
libFAUDES – An Open Source C++ Library for Discrete Event Systems

Thomas Moor∗, Klaus Schmidt∗, Sebastian Perk∗

∗ Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
{thomas.moor,klaus.schmidt,sebastian.perk}@rt.eei.uni-erlangen.de

Abstract— The libFAUDES (Friedrich-Alexander University
Discrete Event Systems) library is an open source C++ software
library for discrete event systems (DES) that is developed
at the University of Erlangen-Nuremberg. The core library
supports methods for the DES analysis and supervisor synthesis,
while a built-in plugin mechanism allows of specialized library
extensions. In this paper, we evaluate libFAUDES according
to the benchmark examples provided for the Workshop on
Discrete Event Systems 2008.

I. I NTRODUCTION

The publicly available C++ software library libFAUDES
(Friedrich-Alexander University Discrete Event Systems li-
brary) [1] has been developed at the Chair of Automatic
Control, University of Erlangen-Nuremberg. The core library
provides basic algorithms for the manipulation of finite
state automata and the supervisor synthesis in the Ra-
madge/Wonham framework [2]. A plugin system facilitates
extensions of the core library such as the methods for timed
automata [3], I/O-based control [4] and hierarchical control
[5] that have already been implemented.

In this paper, we evaluate the performance of libFAUDES
by means of the WODES 2008 benchmark examples [6]. In
addition to the monolithic supervisor synthesis, we applylo-
cally modular control[7] andhierarchical and decentralized
control [5] to demonstrate the practical use of our library.

The remainder of the paper is organized as follows. In
Section II, we describe the features of the libFAUDES
software library and its use for the benchmarking process.
The evaluation of the “dining philosophers” example and
the “cat-and-mouse” example with monolithic supervisory
control is presented in Section III. Section IV provides our
computational results for the application of locally modular
control and hierarchical control to the benchmark problems,
and we give conclusions in Section V.

II. T HE LIBFAUDES SOFTWARE L IBRARY

A. libFAUDES

The libFAUDES library [1] provides a C++ environment
for the implementation of algorithms for the analysis and
synthesis of discrete event control systems. While we use
Linux as our primary development platform, libFAUDES
compiles flawlessly under Microsoft Windows and Apple
Mac OsX. The initial version was written by Bernd Opitz as a
masters project [8], and since then has been further developed
by numerous students and the authors of this paper.

Technically, libFAUDES is built on top of the C++ Stan-
dard Template Library (STL) to define container classes for
event sets, state sets and transition relations. When compared
to plain C arrays, using STL does introduce some overhead
regarding memory usage. However, STL provides a rich set
of efficient basic algorithms (searching, sorting, etc), and
we feel that this is a worthwhile trade off. All libFAUDES
containers take an attribute template parameter to support
user defined attributes. For example, an event set may use
the attribute parameter to indicate whether individual events
are controllable and/or observable.

For an application interface, the libFAUDESgenerator
classmodelsfinite automataand provides access to states,
events and transitions via indices, symbolic names and
iterators as well as a human readable file IO. The library
also implements a variety of general purpose operations on
generators and the respective formal languages (union, inter-
section, Kleene closure, projection, minimal state realization,
etc.). We include basic functions for supervisory controller
synthesis to demonstrate how the library can serve as an
environment for implementation and evaluation of algorithms
for the analysis and synthesis of discrete event systems.

libFAUDES is distributed as open source in the hope that it
may be useful for researchers in the DES field. We are com-
mitted to the further development and welcome suggestions
and contributions. We chose the GNU Lesser General Public
License (LGPL [9]) scheme since this protects external
contributions while it imposes no restrictions on libFAUDES
based applications. In particular, there is no requirementto
make the application open source. Furthermore, the build
system supports a plugin mechanism to strictly separate the
core library from library extensions. Authors are invited but
not forced to contribute their algorithms to the core library.

