libFAUDES — An Open Source C++ Library for Discrete Event Sysems

Thomas Moot, Klaus Schmidt, Sebastian Petk

* Lehrstuhl fir Regelungstechnik, Universitat Erlangéimnberg, D-91058 Erlangen, Germany
{t homas. noor, kl aus. schmi dt, sebasti an. perk}@t. eei . uni -erl angen. de

_Abstract—The libFAUDES (Friedrich-Alexander University Technically, libFAUDES is built on top of the C++ Stan-
Discrete Event Systems) library is an open source C++ softwa dard Template Library (STL) to define container classes for
library for discrete event systems (DES) that is developed gent sets, state sets and transition relations. When aecipa

at the University of Erlangen-Nuremberg. The core library . . .
supports methods for the DES analysis and supervisor syntlsés, to plain C arrays, using STL does introduce some overhead

while a built-in plugin mechanism allows of specialized libary ~ fegarding memory usage. However, STL provides a rich set
extensions. In this paper, we evaluate libFAUDES according of efficient basic algorithms (searching, sorting, etc)d an
to the benchmark examples provided for the Workshop on we feel that this is a worthwhile trade off. All libFAUDES
Discrete Event Systems 2008. containers take an attribute template parameter to support
user defined attributes. For example, an event set may use
the attribute parameter to indicate whether individuainése
The publicly available C++ software library libFAUDES are controllable and/or observable.
(Friedrich-Alexander University Discrete Event Systes | For an application interface, the libFAUDEGenerator
brary) [1] has been developed at the Chair of Automaticlass modelsfinite automataand provides access to states,
Control, University of Erlangen-Nuremberg. The core lilgra events and transitions via indices, symbolic names and
provides basic algorithms for the manipulation of finiteiterators as well as a human readable file 10. The library
state automata and the supervisor synthesis in the Ralso implements a variety of general purpose operations on
madge/Wonham framework [2]. A plugin system facilitategyenerators and the respective formal languages (uniar; int
extensions of the core library such as the methods for timeagction, Kleene closure, projection, minimal state redian,
automata [3], I/0O-based control [4] and hierarchical contr etc.). We include basic functions for supervisory conéoll
[5] that have already been implemented. synthesis to demonstrate how the library can serve as an
In this paper, we evaluate the performance of libFAUDE®nvironment for implementation and evaluation of algarigh
by means of the WODES 2008 benchmark examples [6]. i®r the analysis and synthesis of discrete event systems.
addition to the monolithic supervisor synthesis, we apply libFAUDES is distributed as open source in the hope that it
cally modular contro[7] and hierarchical and decentralized may be useful for researchers in the DES field. We are com-
control [5] to demonstrate the practical use of our library. mitted to the further development and welcome suggestions
The remainder of the paper is organized as follows. 18nd contributions. We chose the GNU Lesser General Public
Section II, we describe the features of the libFAUDES-icense (LGPL [9]) scheme since this protects external
software library and its use for the benchmarking proces§ontributions while it imposes no restrictions on libFAUSE
The evaluation of the “dining philosophers” example andased applications. In particular, there is no requirenbent
the “cat-and-mouse” example with monolithic supervisorynake the application open source. Furthermore, the build
control is presented in Section Ill. Section IV provides oufystem supports a plugin mechanism to strictly separate the
computational results for the application of locally maatul core library from library extensions. Authors are inviteat b
control and hierarchical control to the benchmark problemsot forced to contribute their algorithms to the core lilgrar
and we give conclusions in Section V. B. luaFAUDES

