorem 4. If for a plant L ⊆ Σ

∗ with the common alphabet
partitioning the projection po : Σ

∗
→ Σ

∗
o is a natural observer,

then the abstraction Lo := poL is consistent for the purpose of
controller design. �

However, observe from Proposition 3 that the natural ob-
server property implies a non-conflicting closed loop regardless
whether the controller Ho is prefix-closed and/or satisfies the
controllability requirement. Thus, the converse implication of
the above theorem is suspected not to hold; i.e., a projection
may fail to constitute a natural observer but still yield a con-
sistent abstraction. This situation is illustrated by the following
example, Fig. 1.

Fig. 1. L and Lo, resp., with Σo = {r, p, a}, Σc = {a, p}

The plant L has been extracted from a real-world application,
where the event f represents the feed of a workpiece to a pro-
cessing machine with built-in buffer of capacity two. Provided
that a workpiece is present, the factory management may issue
a request event r, and awaits an acknowledge a to forward the
workpiece to a subsequent processing station. The design task
at hand is to synthesise a processing controller that, on request
r, first applies a recipe represented by a particular number of
processing events p and then enables the acknowledgement
event a. By intuition, the feed event f is not relevant for the
controller design and one may propose the projection Lo := poL
with Σo = Σ − {f} as a suitable abstraction.

To observe that the projection po fails to be a natural observer,
consider the string s = ffr, which advances the plant to state
P2 and the abstraction to state P. The abstraction suggests
that the event a leads to a marked state. In contrast, the actual
plant requires two a events for this purpose. Therefore, po is
not a natural observer for L. Moreover, since f is the only
unobservable event, no extension of Σo yields a natural observer
that reduces the state count.

Note that the example is readily adapted to any fixed buffer
capacity, generating arbitrarily large state counts for the actual
plant while not affecting the abstraction. Thus, the reduction
of the state count when using the abstraction for a controller
design can be substantial. In the remainder of the present paper,
a sufficient and necessary condition to characterise consistency
is developed. In particular, the condition is satisfied for the
above example and thereby justifies a controller design based
on the proposed abstraction.

4. A CHARACTERISATION OF CONFLICTS

Consider a high-level controller Ho ⊆ Σ
∗
o, admissible w.r.t. the

plant abstraction Lo := poL, and its implementation H := p−1
o Ho.

By Proposition 3, H is prefix-closed and controllable w.r.t.
L and we are left to discuss whether or not the closed-loop
configuration is non-conflicting. Here, we use the terminology
of a conflict at a particular string s ∈ pre L w.r.t. a target
language M ⊆ pre L, i.e., we say that the closed loop conflicts
at s w.r.t. M, whenever s ∈ (pre L) ∩ H and

(∀ t ∈ Σ
∗)[st ∈ H → st < M] .

To this end, the specific case of M := L motivates our study:
L and H are non-conflicting if and only if no string s ∈ pre L

conflicts w.r.t. the target L. More general targets M ⊆ pre L will
become relevant for the reachability analysis in Section 6.

Conflicts can be characterised be a language inclusion specifi-
cation that prevents the execution of any extension that enters
the target. Given s ∈ pre L and a target M ⊆ pre L, denote all
extensions of s that enter M by

Ms := M ∩ (sΣ∗) , (1)
and let

Eos := Lo − (poMs)Σ∗o ; (2)
see the below figure for an example continued from the previ-
ous section. If the high-level controller Ho complies with the
specification Eos, it must disable all extensions of s that enter
M, and, provided that s is in the local close-loop behaviour, this
causes a conflict at s. The converse implication also holds.

Fig. 2. Ms and Eos, resp., with M = L and s = ffr

Lemma 5. Given a plant L ⊆ Σ
∗ with the common alphabet

partitioning and a target M ⊆ pre L, let Ho ⊆ Σ
∗
o be admissible

w.r.t. the abstraction Lo := poL and consider the implementation
H := p−1

o Ho. Then, for any s ∈ pre L, the following are equiva-
lent:

(i) Lo ∩ Ho ⊆ Eos and pos ∈ Ho;
(ii) L and H conflict at s w.r.t. M.