B. luaFAUDES

The FAUDES library is supplemented by the console
application luaFAUDES. It is based on the scripting language
Lua [10] and provides a comfortable console environment to
execute libFAUDES functions. All benchmark experiments
in this paper have been coded as luaFAUDES scripts and
can be found on the libFAUDES homepage [1]. The below
script illustrates an example monolithic supervisor synthesis
for a plant consisting of four components with associated
specifications. This script may be typed (and executed) line-
by-line in the luaFAUDES console; alternatively, it can be
stored in a file and executed by luaFAUDES as a Lua script.

--read data of first plant/specification
--from .gen-file
plant = Generator.New("plant1.gen")
spec = Generator.New("spec1.gen")

--compose with plants/specifications 2-4
for i = 2,4 do
iplant = Generator.New(

string.format("plant%d.gen",i))
ispec = Generator.New(

string.format("spec%d.gen",i))
Parallel(plant,iplant,plant)
Parallel(spec,ispec,spec)

end

--synthesize nonblocking supervisor
super = Generator.New()
SupConNB(plant,spec,super)

--report statistics of result to console
super:StatWrite()

% Statistics for SupConNB(plant, spec)
% States: 362
% Init/Marked: 1/1
% Events: 68
% Transitions: 1159
% StateSymbols: 362
% Attrib. E/S/T: 60/0/0

C. Further development and Applications

There is a number of libFAUDES applications and add-
ons in different stages of development, partly conducted as
student projects.

• Functions to support thehierarchical synthesis methods
of the authors [4], [5], [11], [12] are implemented as the
libFAUDES plugins “hiosys” and “schmidt”. Routines
of general interest will be integrated in the library core
in the near future.

• A code generatorthat translates libFAUDES generators
into IEC 61131-3 code has been developed in collabo-
ration with Infoteam Software GmbH [13]. It includes
the libFAUDES plugin “timed” for timed automata [3]
using set attributes to model time constraints.

• A simulatorfor synchronized timed generators has been
developed as a libFAUDES application [14]. It supports
both the interactive and the stochastic synchronous
execution of timed generators.

• A device driver intermediate layerhas been designed
to map physical sensor and actuator signals from digital
IO hardware to libFAUDES events to enable hardware-
in-the-loop simulation.

• A Qt [15] widget for the graphical representation of
generators has been developed as a basis for agraphical
user interfaceto libFAUDES.

D. Benchmark Experiments

For the respective WODES’08 benchmark examples, the
libFAUDES plugins “philosophers” and “cats-and-mice”
have been developed. The plugins compile to several binaries
(or executables). Each binary represents one of the ap-

proaches in Sections III-IV and performs the tasks announced
on the WODES’08 website [6]:

• construct plant model(s) and specification(s) according
to the command line optionsn and k and design
nonblocking, maximally permissive supervisor(s)

• output statistical data to the console
• output supervisor(s) to human readable files

The benchmark experiments were carried out under Linux,
and a shell script was used to execute the respective binary
looping overn andk while measuring the values TIME and
MEMORY for each run. For the value TIME, we chose the
total timethat elapsed from starting the process that executes
the binary to completing the file output. The value MEMORY
represents themaximumamount ofphysical memoryused
by the process, which comprises the memory consumed by
the executed code as well as the data generated during the
process. For comparability of all benchmark experiments and
to avoid swapping to virtual memory,all runs exceeding 1
GB memory were regarded unsuccessful and terminated. The
benchmark experiments where performed on customary PC’s
with 3 GHz CPU’s and 3 GB physical memory.

The computational results and measurement values ob-
tained for the approaches presented in the following sections
are summarized in Tables I - VI. The entries for each pair
(n, k) contain three values: The above-mentioned values
MEMORY and TIME are denoted by M and T, respectively.
Besides the unitsecond(s), we also used the unitsmillisec-
ond (ms), minute(min), hour (h) andday (d) for the TIME
value. In Tables I - III, the value S denotes the number of
states of the closed loop that serves as a realization of the
supervisor; in Tables IV - VI, S indicates thesum of states
of all resulting supervisors.

Besides some representative values forn andk, the tables
also contain thehighestvalues achieved using less than 1GB
memory. Higher values forn andk, e.g., entries filled with
“—”, exceed this memory limit.