Il. THE LIBFAUDES SOFTWARE LIBRARY The FAUDES library is supplemented by the console
. application luaFAUDES. It is based on the scripting languag
A. lIbFAUDES Lua [10] and provides a comfortable console environment to
The libFAUDES library [1] provides a C++ environmentexecute libFAUDES functions. All benchmark experiments
for the implementation of algorithms for the analysis andn this paper have been coded as luaFAUDES scripts and
synthesis of discrete event control systems. While we usan be found on the libFAUDES homepage [1]. The below
Linux as our primary development platform, libFAUDESSscript illustrates an example monolithic supervisor sgaib
compiles flawlessly under Microsoft Windows and Applefor a plant consisting of four components with associated
Mac OsX. The initial version was written by Bernd Opitz as aspecifications. This script may be typed (and executed) line
masters project [8], and since then has been further des@lopby-line in the luaFAUDES console; alternatively, it can be
by numerous students and the authors of this paper. stored in a file and executed by luaFAUDES as a Lua script.

|I. INTRODUCTION

- ; ?g% dateﬁ ?T | fei rst plant/specification proaches in Sections III-IV and performs the tasks annadince
pl ant = %ener ator. New("pl ant 1. gen") on the WODES'08 website [6]
spec = Generator.New "specl.gen") « construct plant model(s) and specification(s) according
to the command line options and & and design
--conpose with plants/specifications 2-4 nonblocking, maximally permissive supervisor(s)
fio|ro| ant 2, Aéeggrat or . New(« output statistical data to the console
string. format("plant%. gen",i)) « output supervisor(s) to human readable files
ispec = Generator. New(The benchmark experiments were carried out under Linux,
string. format ("spec%l. gen",i)) and a shell script was used to execute the respective binary
EZ; :: : 2: Eg:oggti 'SBLSMSE)EL;’W) looping overn andk while measuring the values TIME and
end ' ' MEMORY for each run. For the value TIME, we chose the
total timethat elapsed from starting the process that executes
--synt hesi ze nonbl ocki ng supervi sor the binary to completing the file output. The value MEMORY
super = Generator. New() represents thenaximumamount ofphysical memorysed
SupConNB(pl ant,, spec, super) by the process, which comprises the memory consumed by
--report statistics of result to console the executed code as well as the data generated during the
super: StatWite() process. For comparability of all benchmark experiments an
o to avoid swapping to virtual memorgll runs exceeding 1
;’/A’g :: 'ezF' cs for gggOonNB(plant, spec) GB memory were regarded unsuccessful and termindteel
0/2 Init/ Marked: 11 benchmark experiments where performed on customary PC'’s
% Event s: 68 with 3 GHz CPU’s and 3 GB physical memory.
% Transi tions: 1159 The computational results and measurement values ob-
% Stat eSynbol s: 362 tained for the approaches presented in the following sestio
%Atrib. BS/T: 60/0/0 are summarized in Tables | - VI. The entries for each pair
L (n,k) contain three values: The above-mentioned values
C. Further development and Applications MEMORY and TIME are denoted by M and T, respectively.

There is a number of libFAUDES applications and addBesides the unisecond(s), we also used the unitsillisec-
ons in different stages of development, partly conducted asd (ms), minute(min), hour (h) andday (d) for the TIME
student projects. value. In Tables | - Ill, the value S denotes the number of

. Functions to support thieierarchical synthesis methods States of the closed loop that serves as a realization of the
of the authors [4], [5], [11], [12] are implemented as theSUPervisor; in Tables IV - VI, S indicates ttsaim of states

libFAUDES plugins “hiosys” and “schmidt”. Routines ©f all resulting supervisors.
of general interest will be integrated in the library core Besides some representative valuesif@ndk, the tables