Proof. We first establish “¬(ii) → ¬(i)”. By “¬(ii)”, we can
choose t ∈ Σ

∗ with st ∈ M ∩ H. This implies po(st) ∈
(pre Lo) ∩ Ho, and, referring to admissibility of Ho w.r.t. Lo,
we can choose u ∈ Σ

∗
o such that po(st)u ∈ Lo ∩ Ho. However,

st ∈ M ∩ sΣ∗, and, hence, po(st)u ∈ (poMs)Σ∗o. Therefore
po(st)u < Eos. We turn to the converse implication “(ii)→ (i)”.
The conflict at s, by definition, implies s ∈ (pre L) ∩ H and,
thus, pos ∈ poH = Ho. Now, pick an arbitrary r ∈ Lo ∩ Ho,
and, for a proof by contradiction, assume that r < Eos. This
implies r ∈ (poMs)Σ∗o, and we can choose v ∈ M ∩ (sΣ∗) and
w ∈ Σ

∗ such that po(vw) = r. Rewrite v as v = st ∈ M and
observe stw ∈ p−1

o r ⊆ p−1
o Ho = H. This implies st ∈ H ∩ M and

therefore contradicts with (ii). We conclude r ∈ Eos and, hence,
Lo ∩ Ho ⊆ Eos. �

The characterisation of a conflict by a language inclusion
specification has the particular benefit that the existence of a
controller that leads to the conflict can be verified by inspecting
the supremal high-level closed-loop behaviour

K↑os := sup{Ko ⊆ Eos |

Ko is controllable and relatively closed w.r.t. Lo } (3)
that satisfies Eos.
Lemma 6. Consider a plant L ⊆ Σ

∗ with the common alphabet
partitioning, a string s ∈ pre L, a target M ⊆ pre L and the
abstraction Lo := poL. Then there exists a high-level controller

Ho, admissible w.r.t. Lo, such that L and H := p−1
o Ho conflict at

s w.r.t. M, if and only if pos ∈ pre K↑os.

Proof. First, assume that pos ∈ pre K↑os. Then Ho := pre K↑os is
admissible w.r.t. Lo with Lo ∩ Ho ⊆ Eos and pos ∈ Ho. By
Lemma 5, L and H conflict at s w.r.t. M. For the converse
implication, consider an arbitrary admissible high-level con-
troller Ho with implementation H := p−1

o Ho and assume that L
and H conflict at s w.r.t. M. Referring to Lemma 5, we have
Ko := Lo ∩ Ho ⊆ Eos. Admissibility of Ho implies that Ko is
controllable and relatively closed w.r.t. Lo. Thus, Ko ⊆ K↑os.
Since L and H conflict at s, we must have s ∈ (pre L) ∩ H, and,
hence, pos ∈ po((pre L) ∩ H) ⊆ (pre Lo) ∩ Ho = pre Ko . Thus,
we obtain pos ∈ pre Ko ⊆ pre K↑os. �

For the example and with s = ffr, it turns out that K↑os = ∅.
Thus, no abstraction-based design exhibits a conflict at s = ffr.
By quantification over all s ∈ pre L and with target M := L
we obtain a characterisation of a non-conflicting closed-loop
configuration.
Theorem 7. Given a plant L ⊆ Σ

∗ with the common alphabet
partitioning, consider the target M := L and the abstraction
Lo := poL. Then Lo is consistent for the purpose of controller
design, if and only if pos < pre K↑os for all s ∈ pre L.

Proof. First, assume that Lo is consistent for the purpose of
controller design and pick an arbitrary s ∈ pre L. By consis-
tency, any implementation H = p−1

o Ho of an admissible high-
level controller Ho is admissible, and, in particular, forms a
non-conflicting closed loop with the plant L. Thus, there exists
no admissible high-level controller Ho, such that the imple-
mentation H and the plant L conflict at s. By Lemma 6, this
implies pos < pre K↑os. For the converse implication, assume
that pos < pre K↑os for all s ∈ pre L, pick an arbitrary high-level
controller Ho, admissible w.r.t. Lo, and consider the implemen-
tation H = p−1

o Ho. From Proposition 3, we have that H is prefix
closed and controllable w.r.t. L. To establish that L and H are
non-conflicting, pick an arbitrary s ∈ (pre L)∩H. By Lemma 6,
L and H do not conflict at s. Thus, there exists t ∈ Σ

∗ such that
st ∈ L ∩ H. Since s was chosen arbitrarily, this implies that L
and H are non-conflicting. In particular, H is admissible w.r.t.
L. Since Ho was chosen arbitrarily, this concludes the proof of
consistency. �

5. CONSEQUENCES FOR REGULAR LANGUAGES

The characterisation of consistency by Theorem 7 replaces
the universal quantification over all admissible high-level con-
trollers from Definition 2 by the quantification over all strings
from the local plant behaviour. To address a possible software
implementation for the situation of regular languages, we will
show that it suffices to test one representative for each class
from a specifically chosen equivalence relation.