III. B ENCHMARK EVALUATION : MONOLITHIC

SUPERVISORSYNTHESIS

In this section, we apply the monolithic supervisor syn-
thesis to both the “dining philosophers” and the “cat-and-
mouse” benchmark example. To this end, we first determine
an overall plant automatonG and an overall specification
automatonD with Lm(D) ⊆ Lm(G). Then, the libFAUDES
routineSupConNB is invoked to synthesize thenonblocking
andmaximally permissivesupervisor automatonR, i.e.,

R = SupConNB(G, D). (1)

A. Dining philosophers Example

The “dining philosophers” benchmark example (cf. Exam-
ple 2.17 in [16]) considersn ≥ 2 philosophersP1, . . . , Pn

sitting around a table such that philosopherPn is a neighbor
of philosopherP1. There is one forkFi1,i2 between any two
philosophersPi1 and Pi2 representing a shared resource.
A philosopher i can pick up the left fork first (event
if l), then the right fork (eventifr), and then drop both

TABLE I

MONOLITHIC APPROACH: DINING PHILOSOPHERS EXAMPLE

n → 2 3 4 5 6 7 8 9 10 11 12 13

k
=
1

M <1MB <1MB 1.2MB 1.2MB 1.3MB 1.6MB 2.3MB 3.8MB 8.4MB 19MB 48MB 122MB
T <1ms <1ms <1ms 1ms 2ms 10ms 25ms 66ms 2s 6s 19s 75s
S 3 12 30 78 190 470 1138 2770 6694 16 206 39 138 94 578

k
=
2

M 1.2MB 1.2MB 1.3MB 1.5MB 2.4MB 4.7MB 141MB 47MB 166MB — — —
T <1ms <1ms 1ms 6ms 1s 1s 9s 65s 643s — — —
S 4 24 83 321 1082 3855 12 863 44 172 146 675 — — —

k
=
3

M 1.2MB 1.2MB 1.4MB 2.1MB 5.5MB 22MB 99MB — — — — —
T <1ms <1ms 3ms 19ms 2s 38s 724s — — — — —
S 5 40 178 932 4050 19 292 82 946 — — — — —

k
=
9

M 1.2MB 1.7MB 7.5MB 75MB 855MB — — — — — — —
T <1ms 8ms 5s 1120s 1d13h — — — — — — —
S 11 220 2302 32 150 331 902 — — — — — — —

k
=
15

M 1.3MB 3.4MB 42MB 774MB — — — — — — — —
T <1ms 70ms 350s 1d9h — — — — — — — —
S 17 544 8962 205 136 — — — — — — — —

k
=
1436

M 846MB — — — — — — — — — — —
T 1d8h — — — — — — — — — — —
S 1438 — — — — — — — — — — —

forks (eventif). The parameterk means that by picking
up the left fork, a philosopheri reaches the first ofk
intermediate states, conductsk − 1 intermediate transitions
(eventsit1, .., itk − 1) to reach intermediate statek, where
the right fork is picked up. For the casen = k = 2,
the philosopher modelP2 and the modelF1,2 of the fork
betweenP1 andP2 are depicted in Fig. 1. The uncontrollable
events areif l, for i even. The monolithic plant model is
G := Fn,1||P1||(||ni=2(Fi−1,i||Pi)). A deadlock situation
occurs, when each philosopher holds the left fork.

With the trivial specificationD := G, the maximally per-
missive and nonblocking supervisorR is computed according
to (1) for different values ofn andk as depicted in Table I.
It can be seen that the computation is limited by the value
of n = 13 for k = 1 andk = 1436 for n = 2.

B. Cat-and-Mouse Example

Our study is based on the “cat-and-mouse” example ini-
tially described in [2]. We investigate two different models
for this example with its extension ton maze levels andk
cats and mice. In the first case, we provide individual models
for each cat and mouse, while the second model does not
distinguish between different cats and mice. It rather captures
the number of cats and mice in each room of the maze.