in the near future. also contain thdighestvalues achieved using less than 1GB

« A code generatothat translates libFAUDES generators™emory. Higher values fon andk, e.g., entries filled with
into IEC 61131-3 code has been developed in collabo—» €xceed this memory limit.
ration with Infoteam Software GmbH [13]. It includes m
the libFAUDES plugin “timed” for timed automata [3]
using set attributes to model time constraints.)) o _
« A simulatorfor synchronized timed generators has been N this section, we apply the monoalithic supervisor syn-
developed as a libFAUDES application [14]. It Supporghesis to both the “dining philosophers” and the “cat-and-
both the interactive and the stochastic synchronodﬁouse” benchmark example. To this end, we first determine
execution of timed generators. an overall plant automato&® and an overall specification
« A device driver intermediate layenas been designed automatonD with Ly, (D) € L (G). Then, the libFAUDES
to map physical sensor and actuator signals from digit&PutineSupConNB is invoked to synthesize theonblocking
IO hardware to libFAUDES events to enable hardwareandmaximally permissiveupervisor automator, i.e.,
in-the-loop simulation. _ _ R = SUupConNB(G, D). 1)
« A Qt [15] widget for the graphical representation of
generators has been developed as a basisgaaghical A. Dining philosophers Example
user interfaceto libFAUDES.

. BENCHMARK EVALUATION : MONOLITHIC
SUPERVISORSYNTHESIS

The “dining philosophers” benchmark example (cf. Exam-
ple 2.17 in [16]) considers, > 2 philosophersPy, ..., P,
sitting around a table such that philosoplitris a neighbor

For the respective WODES’'08 benchmark examples, thef philosopherP;. There is one forkF;; ;2 between any two
libFAUDES plugins “philosophers” and “cats-and-mice”philosophersP;; and P,; representing a shared resource.
have been developed. The plugins compile to several bmarid philosopheri can pick up the left fork first (event
(or executables). Each binary represents one of the apfl), then the right fork (evenifr), and then drop both

D. Benchmark Experiments

TABLE |
MONOLITHIC APPROACH DINING PHILOSOPHERS EXAMPLE

n — 2 3 4 5 6 7 8 9 10 11 12 13
k M <lIMB | <1MB | 1.2MB | 1.2MB 1.3MB 1.6MB | 2.3MB | 3.8MB | 8.4MB 19MB | 48MB | 122MB
= T <lms <lms <1lms 1ms 2ms 10ms 25ms 66ms 2s 6s 19s 75s
1 S 3 12 30 78 190 470 1138 2770 6694 16206 | 39138 | 94578
k M 1.2MB | 1.2MB | 1.3MB | 1.5MB 2.4MB | 4.7MB | 141MB | 47MB | 166MB — — —
= T <lms <lms 1ms 6ms 1s 1s 9s 65s 643s — — —
2 S 4 24 83 321 1082 3855 12863 | 44172 | 146675 — — —
k M 1.2MB | 1.2MB | 1.4MB 2.1MB 5.5MB 22MB 99MB — — — — —
= T <lms <lms 3ms 19ms 2s 38s 724s — — — — —
3 S 5 40 178 932 4050 19292 | 82946 — — — — —
k M 1.2MB | 1.7MB | 7.5MB 75MB 855MB — — — — — — —
= T <1lms 8ms 5s 1120s 1d13h — — — — — — —
9 S 11 220 2302 32150 | 331902 — — — — — — —
k M 1.3MB | 3.4MB | 42MB | 774MB — — — — — — — —
= T <1lms 70ms 350s 1d9h — — — — — — — —
15 S 17 544 8962 205136 — — — — — — — —
k M || 846MB — — — — — — — — — — —
= T 1d8h — — — — — — — — — — —
1436| S 1438 — — — — — — — — — — —