The following technical lemma shows that the control exercised
for one string can be mapped to another one, provided that both
strings are equivalent w.r.t. the plant behaviour.
Lemma 8. Given a plant L ⊆ Σ

∗, Σ = Σc∪̇Σuc, consider a string
s′ ∈ pre L and a controller H′ ⊆ Σ

∗, admissible w.r.t. L, with
s′ ∈ H′. For s′′, s′′ [≡L] s′, let

H′′ = {s | s ∈ Σ
∗
, s′′ < pre s} ∪ {s′′t | s′t ∈ H′} .

Then H′′ is admissible w.r.t. L and s′′ ∈ (pre L) ∩ H′′.

Proof. Thinking of a closed language as an infinite tree with
root ε, the left component of H′′ consists of all strings in Σ

∗ that
do not pass s′′, whilst the right component consists of s′′ and
the sub-tree of H′ corresponding to the nodes reachable from
s′. The claims s′′ ∈ pre L and s′′ ∈ H′′ follow from s′′ [≡L] s′
and the definition of H′′, respectively. Ad closedness. Pick an
arbitrary s ∈ H′′ and consider a prefix v ≤ s. If s′′ ≤ v, then s is
chosen from the right component of H′′ and we obtain v ∈ H′′

from closedness of H′. If s′′ 6≤ v, we have s′′ < pre v and v
is within the left component of H′′. Ad controllability. Pick
arbitrary s ∈ H′′ and σ ∈ Σuc such that sσ ∈ pre L. If s′′ ≤ s,
then s is chosen from the right component of H′′, and we may
write s = s′′t with t ∈ Σ

∗ such that s′t ∈ H′. Since s′′ [≡L] s′,
we also obtain s′tσ ∈ pre L. Thus, controllability of H′ implies
s′tσ ∈ H′ and therefore sσ = s′′tσ ∈ H′′. If, on the other hand,
s′′ 6≤ s, we have either s′′ 6≤ sσ or sσ = s′′. In the first case,
sσ is within the left component of H′′. In the second case, sσ
is within the right component of H′′. Ad non-conflictingness.
Pick an arbitrary s ∈ (pre L) ∩ H′′. If s′′ ≤ s, then s is chosen
from the right component of H′′, and we may write s = s′′t
for s′t ∈ H′. Since s′′ [≡L] s′, we also obtain s′t ∈ pre L. By
non-conflictingness of L and H′, we can choose v such that
s′tv ∈ L∩H′. This implies s′′tv ∈ L∩H′′, where we again refer
to s′′ [≡L] s′ and the right component of H′′. If, on the other
hand, s′′ 6≤ s, we choose an arbitrary t ∈ Σ

∗ such that st ∈ L.
Here, we distinguish two cases. First, assume that s′′ 6≤ st, to
obtain st ∈ H′′ from the left component of H′′. For the second
case, we have s′′ ≤ st and can write svw = st with v, w ∈ Σ

∗

such that sv = s′′. In particular, we have sv ∈ (pre L) ∩ H′′ and
argue as for the situation of s′′ ≤ s. �

Mapping the control exercised at a particular string also maps
respective conflicts.
Lemma 9. Given a plant L ⊆ Σ

∗ with the common alphabet
partitioning, consider a high-level controller H′o, admissible
w.r.t. Lo := poL, such that L and H′ := p−1

o H′o conflict at s′ ∈ pre L
w.r.t. M, for M ⊆ pre L. Let s′′ ∈ Σ

∗ with s′′ [≡L] s′, pos′′ [≡Lo
] pos′, and s′′ [≡M] s′. Then there exists a high-level controller
H′′o such that L and H′′ := p−1

o H′′o conflict at s′′ w.r.t. M.