1) Individual Models for Cats and Mice:We model the
i-th cat by an automatonGi and the i-th mouse by an
automatonGk+i, where1 ≤ i ≤ k, such that each automaton
Gi describes the behavior of the respective animal on alln

levels of the maze. As an example, the automatonG1 for
the 1-st cat on2 maze levels is shown in Fig. 2. Here, each

1fr

1f, 2f

2fl

2fl 2t1

2fr2f

P2F1,2

1 2A 1 2U 2I

2 1

2 2

2E

Fig. 1. Fork modelF1,2 and philosopher modelP2 for n = k = 2

eventcx-y(l,1) indicates that the cat1 moves from room
x to roomy on the maze levell, while cz(l,1) describes
the movement of cat1 from level l to level z. Similarly, the
model Gk+i for the i-th mouse is determined. The overall
plant isG := ||2k

i=1Gi.

Furthermore, it has to be specified that if a cat stays
in a certain room of the maze, no mouse is allowed to
enter and vice versa. We characterize this restriction by
one specificationDi, 1 ≤ i ≤ k for the i-th cat and one
specificationDk+i, 1 ≤ i ≤ k for the i-th mouse. For the
i-th cat, the specification automatonDi is derived from the
plant automatonGi as follows: in each state ofGi, all mouse
events are added as a selfloop except for the mouse events
entering the corresponding room. For the state 41 of the cat
specificationD1, this means that all mouse events except for
m0-4(1,1),. . . ,m0-4(1,k) appear in a selfloop. Using an
analogous procedure for the mouse specifications, the overall
specification evaluates toD := ||2k

i=1Di.

Based onG andD derived as above, the maximally per-
missive and nonblocking supervisorR is computed according
to (1) for different values ofn and k as depicted in Table
II. It can be observed that the memory consumption grows
rapidly with increasingk. Together, with the memory limit
of 1 GB, no values forn > 49 andk > 4 could be obtained.

c0-1(1,1)c0-2(1,1)

c3-4(1,1)

c4-0(1,1)

c1-2(1,1)

c2-0(1,1)

c1-3(1,1)
c3-1(1,1)

c0-1(2,1)c0-2(2,1)c3-4(2,1)

c4-0(2,1)

c1-2(2,1)

c2-0(2,1)

c1-3(2,1)
c3-1(2,1)

c1(2,1) c2(1,1)

G1

0 1 1 1 2 13 14 1

0 2 1 2 2 23 24 2

Fig. 2. Individual cat modelG1 for cat 1 on two maze levels

TABLE II

MONOLITHIC APPROACH: INDIVIDUAL CATS AND MICE

n → 1 2 3 4 5 49

k
=
1

M <1MB 1.3MB 1.6MB 2.0MB 2.6MB 955MB
T <1ms 1ms 3ms 5ms 12ms 57s
S 6 82 199 362 582 59609

k
=
2

M 1.6MB 13MB 83MB 379MB — —
T 2ms 1s 44s 474s — —
S 24 4594 31247 108302 — —

k
=
3

M 10MB — — — — —
T 31ms — — — — —
S 90 — — — — —

k
=
4

M 284MB — — — — —
T 11s — — — — —
S 336 — — — — —

2) Individual Models for Maze Levels:We deriven plants
G1, . . . , Gn for the different maze levels. On each level
l, 1 ≤ l ≤ n, there is a modelCk,i

l for each room
i ∈ {1, . . . , 5} with maximally k cats. In the initial state,
each room except for room0 on level 1 is empty. As an
example, Fig. 3 (a) shows the model for room2 on level1
of the maze withk = 2 cats. Analogously, modelsMk,i

l for
the mice can be determined.

In addition,cat countersĈk
l andmouse counterŝMk

l , 1 ≤
l ≤ n, capture the number of cats and mice that can be
present in each levell of the maze, respectively. They observe
the changes between levels and the initial number ofk cats
in level 1, k mice in leveln, and 0 cats and mice in the
remaining levels of the maze. The cat counterĈ2

1 for 2 cats
and level1 is shown in Fig. 3 (b). The eventsc2(1) and
c1(2) describe the transition of a cat from level1 to 2 and
from level 2 to 1, respectively.