forks (eventif). The parametek means that by picking eventcx-y(!, 1) indicates that the cat moves from room
up the left fork, a philosophei reaches the first ot x to roomy on the maze level, while cz({, 1) describes
intermediate states, condudts— 1 intermediate transitions the movement of cat from level! to level z. Similarly, the
(eventsitl, .., itk — 1) to reach intermediate state where model Gy ; for the i-th mouse is determined. The overall
the right fork is picked up. For the case = k& = 2, plantisG := ||?¢,G,.
the philosopher modeP, and the modelF; » of the fork Furthermore, it has to be specified that if a cat stays
betweenP1 andPg are depicted in Flg 1. The uncontrollablein a certain room of the maze, N0 mouse is allowed to
events areifl, for < even. The monolithic plant model is enter and vice versa. We characterize this restriction by
G = Fnal|P|(|[fee(Fi-14]|P2)). A deadlock situation one specificationD;, 1 < i < k for the i-th cat and one
occurs, when each philosopher holds the left fork. specificationD;,;, 1 < i < k for the i-th mouse. For the
With the trivial specificationD := G, the maximally per- ;-th cat, the specification automatdd is derived from the
missive and nonblocking supervisBris computed according plant automatoi; as follows: in each state @¥;, all mouse
to (1) for different values of. andk as depicted in Table I. events are added as a selfloop except for the mouse events
It can be seen that the computation is limited by the Va|U§ntering the corresponding room. For the stateef the cat
of n =13 for k =1 andk = 1436 for n = 2. specificationD, this means that all mouse events except for
nD-4(1,1),...n0-4(1, k) appear in a selfloop. Using an
analogous procedure for the mouse specifications, the lbvera
Our study is based on the “cat-and-mouse” example ingpecification evaluates tb := ||2¢, D;.
tIaIIy described in [2] We investigate two different moslel Based onG and D derived as above, the maxima”y per-
for this example with its extension to maze levels and mjssjve and nonblocking supervishris computed according
cats and mice. In the first case, we prOVide individual modet@ (l) for different values of, and k& as depicted in Table
for each cat and mouse, while the second model does nptit can be observed that the memory consumption grows
distinguish between different cats and mice. It ratherwast yapidly with increasingk. Together, with the memory limit

the number of cats and mice in each room of the maze. of 1 GB, no values for, > 49 andk > 4 could be obtained.
1) Individual Models for Cats and MiceWe model the

i-th cat by an automatos; and thei-th mouse by an

automatorGy.;, wherel < ¢ < k, such that each automaton G o132 D) c3-1(2,1)
G describes the behavior of the respective animal omall c3-4(2, 1) L€C0-2(2, 1)—~c0- 1(2, 1) Decl- 2(2, 1)
levels of the maze. As an example, the automatgnfor O '@ : @ : ~®:

the 1-st cat on2 maze levels is shown in Fig. 2. Here, each

B. Cat-and-Mouse Example

Fig. 1. Fork modelFy 2> and philosopher moddP, for n = k = 2 Fig. 2.

Individual cat mode{7; for cat1 on two maze levels

TABLE Il
MONOLITHIC APPROACH INDIVIDUAL CATS AND MICE

n — 1 2 3 4 5 49
k M <1MB | 1.3MB | 1.6MB | 2.0MB | 2.6MB | 955MB
= T <1lms ims 3ms 5ms 12ms 57s
1 S 6 82 199 362 582 59609
k M 1.6MB | 13MB | 83MB | 379MB — —
= T 2ms 1s 44s 474s — —
2 S 24 4594 | 31247 | 108302 —
k M 10MB — — —
= T 31lms — — — — —
3 S 90 — — — — —
k M || 284MB — — — — —
= T 11s — — — — —
4 S 336 — — — — —

2) Individual Models for Maze Leveldie deriven plants
Gy,...
I, 1 < | < n, there is a modelC}”" for each room
1 € {1,...,5} with maximally k& cats. In the initial state,
each room except for roorfh on level 1 is empty. As an
example, Fig. 3 (a) shows the model for ro@non level 1
of the maze withk = 2 cats. Analogously, modeIMl’” for
the mice can be determined.

In addition,cat countersf* andmouse countera/}, 1 <

,G, for the different maze levels. On each level

Fig. 3.

(a)2 cats in room2 of level 1; (b) Cat counter for level

The results of the monolithic supervisor computationin (1)
for different values ofi andk are shown in Table IIl. Here,
the maximum values fon = 59 andk = 9 are considerably
larger than the corresponding values in Table Il just bezaus
of the different modeling paradigm.