Proof. Let r′ := pos′, r′′ := pos′′ and observe that r′ ∈ (pre Lo)∩
poH′ = (pre Lo) ∩ H′o. We apply Lemma 8 to H′o to obtain

H′′o = {r | r ∈ Σ
∗
, r′′ < pre r} ∪ {r′′u | r′u ∈ H′o}

as a controller admissible w.r.t. Lo with r′′ ∈ (pre Lo) ∩
H′′o . Denote the implementation H′′ := p−1

o H′′o , to observe s′′ ∈
(pre L) ∩ H′′. For a proof by contradiction, assume that L and
H′′ do not conflict at s′′, i.e., we can choose t ∈ Σ

∗ such that
s′′t ∈ M ∩ H′′. By s′′ [≡M] s′, we obtain s′t ∈ M. Moreover,
r′′pot ∈ H′′o , and, thus, r′pot ∈ H′o. This implies s′t ∈ H′, and
we obtain s′t ∈ L∩H′. This contradicts with L and H′ to conflict
at s′. Therefore, the above choice of t can not be made and L
and H′′ must conflict at s′′. �

By Lemmata 6 and 9, the condition pos ∈ pre K↑os is either sat-
isfied or dissatisfied uniformly for all strings that are equivalent
with s.
Lemma 10. Given a plant L ⊆ Σ

∗ with the common alphabet
partitioning, and a target M ⊆ pre L, consider two strings
s′, s′ ∈ Σ

∗ such that s′′ [≡L] s′, s′′ [≡p−1o Lo] s′ and s′′ [≡M] s′.
Then pos′ ∈ pre K↑os′ if and only if pos′′ ∈ pre K↑os′′

Proof. Let r′ := pos′, r′′ := pos′′. Referring to s′′ [≡p−1o Lo] s′, it
is readily verified that r′′ [≡Lo] r′. Now assume that pos′ ∈

pre K↑os′ . By Lemma 6 this implies the existence of an high-
level controller H′o, admissible w.r.t. Lo such that the plant L
and the implementation H′ := p−1

o H′o conflict at s′. Then, by
Lemma 9, there exists a high-level controller H′′o such that
L and H′′ := p−1

o H′′o conflict at s′′. Again by Lemma 6, we
obtain that pos′′ ∈ pre K↑os′′ . The converse implication follows
likewise. �

As a consequence of Lemma 10, the condition pos ∈ pre K↑os
in the characterisation of consistency in Theorem 7 only needs
to be evaluated for one representative per equivalence class for
an equivalence at least as fine as [≡L] and [≡p−1o Lo] . Provided
that L is regular, such an equivalence can be represented by
the product of two automata, one realising L and one realising
p−1

o Lo. Here, each state corresponds to a set of strings that are
equivalent w.r.t. both, [≡L] and [≡p−1o Lo] .

A computational procedure to test whether Lo is consistent
can then be implemented as an iteration over all states of the
product automaton, where at each state pre K↑os is evaluated
to test for pos ∈ pre K↑os. The overall test is passed when
the condition is satisfied at all states. For the example from
Section 4, the iteration can be performed on the plant state set,
where consistency is successfully verified.

For abstractions that fail the test at particular states, one may
restrict the actual plant L by a low-level controller H admissible
w.r.t. L to render the critical states unreachable and to re-
evaluate the condition in Theorem 7 with K = L∩H in the role
of the actual plant. This approach effectively sacrifies specific
capabilities of the plant in order to maintain a prescribed
projection for the high-level controller design.

6. REACHABILITY ANALYSIS

We interpret the characterisation of consistency by Theorem 7
in the context of the reachability analysis proposed in (Moor
et al., 2013). The given reference presents sufficient conditions
to identify strings from the local plant behaviour that, under
supervision by any abstraction based controller, exhibit at least
one extension that enters a given target language. Technically,
the discussion in (Moor et al., 2013) is stated in terms of so
called universal star-reachability operators:
Definition 11. Given a plant L ⊆ Σ

∗ with the common alphabet
partitioning, denote Lo := poL the plant abstraction. An operator
Ω with Ω(M) ⊆ pre L for M ⊆ pre L, is a universal star-
reachability operator, if, for all M ⊆ pre L and all controllers
Ho ⊆ Σ

∗
o admissible w.r.t. Lo, it holds that

(∀ s ∈ Ω(M) ∩ p−1
o Ho)(∃ t ∈ Σ

∗)[st ∈ M ∩ p−1
o Ho] .