The modelGl for each maze level is hence

Gl := Ĉk
l ||M̂

k
l ||(||

5
i=1(C

k,i
l ||Mk,i

l)), (2)

and the overall plant model isG := ||nl=1
Gl. Additionally,

similar to the construction in the previous section, a specifi-
cationDl that forbids cats and mice to enter the same room
is determined for each maze levell, 1 ≤ l ≤ n. Hence, we
arrive at the overall specificationD := ||nl=1Dl.

TABLE III

MONOLITHIC APPROACH: INDIVIDUAL MAZE LEVELS

n → 1 2 3 4 6 59

k M 1.2MB 1.8MB 1.9MB 1.9MB 2.5MB 946MB
= T <1ms 6ms 9ms 11ms 21ms 461min
1 S 6 82 199 362 845 86 525
k M 5.2MB 43MB 43MB 47MB 310MB —
= T 17ms 3s 6s 45s 840s —
2 S 15 1 506 9 184 30 449 170 036 —
k M 42MB 788MB 807MB — — —
= T 2s 68s 3720s — — —
3 S 29 12 446 184 052 — — —
k M 254MB — — — — —
= T 11s — — — — —
4 S 49 — — — — —
k M 512MB — — — — —
= T 27s — — — — —
9 S 274 — — — — —

c1-2(1)

c1-2(1)

c2-0(1)

c2-0(1)

c2(1)

c2(1)
c1(2)

c1(2)

C
2,2
1 Ĉ2

1

2 0 2 1

2 2

1 2 1 1

1 0

(a) (b)

Fig. 3. (a)2 cats in room2 of level 1; (b) Cat counter for level1

The results of the monolithic supervisor computation in (1)
for different values ofn andk are shown in Table III. Here,
the maximum values forn = 59 andk = 9 are considerably
larger than the corresponding values in Table II just because
of the different modeling paradigm.

IV. B ENCHMARK EVALUATION : METHODSUSING

SYSTEM STRUCTURE

In this section, we employ the routines of libFAUDES
to implementlocally modular control[7] and hierarchical
and decentralized control[5], [17], [18]. In particular, we
investigate how the use of structural information about the
given system affects the applicability of supervisory control.

A. Locally Modular Control

Locally modular control as introduced in [7], assumes that
the plant is composed ofs subsystemsG1, . . . , Gs with dis-
joint alphabets, i.e.,ΣGi

∩ΣGj
= ∅ for i, j ∈ {1, . . . , s} and

i 6= j. Furthermore, there arem local specification automata
D1, . . . , Dm. Accordingly, m modular plantsH1, . . . , Hm

are constructed from the subsystems that share events with
the respective specification such that

Hi := ||
j,ΣGj

∩ΣDi
6=∅

Gj for i = 1, . . . , m. (3)

For Hi andDi, m local supervisors are computed using (1):

Ri = SupConNB(Hi, Di) for i = 1, . . . , m. (4)

Finally, it has to be verified if the supervisorsRi are
nonconflicting, i.e., ifR := ||mi=1Ri is nonblocking. IfR
is blocking, a further nonblocking overall supervisor has to
be computed for the plantR. As has been shown in [7], this
method results in a maximally permissive and nonblocking
supervisor. The potential benefits of the approach arise from
the local evaluation of the supervisor synthesis in (4). Even
if an overall supervisor has to be computed, the prior local
synthesis can lead to smaller plant models.

Locally modular control cannot be applied to the “dining
philosophers” example in Section III-A and the “cat-and-
mouse” example with individual models for maze levels in
Section III-B.2 as in both cases, the subplants share events.

However, the “cat-and-mouse” example with individual cat
and mouse models in Section III-B.1 is suitable for locally
modular control. The subplants are given byG1, . . . , G2k,
and the cat and mouse specifications areD1, . . . , D2k. Ac-
cording to (4), the2k modular plants evaluate to

Hi =

{

Gi||(||2k
j=k+1Gj) for i = 1, . . . , k

Gi||(||kj=1Gj) for i = k + 1, . . . , 2k.

The computation of the modular plants and the subse-
quent local supervisor computation according to (4) has
been implemented in libFAUDES. Our routine also includes
the verification of nonconflict and/or the synthesis of an
overall supervisor based on the modular closed-loopsRi,
i = 1, . . . , 2k. Table IV depicts the computational results.