IV. BENCHMARK EVALUATION : METHODSUSING
SYSTEM STRUCTURE

In this section, we employ the routines of libFAUDES
to implementlocally modular control[7] and hierarchical
and decentralized contrdb], [17], [18]. In particular, we
investigate how the use of structural information about the
given system affects the applicability of supervisory coht

I < n, capture the number of cats and mice that can K@ Locally Modular Control
present in each levélof the maze, respectively. They observe Locally modular control as introduced in [7], assumes that

the changes between levels and the initial numbet oéts

the plant is composed af subsystemsr, . .., G5 with dis-

in level 1, k& mice in leveln, and0 cats and mice in the joint alphabets, i.eXq, NXq, =0 fori,j € {1,...,s} and

remaining levels of the maze. The cat couni&rfor 2 cats
and levell is shown in Fig. 3 (b). The event2(1) and
c1(2) describe the transition of a cat from leveto 2 and
from level 2 to 1, respectively.

The modelG,; for each maze level is hence
Gi 1= CEIIMEN([E=y (CF 1M, (2)

and the overall plant model iS := ||}_, G;. Additionally,

similar to the construction in the previous section, a dpeci

i # j. Furthermore, there are local specification automata
Dy, ..., D,,. Accordingly, m modular plantsHy, ..., H,,
are constructed from the subsystems that share events with
the respective specification such that
Hi = | G
J,:Xa;NEp, #0

fori=1,...,m.

®3)

For H; and D;, m local supervisors are computed using (1):

R; = SupConNB(H;, D;) fori=1,....m. (4)

cation ; that forbids cats and mice to enter the same room gipally, it has to be verified if the supervisof3; are

is determined for each maze levell <[< n. Hence, we
arrive at the overall specificatioP := ||7_, D;.

TABLE Il
MONOLITHIC APPROACH INDIVIDUAL MAZE LEVELS

n — 1 2 3 4 6 59
k|{ M|| 1.2MB | 1.8MB | 1.9MB | 1.9MB | 2.5MB | 946MB
= T|| <lms 6ms 9ms 11lms | 21ms | 461min
1S 6 82 199 362 845 86 525
k| M| 5.2MB | 43MB | 43MB | 47MB | 310MB —
=T 17ms 3s 6s 45s 840s —
2| S 15 1506 9184 | 30449 170036 —
k| M|[42MB | 788MB | 807MB — — —
=T 2s 68s 3720s — — —
3| S 29 12446 | 184052 — — —
k| M| 254MB — — — — —
=T 11s — — — — —
4| S 49 — — — — —
k| M|l 512MB — — — — —
= T 27s — — — — —
9 S 274 — — — — —

nonconflicting, i.e., ifR := ||72; R; is nonblocking. IfR

is blocking, a further nonblocking overall supervisor has t
be computed for the plam®. As has been shown in [7], this
method results in a maximally permissive and nonblocking
supervisor. The potential benefits of the approach arisa fro
the local evaluation of the supervisor synthesis in (4).rEve
if an overall supervisor has to be computed, the prior local
synthesis can lead to smaller plant models.

Locally modular control cannot be applied to the “dining
philosophers” example in Section IlI-A and the “cat-and-
mouse” example with individual models for maze levels in
Section 11l-B.2 as in both cases, the subplants share events

However, the “cat-and-mouse” example with individual cat
and mouse models in Section 11I-B.1 is suitable for locally
modular control. The subplants are given @Y, ..., Gax,
and the cat and mouse specifications Bx¢. .., Daj. Ac-
cording to (4), the2k modular plants evaluate to