�

Note that, (Moor et al., 2013) refers to a slightly stronger notion
of admissibility. However, two of the proposed operators are
also relevant for the present paper and we recall their respective
definitions. Given a plant L ⊆ Σ

∗ and the common alphabet
partitioning, the operators ΩA and ΩB are defined by

ΩA(M) :={ s ∈ pre L| ∃σ ∈ Σuo : sσ ∈ M } , (4)
ΩB(M) :={ s ∈ pre L| ∃σ ∈ Σuc : sσ ∈ M } , (5)

for M ⊆ pre L. Since no implementation of an admissible
controller can disable unobservable or uncontrollable events,
both operators are indeed universal star-reachability operators;
the proof of Proposition IV.3, (Moor et al., 2013), applies
literally to the situation in the present paper.

However, the operator ΩC from (Moor et al., 2013) does not ap-
ply to the present paper, and we define the following alternative
variant for ΩD for M ⊆ pre L:

ΩF(M) :={s ∈ pre L | (∃σ ∈ Σ : sσ ∈ M) and
(pos < pre K↑os as def. by Eqs. (1)–(3)) } . (6)

As a consequence of Lemma 6, ΩF is a universal star-
reachability operator.
Proposition 12. Given a plant L ⊆ Σ

∗ with the common alpha-
bet partitioning, denote Lo := poL the plant abstraction. Then ΩF
is a universal star-reachability operator.

Proof. Choose M ⊆ pre L and a controller Ho ⊆ Σ
∗
o that is

admissible w.r.t. Lo, both arbitrarily. For s ∈ ΩF(M) we have
by definition s ∈ pre L and pos < pre K↑os. The latter clause
implies by Lemma 6, that L and H := p−1

o Ho do not conflict at s.
Assuming in addition s ∈ H, there must exists t ∈ Σ

∗ such that
st ∈ L∩H. Thus, ΩF satisfies the requirements of Definition 11.

�

It follows immediately from Definition 11, that arbitrary unions
of universal reachability operators are again universal reacha-
bility operators. Moreover, the identity is a universal reachabil-
ity operator. Finally, adapting (Moor et al., 2013), Proposition
IV.4, to the situation of the present paper, iterations of universal
reachability operators are again universal reachability opera-
tors. Thus, we can freely combine ΩA, ΩB and ΩF in nested
iterations to obtain a less restrictive universal reachability op-
erator. Compared with ΩA and ΩB, the evaluation of ΩF is
computationally more expensive. Therefore, it is proposed to
alternate fixpoint iterations of ΩA and ΩB in an inner loop with
an extension of the target M by applying ΩF in an outer loop.

Algorithm 1. Verification of consistency
1: function ISCONSISTENT(L, Σc, Σuc, Σo, Σuo)
2: Lo ← poL
3: M ← L
4: repeat
5: repeat
6: Mrecent ← M
7: M ← M ∪ΩA(M)
8: M ← M ∪ΩB(M)
9: until M == Mrecent

10: Mrecent ← M
11: M ← M ∪ΩF(M)
12: until M == Mrecent
13: return M == pre L
14: end function

Theorem 13. Given a regular plant L ⊆ Σ
∗ with the common

alphabet partitioning, both repeat-until loops in the function
ISCONSISTENT(L, Σc, Σuc, Σo, Σuo) terminate after finitely many
iterations. Moreover, the return value is true if and only if the
abstraction Lo := p−1

o L is consistent for the purpose of controller
design.

Proof. Observe that, during the iteration, M is monotonously
increasing and bounded by pre L. Thus, L ⊆ M ⊆ pre L is a
loop invariant. Now assume that at some stage we have

(∀ s′, s′′ ∈ Σ
∗)[s′′ [≡L] s′, s′′ [≡p−1o Lo] s′ → s′′ [≡M] s′]. (7)

Observe by Lemma 10 of this paper and by Proposition V.1
from (Moor et al., 2013) that Eq. (7) is retained when applying
either reachability operator. Since Eq. (7) is true upon initial-
isation with M = L, Eq (7) is a loop invariant, and there is

an upper bound on the number of states required to realise M.
Thus, during the iteration, M can only take a finite number of
different values. Monotonicity then implies that a fixpoint is
reached after a finite number of iterations. For correctness of the
algorithm, recall from the discussion above, that the two nested
loops evaluate a universal star-reachability operator with result
in the variable M at line 13. If the condition M == pre L is
satisfied, consistency is implied by Definition 11. Now assume
that the condition M == pre L is not satisfied. Since M ⊆ pre L,
we can then choose s ∈ pre L, s < M. By s ∈ pre L and L ⊆ M,
s can be extended to a string in M. Thus, we may assume
without loss of generality that our choice of s also satisfies sΣ∩
M , ∅. The exit condition of the outer loop in line 12 implies
M = ΩF(M) ∪ M, and, thus, s < ΩF(M). By sΣ ∩ M , ∅, we
obtain pos ∈ pre K↑os. Referring to Lemma 6 , there must exist
an addmissible high-level controller Ho with implementation
H := p−1

o Ho such that the closed loop has a conflict w.r.t. M at
s. Since we have L ⊆ M this also constitutes a conflict w.r.t. L
and, hence, the abstraction is not consistent. �

We have applied Algorihtm 1 to the processing machine exam-
ple; see Fig. 1. The below automata Fig. 3–6 mark the iterate
variable M on non-trivial updates during the iteration.

Fig. 3. First evaluation of ΩF (line 11)

Fig. 4. Second inner loop, evaluation of ΩB (line 8)

Fig. 5. Second evaluation of ΩF (line 11)

Fig. 6. Third inner loop, evaluation of ΩB (line 8)

The first update to a different value occurs after the evaluation
of ΩF in line 11. After the last update, Fig. 6, we have M = pre L
to satisfy the termination condition by the next iteration. In

particular, the function returns with value true to indicate that
the abstraction is consistent. Recall that the example does not
possess the natural observer property and that by increasing the
buffer capacity of the processing machine, the reduction in the
state count by the proposed projection becomes significant.

CONCLUSION

We have developed a sufficient and necessary condition to
guarantee that abstraction-based controller design yields a non-
conflicting closed-loop configuration. In the development of
our characterisation of consistency we eliminate the universal
quantification over all admissible high-level controllers and
thereby obtain a test that can be practically evaluated for the
situation of regular plant behaviours. Necessity of our condition
indicates that the result is not more restrictive than known suffi-
cient conditions, including the well-studied observer properties.
On the downside, our condition does not share the additional
benefits known for natural observers, such as the guarantee for
a reduced state count and an efficient verification for composed
plants. From a practical perspective, one may interpret our
result as a last resort for situations where natural observers are
not applicable. The relevance of such situations is demonstrated
by an example.

REFERENCES
Cassandras, C.G. and Lafortune, S. (2008). Introduction to

Discrete Event Systems. Springer, second edition.
Feng, L. and Wonham, W.M. (2010). On the computation of

natural observers in discrete-event systems. Discrete Event
Dynamic Systems, 20, 63–102.

Feng, L. and Wonham, W. (2008). Supervisory control archi-
tecture for discrete-event systems. IEEE Transactions on
Automatic Control, 53(6), 1449–1461.

Malik, R., Flordal, H., and Pena, P. (2007). Conflicts and
projections. 1st IFAC Workshop on Dependable Control of
Discrete Systems (DCDS), 63–68.

Moor, T., Baier, C., and Wittmann, T. (2013). Consistent
abstractions for the purpose of supervisory control. 52nd
IEEE Conference on Decision and Control, 7291–7296.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory control
of a class of discrete event processes. SIAM J. Control and
Optimization, 25, 206–230.

Ramadge, P.J. and Wonham, W.M. (1989). The control of
discrete event systems. Proceedings of the IEEE, 77, 81–98.

Schmidt, K. and Breindl, C. (2011). Maximally permissive
hierarchical control of decentralized discrete event systems.
IEEE Transactions on Automatic Control, 56(4), 723–737.

Schmidt, K., Moor, T., and Perk, S. (2008). Nonblocking
hierarchical control of decentralized discrete event systems.
IEEE Transactions on Automatic Control, 53(10), 2252–
2265.

Wong, K.C. (1998). On the complexity of projections of
discrete-event systems. In In IEE Workshop on Discrete
Event Systems, 201–208.

Wong, K.C. and Wonham, W.M. (1996). Hierarchical control
of discrete-event systems. Discrete Event Dynamic Systems,
6, 241–306.

Wonham, W.M. and Ramadge, P.J. (1987). On the supremal
controllable sublanguage of a given language. SIAM J.
Control and Optimization, 25, 637–659.

Zhong, H. and Wonham, W.M. (1990). On the consistency
of hierarchical supervision in discrete-event systems. IEEE
Transactions on Automatic Control, 35, 1125–1134.