TABLE IV

LOCALLY MODULAR APPROACH: CAT-AND-MOUSE EXAMPLE

n → 1 2 3 4 49 55

k
=
1

M 1.2MB 1.4MB 1.7MB 2.0MB 679MB 901MB
T <1ms 1ms 6ms 11ms 52s 901s
S 6 82 199 362 59 609 75 162

k
=
2

M 1.5MB 9.2MB 47MB 191MB — —
T 4ms 1s 12s 125s — —
S 24 4 594 31 247 108 302 — —

k
=
3

M 4.4MB 706MB — — — —
T 42ms 1 198s — — — —
S 90 185 722 — — — —

k
=
4

M 60MB — — — — —
T 6s — — — — —
S 336 — — — — —

The main advantage of the locally modular approach
compared to the monolithic approach in Section III-B.1 is
the reduced memory consumption. As a result, the supervisor
synthesis can be carried out for values of up ton = 55.

B. Hierarchical and Decentralized Control

Hierarchical and decentralized control as presented in [5],
[12], [18] is based on plants that are composed ofs subplants
G1, . . . , Gs that potentially share events, i.e.,ΣGi

∩ ΣGj
6=

∅ is permitted for anyi, j ∈ {1, . . . , s}. We denote the
overall plant asG := ||si=1Gi. The desired system behavior
is specified bys local specification automataD1, . . . , Ds,
where Lm(Di) ⊆ Lm(Gi) for i = 1, . . . , s. Furthermore,
there can be a specificationDhi with ΣDhi ⊂ ΣG. Hence,
Dhi serves as ahigh-level specificationthat only addresses
events in a subset of the overall alphabetΣG.

First, s local supervisors are computed:

Ri := SupConNB(Gi, Di) for i = 1, . . . , s. (5)

Then, ahigh-level alphabetΣGhi ⊇ ΣDhi and a natural
projection phi : Σ∗

G → Σ∗
Gni are introduced in order to

determine thehigh-level plantGhi with

L(Ghi) := phi(
s

||
i=1

L(Ri)) andLm(Ghi) := phi(
s

||
i=1

Lm(Ri)).

(6)
According to [19], the natural projectionphi distributes

over the parallel composition in (6) ifΣGhi contains all
events that are shared among the local supervisorsRi, i =
1, . . . , s, i.e., ΣGhi ⊇ Σ∩ :=

⋃

i,j∈{1,...,s},i6=j(ΣRi
∩ ΣRj

).
Hence, the abstraction can be computed for each local
supervisor to avoid the computation of the overall plantG.

Finally, the high-level supervisor Rhi =
SupConNB(Ghi, Dhi) ensures thatDhi is met. Together,
the overall supervisor evaluates to

R := Rhi||R1|| · · · ||Rs. (7)

To achieve thatR is nonblocking, it is sufficient that
phi is an Lm(R)-observer as defined in [20]. In addition,
maximal permissive control is ensured ifphi is locally control
consistentand the subplantsGi, i = 1, . . . , s are mutually
controllable [12].

In [12], it is also proved that the hierarchical and de-
centralized method is applicable to an arbitrary number
of hierarchical levels. In Section IV-B.1 and IV-B.2, we
construct such a multi-level hierarchy as follows: we group
pairs of neighboring abstracted plant models and compute a
nonblocking supervisor for the grouped model, which in turn
serves as the low-level model for a subsequent application
of the hierarchical and decentralized approach. The iterative
hierarchical construction terminates with the computation of
a single highest-level supervisor. This concept is illustrated
in Fig. 4. The resulting overall supervisor is then given by
the parallel composition of all supervisors in the hierarchy.