2k

I — Gill(lrkHGj) fori=1,....,k
' Gill(|I*_,G;) fori=k+1,..., 2k

The computation of the modular plants and the subse- To achieve thatR is nonblocking, it is sufficient that
quent local supervisor computation according to (4) hag" is an L,,(R)-observer as defined in [20]. In addition,
been implemented in libFAUDES. Our routine also includesnaximal permissive control is ensureglf is locally control

the verification of nonconflict and/or the synthesis of amonsistentand the subplant&s;, i = 1,...,s are mutually
overall supervisor based on the modular closed-lo&ps controllable[12].
i=1,...,2k. Table IV depicts the computational results. In [12], it is also proved that the hierarchical and de-

centralized method is applicable to an arbitrary number
of hierarchical levels. In Section IV-B.1 and IV-B.2, we
construct such a multi-level hierarchy as follows: we group
pairs of neighboring abstracted plant models and compute a

TABLE IV
LOCALLY MODULAR APPROACH: CAT-AND-MOUSE EXAMPLE

n — 1 2 3 4 49 55 ; ; PRI
T iF Ve T s TiovE T2 onE | 5 oMB T 501ME nonblocking supervisor for the grouped model, which in turn
=| T| <tms| 1ms | 6ms | 11ms | 52s | 901is serves as the llow-level model f(_)r a subsequent appllcatlon
1| s 6 82 199 362 | 59609 | 75162 of the hierarchical and decentralized approach. The iterat

k| M| 1.5MB | 9.2MB | 47MB | 19IMB | — - hierarchical construction terminates with the computatié
=T 4ms 1s 12s 125s — — inale high | | . . L

5|l sl| 24 | as94 | 31247| 108302 — _ a single highest-level supervisor. Thls_conpept is |Im

kK| M|[4.4MB]| 706MB | — — — — in Fig. 4. The resulting overall supervisor is then given by
3 ; 42ms | 1198s | — — - - the parallel composition of all supervisors in the hiergrch

kK[M

=T

4| s

S

The main advantage of the locally modular approach RM
compared to the monolithic approach in Section IlI-B.1 is
the reduced memory consumption. As a result, the supervijcj"% TR IR
synthesis can be carried out for values of upite: 55. L[Ba oo (R [oee[R |

B. Hierarchical and Decentralized Control Fig. 4. Hierarchical multilevel construction

Hierarchical and decentralized control as presented in [5]
[12], [18] is based on plants that are composed sfibplants The described approach has been implemented in lib-
Gi,...,G, that potentially share events, i.&l¢, N Xg, # FAUDES. In order to fulfill the required conditions, our
() is permitted for anyi,j € {1,...,s}. We denote the routine verifies mutual controllability, and algorithmilga
overall plant asi? := ||{_,G;. The desired system behaviordetermines a locally control consistent natural projectiti
is specified bys local specification automat®,,..., D, that satisfies thd, (R)-observer property [12], [18].
where Ly, (D;) C Ly (G;) for i = 1,...,s. Furthermore, There are several potential gains of the approach due to the
there can be a specificatiaB™ with ¥, C Y. Hence, use of structural system information: first, the overallnpla
DM serves as #Aigh-level specificatiohat only addresses G does not have to be computed. Second, irrelevant behavior
events in a subset of the overall alphahkt. is abstracted away before the supervigd is determined.
First, s local supervisors are computed: Furthermore, the parallel composition in (7) does not have
, to be evaluated explicitly such that a set of distributed
R; := SupConNB(G, D;) fori =1,...,s5. (5) supervisors on small state spaces can be implemented.
Then, ahigh-level alphabet . O Y pn and a natural 1) Dining Philosophers:Before constructing the supervi-
projection p™ : ¥f — X%, are introduced in order to Sor hierarchy of Fig. 4 for the “dining philosophers” praivie

determine thehigh-level plantG"' with mutual controllability of the subplant§; has to be verified
s s as premise for the overall supervisor to be nonblocking.

L(G") := p"(|| L(R;)) and Ly, (G™) := p"(|| Ln(R;)). It holds that the philosopher moddRs and their respective
i=1 i=1 (6) left forks F;_; ; are not mutually controllable fori even!

This becomes clear when observing that, e.g., fork (Fig.