Rhi
1234

Rhi
12 Rhi

34

R1 R2 R3 R4 Rs−1 Rs

Rhi
s−1 s

Rhi

Fig. 4. Hierarchical multilevel construction

The described approach has been implemented in lib-
FAUDES. In order to fulfill the required conditions, our
routine verifies mutual controllability, and algorithmically
determines a locally control consistent natural projection phi

that satisfies theLm(R)-observer property [12], [18].
There are several potential gains of the approach due to the

use of structural system information: first, the overall plant
G does not have to be computed. Second, irrelevant behavior
is abstracted away before the supervisorRhi is determined.
Furthermore, the parallel composition in (7) does not have
to be evaluated explicitly such that a set of distributed
supervisors on small state spaces can be implemented.

1) Dining Philosophers:Before constructing the supervi-
sor hierarchy of Fig. 4 for the “dining philosophers” problem,
mutual controllability of the subplantsGi has to be verified
as premise for the overall supervisor to be nonblocking.

It holds that the philosopher modelsPi and their respective
left forks Fi−1,i are not mutually controllable fori even!
This becomes clear when observing that, e.g., forkF1,2 (Fig.
1) can prevent the uncontrollable event2fl in P2 by being
unavailable (i.e. by being in state1 2U). This problem can
be solved by composing each philosopher with its left fork
to achieven mutually controllable local models:

G1 := Fn,1||P1, G2 := F1,2||P2, ..., Gn := Fn−1,n||Pn.

With the trivial specificationsDi := Gi, the local supervisors
in (5) are computed asRi = Gi, i = 1, . . . , n. Applying
the hierarchical construction in Section IV-B without an
additional specificationDhi, we obtain the following results.

TABLE V

HIERARCHICAL APPROACH: DINING PHILOSOPHERS EXAMPLE

n → 2 3 5 8 13 16

k
=
1

M 1.2MB 1.4MB 1.6MB 1.7MB 27MB 195MB
T < 1ms 2ms 42ms 1s 84min 248min
S 15 50 194 646 9 142 87 666

Table V only depicts results for the valuek = 1 as it turns
out that all inserted intermediate states for different values
of k are not relevant in the hierarchical synthesis. Hence, all
computations fork > 2 lead to equivalent results. Comparing
Table V with the monolithic evaluation in Table I, it can
be seen that there is a potential computational overhead of
hierarchical approach for very small values ofn (e.g. n =
2..5). However, for all larger values ofn, the number of
supervisor states is significantly smaller (see, e.g.,n = 13),
and supervisors can be synthesized for values up ton = 16.

2) Cat and Mouse Example:We consider the “cat-and-
mouse” example with individual maze levels as introduced
in Section III-B.2. The low-level plant consists of the maze
level modelsG1, . . . , Gn, where only neighboring maze
levels share events. The low-level specifications are given
asD1, . . . , Dn, and there is no additional specificationDhi.

The computational results for different values ofn and
k are shown in Table VI. The benefits of the hierarchical
approach compared to the monolithic approach in Section
III-B.2 can be seen in both the reduced state counts of the
resulting supervisors and the higher maximum values that
are achieved forn and k. In particular, fork = 1, a tower
of up to 21 384 maze levels is obtained.

V. CONCLUSIONS

In this paper, the open source C++ library libFAUDES
has been presented, and its algorithms have been employed
to study the supervisor synthesis problems provided for the
benchmark session of the WODES 2008. In addition to the
monolithic controller synthesis,locally modular controland
hierarchical and decentralized controlhave been evaluated
in order to demonstrate both the computational benefits of
synthesis approaches that respect the system structure andthe

TABLE VI

HIERARCHICAL APPROACH: CAT-AND-MOUSE EXAMPLE

n → 2 3 4 17 5000 21 384

k
=
1

M 1.6MB 1.7MB 1.8MB 2.0MB 178MB 718MB
T 4ms 16ms 16ms 2s 1380s 7d 11h
S 54 139 163 1 078 311 884 1 334 229

k
=
2

M 4.2MB 44MB 44MB 498MB — —
T 1s 19s 25s 3h — —
S 370 1 204 1 516 16 170 — —

k
=
3

M 27MB 792MB 276MB — — —
T 10s 900s 3794s — — —
S 1 422 7 643 8 031 — — —

k
=
4

M 467MB — — — — —
T 1440s — — — — —
S 4 022 — — — — —

incorporation of such synthesis approaches in libFAUDES.
In particular, the “cat-and-mouse” example could be solved
until up to 21 384 maze levels.