1) can prevent the uncontrollable eventl in P, by being
unavailable (i.e. by being in state2U). This problem can
be solved by composing each philosopher with its left fork
39 achieven mutually controllable local models:

According to [19], the natural projectiop" distributes
over the parallel composition in (6) iE;w contains all
events that are shared among the local superviBprs =
1,...,8 i.e., Ygn D X = Ui,je{l,m,s},i#j(ZRi N ERj)-
Hence, the abstraction can be computed for each lo
supervisor to avoid the computation of the overall plaht G, := F, 1||P1, G2 := Fi3||P2, ..., Gy := Fy_1,||Pn.

Finally, the high-level supervisor RM =
SupConNB(G", DM) ensures thatD™ is met. Together,
the overall supervisor evaluates to

With the trivial specification®; := G;, the local supervisors
in (5) are computed a®; = G;,i = 1,...,n. Applying
the hierarchical construction in Section IV-B without an
R := R"||Ry||---||Rs. (7) additional specificatioD™, we obtain the following results.

TABLE V
HIERARCHICAL APPROACH DINING PHILOSOPHERS EXAMPLE

incorporation of such synthesis approaches in libFAUDES.

In particular, the “cat-and-mouse” example could be solved

n — 2 3 5 8 13 16

k| M| 1.2mMB | 1.4MB | 1.6MB | 1.7MB | 27MB | 195MB
=| T| <1lms 2ms 42ms 1s 84min | 248min
1S 15 50 194 646 9142 | 87666

until up to 21 384 maze levels.
Future work aims at providing a graphical user interface
to the libFAUDES routines.

VI. ACKNOWLEDGMENT

The development of libFAUDES did benefit from con-

Table V only depicts results for the valée= 1 as it turns
out that all inserted intermediate states for differenugal i
of k are not relevant in the hierarchical synthesis. Hence, e}ua
computations fok > 2 lead to equivalent results. Comparing
Table V with the monolithic evaluation in Table I, it can
be seen that there is a potential computational overhead
hierarchical approach for very small valuesofle.g.n =
2..5). However, for all larger values of, the number of
supervisor states is significantly smaller (see, eigs 13),
and supervisors can be synthesized for values up+016.

2) Cat and Mouse Examplewe consider the “cat-and- [2l
mouse” example with individual maze levels as introduced
in Section 11I-B.2. The low-level plant consists of the maze [3]
level modelsGy,...,G,, where only neighboring maze 4]
levels share events. The low-level specifications are given
asD,...,D,, and there is no additional specificatidn'.

The computational results for different values »ofand Bl
k are shown in Table VI. The benefits of the hierarchical
approach compared to the monolithic approach in Sectioff!
I1I-B.2 can be seen in both the reduced state counts of the,
resulting supervisors and the higher maximum values that
are achieved fon and k. In particular, fork = 1, a tower]
of up to 21 384 maze levels is obtained.

(1]

V. CONCLUSIONS [

In this paper, the open source C++ library libFAUDES10]
has been presented, and its algorithms have been emplo fﬂi
to study the supervisor synthesis problems provided for the
benchmark session of the WODES 2008. In addition to the
monolithic controller synthesisocally modular controland 12
hierarchical and decentralized contrdlave been evaluated
in order to demonstrate both the computational benefits @if3]
synthesis approaches that respect the system structuteend

[14]
TABLE VI
HIERARCHICAL APPROACH CAT-AND-MOUSE EXAMPLE [15]
[16]
n — 2 3 4 17 5000 21384
k M 1.6MB | 1.7MB | 1.8MB | 2.0MB | 178MB | 718MB [17]
= T 4ms 16ms 16ms 2s 1380s | 7d 11h
1 S 54 139 163 1078 | 311884| 1334229
k M || 4.2MB | 44MB | 44MB | 498MB — —
= | T 1s 19s 25s 3h — — [18]
2 S 370 1204 1516 | 16170 — —
k M 27MB | 792MB | 276MB — — —
= T 10s 900s | 3794s — — — [19]
3 S 1422 7643 | 8031 — — —
k M || 467MB — — — — — [20]
= T 1440s — — — — —
4 S 4022 — — — — —

tributions made in the context of student projects con-
ducted by (in alphabetical order): Rudiger Berndt, Chris-
n Breindl, Christoph Dorr, Marc Duvel, Silke Figgen,
orman Franchi, Jochen Hellenschmidt, Mihai Musunoi,
Bernd Opitz, Thomas Rempel, Daniel Ritter, Berno Schlein,
Joqhannes Tautz, Thomas Wittmann, Jorgos Zaddach.