Future work aims at providing a graphical user interface
to the libFAUDES routines.

VI. A CKNOWLEDGMENT

The development of libFAUDES did benefit from con-
tributions made in the context of student projects con-
ducted by (in alphabetical order): Rüdiger Berndt, Chris-
tian Breindl, Christoph Dörr, Marc Düvel, Silke Figgen,
Norman Franchi, Jochen Hellenschmidt, Mihai Musunoi,
Bernd Opitz, Thomas Rempel, Daniel Ritter, Berno Schlein,
Johannes Tautz, Thomas Wittmann, Jorgos Zaddach.

REFERENCES

[1] Friedrich-Alexander University Discrete Event Systems li-
brary (libFAUDES). [Online]. Available: http://www.rt.eei.uni-
erlangen.de/FGdes/faudes/index.php

[2] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,”Proceedings IEEE, Special Issue Discrete Event Dynamic
Systems, vol. 77, pp. 81–98, 1989.

[3] R. Alur and D. Dill, “A theory of timed automata,”Theoretical
Computer Science, vol. 126, pp. 183–235, 1994.

[4] S. Perk, T. Moor, and K. Schmidt, “Controller synthesis for an I/O-
based hierarchical system architecture,”Workshop on Discrete Event
Systems (WODES), 2008.

[5] K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarchical control
of decentralized discrete event systems,”to appear in IEEE Transac-
tions on Automatic Control, November 2008.

[6] WODES08. Benchmarking Software Tools. [Online]. Available:
http://www.wodes2008.org/pages/benchmark.php

[7] M. H. de Queiroz and J. E. R. Cury, “Modular supervisory control
of large scale discrete event systems,”Workshop on Discrete Event
Systems, 2000.

[8] B. Opitz, “Methods of supervisory control: A software implemen-
tation,” Master Thesis, Lehrstuhl für Regelungstechnik, Universität
Erlangen-Nürnberg, 2006.

[9] Gnu Lesser General Public License (GLPL). [Online]. Available:
http://www.gnu.org/copyleft/lesser.html

[10] The programming language Lua. [Online]. Available:
http://www.lua.org/

[11] S. Perk, T. Moor, and K. Schmidt, “Hierarchical discrete event
systems with inputs and outputs,”Workshop on Discrete Event Systems
(WODES), 2006.

[12] K. Schmidt and C. Breindl, “On maximal permissiveness of hierar-
chical and modular supervisory control approaches for discrete event
systems,”Workshop on Discrete Event Systems (WODES), 2008.

[13] B. Schlein, “Timed automata as a graphical programminglanguage
for the generation of IEC 61131-3 conform PLC code,”Diplomarbeit,
Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg, 2006.

[14] C. Dörr, “Simulation and analysis of discrete event systems,”
Diplomarbeit, Lehrstuhl für Regelungstechnik, Universität Erlangen-
Nürnberg, 2008.

[15] Trolltech. Qt: Cross-platform rich client development framework.
[Online]. Available: http://www.trolltech.com

[16] C. G. Cassandras and S. Lafortune, “Introduction to discrete event
systems,”Kluwer, 1999.

[17] K. Schmidt. (2005) Hierarchical control of decentralized discrete event
systems: Theory and application. Phd-thesis, Lehrstuhl f¨ur Regelung-
stechnik, Universität Erlangen-Nürnberg. [Online]. Available:
http://www.rt.eei.uni-erlangen.de/FGdes/dissertation2005 schmidt.pdf

[18] K. Schmidt and T. Moor, “Computation of marked string accepting
observers for discrete event systems,”Workshop on Discrete Event
Systems (WODES), 2006.

[19] K. Schmidt, J. Reger, and T. Moor, “Hierarchical control of structural
decentralized DES,”Workshop on Discrete Event Systems, 2004.

[20] K. C. Wong and W. M. Wonham, “On the computation of observers
in discrete-event systems,”Discrete Event Dynamic Systems, vol. 14,
no. 1, pp. 55–107, 2004.