REFERENCES

Friedrich-Alexander University —Discrete
brary (libFAUDES). [Online]. Available:
erlangen.de/FGdes/faudes/index.php

P. J. Ramadge and W. M. Wonham, “The control of discretenev
systems,’Proceedings |IEEE, Special Issue Discrete Event Dynamic
Systemsvol. 77, pp. 81-98, 1989.

R. Alur and D. Dill, “A theory of timed automata, Theoretical
Computer Sciengevol. 126, pp. 183-235, 1994.

S. Perk, T. Moor, and K. Schmidt, “Controller synthes@ fan 1/O-
based hierarchical system architecturdforkshop on Discrete Event
Systems (WODES2008.

K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarcdli control

of decentralized discrete event systents,’appear in IEEE Transac-
tions on Automatic ContrpINovember 2008.

WODESO08. Benchmarking Software Tools. [Online]. Aedile:
http://www.wodes2008.org/pages/benchmark.php

M. H. de Queiroz and J. E. R. Cury, “Modular supervisoryntol

of large scale discrete event systeméfdrkshop on Discrete Event
Systems2000.

B. Opitz, “Methods of supervisory control: A software fpemen-
tation,” Master Thesis, Lehrstuhl fur Regelungstechnik, Unitétrsi
Erlangen-Nurnberg 2006.

Gnu Lesser General Public License (GLPL). [Online]. kable:
http://www.gnu.org/copyleft/lesser.html
The programming language Lua.
http://www.lua.org/

S. Perk, T. Moor, and K. Schmidt, “Hierarchical disereevent
systems with inputs and output®orkshop on Discrete Event Systems
(WODES) 2006.

K. Schmidt and C. Breindl, “On maximal permissivenegshierar-
chical and modular supervisory control approaches forreliscevent
systems,"Workshop on Discrete Event Systems (WODEG)8.

B. Schlein, “Timed automata as a graphical programmiamgguage
for the generation of IEC 61131-3 conform PLC codeiplomarbeit,
Lehrstuhl fur Regelungstechnik, Universitat Erlandéiirnberg 2006.
C. Dorr, “Simulation and analysis of discrete eventsteyns,”
Diplomarbeit, Lehrstuhl fur Regelungstechnik, UnivEsiErlangen-
Nirnberg 2008.

Trolltech. Qt: Cross-platform rich client developnteframework.
[Online]. Available: http://www.trolltech.com

C. G. Cassandras and S. Lafortune, “Introduction taréie event
systems,Kluwer, 1999.

K. Schmidt. (2005) Hierarchical control of decentzalil discrete event
systems: Theory and application. Phd-thesis, LehrstuhREgelung-
stechnik, Universitat Erlangen-Nurnberg. [Online]. aMable:
http://www.rt.eei.uni-erlangen.de/FGdes/disserté2@5 schmidt.pdf
K. Schmidt and T. Moor, “Computation of marked stringcepting
observers for discrete event system#@/orkshop on Discrete Event
Systems (WODES2006.

K. Schmidt, J. Reger, and T. Moor, “Hierarchical cotod structural
decentralized DES ,Workshop on Discrete Event Syster2804.

K. C. Wong and W. M. Wonham, “On the computation of obsesv
in discrete-event systemdJiscrete Event Dynamic Systenel. 14,
no. 1, pp. 55-107, 2004.

Event Systemli-
http://www.rtes.uni-

[Online]. Available:

