
Marked-String Accepting Observers for the Hierarchical and Decentralized
Control of Discrete Event Systems

Klaus Schmidt and Thomas Moor
Universität Erlangen-Nürnberg

Lehrstuhl für Regelungstechnik
Cauerstraße 7 - 91058 Erlangen, Germany

{klaus.schmidt,thomas.moor}@rt.eei.uni-erlangen.de

Abstract— The paper extends previous work, where we develop
a control theory for nonblocking hierarchical control of decen-
tralized discrete event systems (DES). The results are based on
two technical conditions for the hierarchical abstraction: it has
to be (i) locally nonblocking and (ii) marked string accepting.

In this paper, we investigate the systematic construction of
the hierarchical abstraction. Starting from an initial nat ural
projection which need not fulfill (i) and (ii), we provide an
algorithm to compute the hierarchical abstraction with the
coarsest equivalence kernel finer than that of the initial natural
projection, and such that (i) and (ii) hold. Our approach extends
the work in [10], where the authors compute observers for the
hierarchical control of DES.

I. I NTRODUCTION

Recent approaches for the control of large-scale discrete
event systems employ hierarchical control architectures for
reducing the computational complexity of supervisor syn-
thesis [1], [3], [4], [6], [7], [9], [11]. In hierarchical archi-
tectures, controller synthesis is based on a plant abstraction
(high-level model), which is supposed to be less complex
than the original plant model (low-level model). The main
question is how to derive the plant abstraction and the low-
level supervisor implementation of a high-level controller
such that the low-level closed-loop system is nonblocking
and satisfies the expected high-level behavior.

All of the above approaches assume that the high-level
observation is given. The method in [1] employs a two-
level control hierarchy such that hierarchically consistent and
nonblocking control are guaranteed by construction. In [3],
[4], [6], [9], certain conditions for nonblocking and hierarchi-
cally consistent control are required. However, little is known
about the systematic choice of high-level observations such
that these conditions are fulfilled.

A first result in this direction is elaborated in [10] based on
the theory of observers in [11]. An observer with the coarsest
possible equivalence kernel that is finer than that of an initial
causal reporter mapis computed. Nevertheless, the choice
of the initial reporter map is not obvious.

In this paper, we consider the hierarchical and decentral-
ized architecture presented in [7], where the overall system
is modeled by the synchronous product of decentralized

subsystems. A natural projection, where theshared events
of the decentralized subsystems must be contained in the
high-level alphabet, is used for hierarchical abstraction. For
nonblocking and hierarchically consistent control, it is re-
quired that this natural projection is (i)locally nonblocking
and (ii) marked string accepting. Similar to the observer
algorithm in [10], we develop a procedure to modify an initial
natural projection such that the resulting natural projection
satisfies (i) and (ii), and has the coarsest equivalence kernel
possible. However, in our case, the choice of the initial
natural projection is straightforward; it is the projection on
the shared events of the decentralized subsystems.

The outline of the paper is as follows. Basic definitions of
supervisory control theory are recalled in Section II. Section
III discusses the features of the hierarchical and decentralized
approach in [7] and formalizes the problem statement. Our
algorithm is developed and illustrated with an example in
Section IV. Section V elaborates how the algorithm can be
applied to build an architecture for nonblocking hierarchical
and decentralized supervisory control.

II. PRELIMINARIES

The set of all finite strings over a finite alphabetΣ is denoted
Σ∗. We write s1s2 ∈ Σ∗ for the concatenation of two strings
s1, s2 ∈ Σ∗, ands1 ≤ s whens1 is a prefixof s, i.e. if there is
a strings2 ∈ Σ∗ with s= s1s2. The empty string is denoted
ε ∈ Σ∗, i.e. sε = εs = s for all s∈ Σ∗. A languageover Σ
is a subsetM ⊆ Σ∗. The prefix closureof M is M := {s1 ∈
Σ∗|∃s∈ M s.t. s1 ≤ s}, andM is prefix closedif M = M.

The natural projection pi : Σ∗ → Σ∗
i , i = 1,2, for the union

Σ = Σ1∪Σ2 is defined iteratively: (1) letpi(ε) := ε; (2) for
s∈ Σ∗, σ ∈ Σ, let pi(sσ) := pi(s)σ if σ ∈ Σi , and pi(sσ) :=
pi(s) otherwise. The set-valued inverse ofpi is denotedp−1

i :
Σ∗

i → 2Σ∗
. Thesynchronous product M1||M2 ⊆Σ∗ of Mi ⊆Σ∗

i ,
i = 1,2 is M1||M2 = p−1

1 (M1)∩ p−1
2 (M2) ⊆ Σ∗.

A finite automatonis a tupleG = (X,Σ,δ,x0,Xm), with the
finite set of states X; the finite alphabet ofeventsΣ; the
partial transition functionδ : X × Σ → X; the initial state
x0 ∈ X; and the set ofmarked states Xm ⊆ X. We write
δ(x,σ)! if δ is defined at(x,σ). In order to extendδ to

a partial function onX × Σ∗, recursively let δ(x,ε) := x
and δ(x,sσ) := δ(δ(x,s),σ), whenever bothx′ = δ(x,s) and
δ(x′,σ)!. L(G) := {s ∈ Σ∗ : δ(x0,s)!} and Lm(G) := {s ∈
L(G) : δ(x0,s) ∈ Xm} are theclosedand marked language
generated by the finite automatonG, respectively.G is
nonblockingif Lm(G) = L(G), i.e. if each string inL(G)
is the prefix of a marked string inLm(G). For any strings∈
L(G), Σ(s) := {σ|sσ∈ L(G)} is the set of eligible events after
s. For a definition of the synchronous compositionG1||G2,
see e.g. [12]; in particularLm(G1||G2) = Lm(G1)||Lm(G2).

In a supervisory control context, we writeΣ = Σc∪Σu, Σc∩
Σu = /0, to distinguishcontrollable (Σc) and uncontrollable
(Σuc) events. Acontrol patternis a setγ, Σuc ⊆ γ ⊆ Σ. The
set of all control patterns is denotedΓ ⊆ 2Σ. A supervisoris
a mapS: L(G)→ Γ, whereS(s) represents the set of enabled
events after the occurrence of strings; i.e. a supervisor
can disable controllable events only. The languageL(S/G)
generated byG under supervisionS is iteratively defined by
(1) ε ∈ L(S/G) and (2)sσ ∈ L(S/G) iff s∈ L(S/G),σ ∈ S(s)
andsσ ∈ L(G). Thus,L(S/G) represents the behavior of the
closed-loop system. Also let Lm(S/G) := L(S/G)∩Lm(G).

III. H IERARCHICAL CONTROL APPROACH

In [7], we develop a hierarchical approach to the control of
decentralized DES, as illustrated in Figure 1.

A decentralized DESis a synchronous product systemG :=
||ni=1Gi where eachGi , for i = 1, . . . ,n, is a finite automaton
with event alphabetΣi , and the event alphabet ofG is
Σ :=

Sn
i=1 Σi . High-level abstractionsGhi

i of the low-level
subsystemsGi are computed by evaluating the natural pro-
jectionspdec

i : Σ∗
i → (Σhi

i)∗ of the low-level languagesL(Gi)
and Lm(Gi) such thatL(Ghi

i) = pdec
i (L(Gi)) and Lm(Ghi

i) =
pdec

i (Lm(Gi)). We require that

a. the high-level alphabetsΣhi
i are chosen such that

Sn
j 6=i(Σi ∩ Σ j) ⊆ Σhi

i ⊆ Σi , i.e. Σhi
i contains all events

shared with other components.

The overall high-level modelGhi is defined such that
L(Ghi) := phi(L(G)) and Lm(Ghi) = phi(Lm(G)) with the
natural projectionphi : Σ∗ → (

Sn
i=1 Σhi

i). Using assumption
a., it can be shown [9] thatGhi = ||ni=1Ghi

i . This means
that instead of deriving the high-level modelGhi from the
overall low-level modelG, a parallel composition of the
decentralized high-level modelsGhi

i can be evaluated. The
tuple (||ni=1Gi , ||

n
i=1Ghi

i) is denoted adecentralized projected
DES. A nonblocking high-level supervisorShi for Ghi and
a high-level specificationEhi ⊆ Lm(Ghi) is implemented by
decentralized low-level supervisorsSlo

i that exist if

b. the high-level languagesL(Ghi
i) are mutually control-

lable (see [5]).

The hierarchical and decentralized control architecture guar-
antees nonblocking and hierarchically consistent controlif

c. the decentralized low-level/high-level pairs(Gi ,Ghi
i) are

locally nonblocking and marked string accepting, as
formulated in Definitions 3.1 and 3.2 below.

The approach is computationally efficient as the overall
system need not be computed for both the abstraction and
the supervisor implementation.

G1

Gn

Ghi
1

Ghi
n

||

Ghi

pdec
1 pdec

n

Slo
1

Slo
n

Shi

phi
1 phi

n

Fig. 1. Hierarchical architecture

From the perspective of each individual subsystemGi ,
nonblocking control is based on two different types of
conditions. Verifying mutual controllability of the high-
level languagesL(Ghi

i) (b.) involves the other subsystems.
In contrast, the locally nonblocking and the marked string
accepting condition (c.) exclusively depend on the behavior
of each individual tuple(Gi ,Ghi

i), denotedprojected system
(PS), and the choice of the high-level alphabet (a.).

The latterstructural conditions, which only depend on the
system structure of each PS, are the focus of this paper.
Throughout Sections III and IV, we will make a notational
simplification (an avoidance of subscripts) by replacing the
pair (Gi ,Ghi

i) with (H,Hhi), having event alphabetsΣ and
Σhi ⊆ Σ and the natural projectionphi : Σ∗ → (Σhi)∗.

A PS (H,Hhi) is locally nonblocking if for all low-level
stringss∈ L(H) and for all high-level eventsσ ∈ Σhi which
are feasible after the high-level stringphi(s), there exists a
local path starting froms on which eventσ can occur.

Definition 3.1 (Locally Nonblocking Condition):Let
(H,Hhi) be a PS. The stringshi ∈ L(Hhi) is locally
nonblocking if for all s ∈ L(H) with phi(s) = shi and
∀σ ∈ Σhi(shi), ∃u ∈ (Σ−Σhi)∗ s.t. suσ ∈ L(H). (H,Hhi) is
locally nonblocking if this is true for allshi ∈ L(Hhi).

For formulating the marked string accepting condition, the
set of exit stringsis needed. For a given PS(H,Hhi) and a
high-level stringshi ∈ L(Hhi), the set of exit stringsLex(shi)
is the set of corresponding low-level strings which have a

high-level successor event, i.e.Lex(shi) := {s∈ L(H)|phi(s) =
shi ∧ (∃σ ∈ Σhi s.t. sσ ∈ L(H))} ⊆ Σ∗.

Marked string acceptance guarantees that if the high-level
system passes a marked string, the low-level system also has
to pass a marked string.

Definition 3.2 (Marked String Acceptance):Let (H,Hhi) be
a PS. The stringshi ∈ Lm(Hhi) is marked string accepting1

if for all s∈ Lex(shi)

∃s′ ≤ s with phi(s′) = shi ands′ ∈ Lm(H). (1)

(H,Hhi) is marked string accepting ifshi is marked string
accepting for allshi ∈ Lm(Hhi).

According to condition a., the choice of the high-level
alphabetsΣhi

i is restricted by
S

j 6=i(Σi ∩Σ j) ⊆ Σhi
i ⊆ Σi . To

keep the high-level modelHhi
i small, a natural candidate is

Σhi
i =

S

j 6=i(Σi ∩Σ j). However, choosing thisΣhi
i , the locally

nonblocking and the marked string accepting condition need
not be fulfilled. An intuitive solution to this problem is
presented in the following example.

00

0

11

1

22

2

33

3

4

4 5

67

8

a
b

c
d

g
h → κ

i → κ

j

k

αα

α

β

β

β

β

β
β

ξξ

ξ

ϕϕ

ϕ

κψψ

ψ
H → Ĥ

ĤhiHhi

Fig. 2. Automaton with relabeling

Example 3.1:Consider the PS(H,Hhi) for the automataH
andHhi in Figure 2, whereΣhi := {α,β,γ,δ,ϕ,ψ}. (H,Hhi)
is marked string accepting but not locally nonblocking.

An ad hoc solution to the problem is obtained if the low-
level transitions from state 3 and 7 to state 6 are relabeledκ
(as indicated in Figure 2) and̂Σhi = Σhi ∪{κ} is used as the
high-level alphabet.2

Thus, the question arises if there is a systematic way to
determineΣ̂hi such that condition c. holds by adding high-
level observations. The next section provides an algorithm
for computing the minimalΣ̂hi meeting condition c. The
corresponding natural projection is called anmsa-observer.

1Note thatshi ∈ L(Hhi)−Lm(Hhi) ⇒ (phi)−1(shi)∩Lm(H) = /0.
2relabeling inH just changes the observation sent to the high level.

IV. COMPUTATION OF MSA-OBSERVERS

A. Basic Notation

We first present basic results from set theory. We denote
E(M) the set of all equivalence relations on the setM. For
µ∈ E(M), [m]µ is the equivalence class containingm∈ M.
The set of equivalence classes ofµ is written asM/µ :=
{[m]µ|m∈ M} and the canonical projection cpµ : M → M/µ
maps an elementm∈ M to its equivalence class[m]µ. Let
f : M → N be a function. The equivalence relation kerf is
the kernel of f and is defined as follows: form,m′ ∈ M,
m≡ m′ mod kerf iff f (m) = f (m′).

Given two equivalence relationsη andµ on M, η ≤ µ, i.e. η
refinesµ, if m≡ m′ modη ⇒ m≡ m′ modµ for all m,m′ ∈
M. With the partial order≤, we use∨ and∧ for the join
and the meet operations of the latticeE(M).

Let M and N be sets andf : M → 2N be a function. Also
assumeϕ ∈ E(N). The equivalence relationϕ ◦ f on M is
defined for allm,m′ ∈ M:3

m≡ m′ modϕ◦ f ⇔ cpϕ(f (m)) = cpϕ(f (m′)),

Now let fi : M → 2M be a function, wherei ranges over an
index setI . Then S := (M,{ fi |i ∈ I}) is called adynamic
system[10]. ϕ ∈ E(M) is called aquasi-congruencefor S
if ϕ ≤

V

i∈I (ϕ ◦ fi). The quasi-congruences forS form a
complete upper semilattice of the latticeE(M) [12].

B. Existence

In this section, the problem discussed in Section III is
formally stated and solved for the PS(H,Hhi). The set of
transitions of the automatonH is denotedTH := {(x,σ,x′) ∈
X×Σ×X|x′ = δ(x,σ)}. A relabelingof H is another automa-
ton Ĥ with the same states asH, together with a surjective
function r : TH → TĤ such that for allx,x′ ∈ X = X̂ and for
all σ ∈ Σ, we haver((x,σ,x′)) = (x, σ̂,x′) for someσ̂ ∈ Σ̂.
We refer tor as therelabeling function.

We adapt the following result on the prefix-closure func-
tion pre :Σ∗ → 2Σ∗

with pre(s) = {s} for s ∈ Σ∗ [10].4

The kernel kerphi of phi for L(H) is a quasi-congruence
for (L(H),pre). If s,s′ ∈ L(H), then phi(s) = phi(s′) ⇒
phi(pre(s)) = phi(pre(s′)). Also, for any quasi-congruence
µ on (L(H),pre), there is a relabelingr : TH → TĤ with a
natural projection ˆphi : Σ̂∗ → (Σ̂hi)∗ for L(Ĥ) s.t. kerp̂hi = µ.

We can now formalize the problem in Section III.

Problem 4.1:Let H be an automaton with the event alphabet
Σ, let Σhi ⊆ Σ be a sub-alphabet, and letphi : Σ∗ → (Σhi)∗ be
the natural projection. The problem is to find (i) the coarsest
quasi-congruenceµ for (L(H),pre) that is finer thanphi, and
(ii) a relabelingĤ of H with relabeling functionr : TH →
TĤ , and a sub-alphabetΣ̂hi ⊆ Σ̂ with natural projection ˆphi :

3The natural extension of cpϕ to sets is used.
4In [10], the result is established for a causal reporter map.

Σ̂∗ → (Σ̂hi)∗ with kerp̂hi = µ for µ from (i), such that the pair
(Ĥ,Ĥhi) satisfies condition c.; i.e. it is locally nonblocking
and marked string accepting.

Regarding Definition 3.1 and 3.2, two post-sets for languages
are needed to find the quasi-congruence in Problem 4.1. The
M-local post-setcontains all extensions ofs with at most one
event inΣhi. The M-msa post-setmaps strings that violate
Definition 3.2 to the local post-set ofs. The remaining strings
are mapped to the empty set.

Definition 4.1 (post-sets):Let H andphi be as above and let
M ⊆ L(H). TheM-local post-setof s∈ L(H) is lposM(s) :=
{u∈ (Σ−Σhi)∗Σ(Σ−Σhi)∗|su∈ M}. The M-msa post-setof
s∈ L(H) is defined as

lposmsa
M (s) :=







/0 if equation(1) holds
∀sex ∈ Lex(phi(s)) s.t. s≤ sex

lposM(s) otherwise

The marked string accepting (msa)-observeris introduced
for formulating Lemma 4.1. If the mapphi is a L(H)−msa-
observer forL(H), then the corresponding PS(H,Hhi) is
locally nonblocking and marked string accepting.

Definition 4.2 (M-MSA-Observer):The natural projection
p0 : Σ∗ → Σ∗

0 with Σ0 ⊆ Σ is an M-msa-observerfor the
automatonH with M ⊆ L(H) if ker p0 is a quasi-congruence
for (L(H),pre), (L(H), lposM) and (L(H), lposmsa

M).

Lemma 4.1 (MSA and LNB):Let H, Σhi and phi be as in
Problem 4.1. The natural projectionphi is a L(H)-msa-
observer forH if and only if (H,Hhi) is locally nonblocking
and marked string accepting.

In the light of Lemma 4.1 and Problem 4.1, we want to
determine the coarsest quasi-congruence which is finer than
the kernel kerphi

in of an initial natural projectionphi
in.

π⋆
msa := sup{π ∈ E(L(H))|π ≤ (kerphi

in)∧
(π◦pre)∧ (π◦ lposL(H))∧ (π◦ lposmsa

L(H)}.
(2)

The supremal elementπ⋆
msa exists as the quasi-congruences

form a complete upper semilattice of the latticeE(L(H)).

Theorem 4.1: µ= π⋆
msa in Equation (2) is the quasi-

congruence which solves Problem 4.1 (i).

The above theorem extends the theory of observers discussed
in [10]. It can be shown that if the natural projectionphi is an
Lm(H)-observer, then it is also anL(H)-msa-observer, while
the converse implication does not hold.

C. Algorithmic Computation

We now turn to the construction of an msa-observer to fulfill
part (ii) of Problem 4.1. The algorithm below is adapted from
an iterative procedure in [10].

Let µ be an equivalence relation on the state setX of H
with the quotient setY := X/µ and the associated canonical
projection cpµ : X → Y. The initial state and the marked

states in the quotient arey0 = cpµ(x0) and Ym = cpµ(Xm),
respectively. Also letΣhi ⊆ Σ and σ0 6∈ Σ be an additional
label. We callHµ,Σhi := (Y,Σhi ∪{σ0},ν,y0,Ym) the quotient
automatonof H for Σhi andµ, where the induced transition
function ν : Y× (Σhi ∪{σ0}) → 2Y on the quotient is

ν(y,σ) :=







{cpµ(δ(x,σ))|x∈ cp−1
µ (y)} if σ ∈ Σhi

{cpµ(δ(x,γ))|γ ∈ (Σ−Σhi),

x∈ cp−1
µ (y)}−{y} if σ = σ0

.

In order to determine the msa-observer and similar to the
post-sets in Definition 4.1, thesuccessor event transition
functionand thenonmarked transition functionare used.

Definition 4.3: Let H and Σhi ⊆ Σ be as above. Letx =
δ(x0,s) for s∈ L(H). Thesuccessor event transition function
∆σ : X → 2X is defined forσ ∈ Σhi as

∆σ(x) := {δ(x,u)|u∈ lposL(H)(s)∩ (Σ−Σhi)∗σ(Σ−Σhi)∗}.

The nonmarked transition function∆nm : X → 2X is

∆nm(x) :=

{
S

σ∈Σhi
∆σ(x) if lposmsa

L(H)(s) 6= /0

/0 otherwise

We define the dynamic system̃H := (X,{∆σ|σ ∈Σhi}∪∆nm).
The coarsest quasi-congruenceµH̃ for H̃ is

µH̃ := sup{µ∈ E(X)|µ≤
^

σ∈Σhi∪{nm}

(µ◦∆σ)}. (3)

An efficient algorithm for computingµH̃ is given in [2].
Based onµH̃ , Theorem 4.2 establishes the relation between
the quotientHµH̃ ,Σhi and anL(H)-msa-observer.5

Theorem 4.2:Let H and phi be given as above and letµH̃
be the quasi-congruence in Equation (3).phi is an L(H)-
msa-observer iffHµH̃ ,Σhi is deterministic and contains noσ0

transitions. In this case,HµH̃ ,Σhi is a minimal state recognizer
of phi(Lm(H)) and can be computed in polynomial time.

The remaining question is how to proceed ifHµH̃ ,Σhi is
nondeterministic or hasσ0 transitions. Algorithm 4.1 solves
this problem by relabeling transitions inH usingHµH̃ ,Σhi .

Algorithm 4.1 (MSA-Observer):Input: H, Σhi.

1. computeµH̃ according to Equation (3).
2. computeHµH̃ ,Σhi .
3. if HµH̃ ,Σhi is deterministic and has noσ0-transitions

• Ĥ = H, Σ̂hi = Σhi; terminate.

else

• (Ĥ, Σ̂hi) = relabelµH̃
(H,HµH̃ ,Σhi ,Σhi)

• H = Ĥ, Σhi = Σ̂hi; go to Step 1.

Output: Ĥ, Σ̂hi.

The relabeling function relabelµH̃
(H,HµH̃ ,Σhi ,Σhi) is imple-

mented by the following algorithm.

5The results of this section are proven in [8].

Algorithm 4.2 (relabeling):Input: H, HµH̃ ,Σhi , Σhi.

1. r̄ : THµH̃ ,Σhi → TĤµH̃ ,Σ̂hi
relabelsHµH̃ ,Σhi to ĤµH̃ ,Σ̂hi over

Σ̂hi with the following restrictions:

• r̄((y,σ,y′)) = (y, σ̂,y′) andσ 6= σ̂ ⇒ σ̂ 6∈ (Σ∪{σ0}),
i.e. always relabel with new labels.

• if (y, σ̂,y′) = r(y,σ,y′) and(z, γ̂,z′) = r(z,γ,z′) with
σ 6= γ, then σ̂ 6= γ̂, i.e. transitions with different
original event labels have different new labels.

2. r : TH → TĤ relabelsH to Ĥ according to ¯r . Assume
(x,σ,x′) ∈ TH .

• if σ ∈ Σhi and ¯r((cpµH̃
(x),σ,cpµH̃

(x′))) =

(cpµH̃
(x), σ̂,cpµH̃

(x′)) with σ 6= σ̂

⇒ r((x,σ,x′)) = (x, σ̂,x′).

• if σ 6∈ Σhi and ¯r((cpµH̃
(x),σ0,cpµH̃

(x′))) =

(cpµH̃
(x), σ̂,cpµH̃

(x′))

⇒ r((x,σ,x′)) = (x, σ̂,x′).

Output: Ĥ, Σ̂hi.

0

1

2

3

4 5

67

8

a
b

c
d e → ξ f → ϕ

g
h

i

j

k

α

α

β

β
β

β

α → ψ

α → ψ

σ0 → ϕ
σ0 → ξ

0,1,2 3,6,7

4,5 8

HµH̃ ,Σhi → ĤµH̃ ,Σhi

H → Ĥ

Fig. 3. Illustration of the msa-observer algorithm

The application of Algorithm 4.1 results in the main theorem
of this section. Given an automatonH and a high-level alpha-
betΣhi, the observer algorithm returns a natural projection ˆphi

for the relabeled automaton̂H such that(Ĥ,Ĥhi) is locally
nonblocking and marked string accepting.

Theorem 4.3:Algorithm 4.1 withH andΣhi terminates in at
most |X| steps. If the algorithm stops with the automatonĤ
and the alphabet̂Σhi, then the kernel of the natural projection
p̂hi for L(Ĥ) satisfies ker ˆphi = π⋆

msa.

Example 4.1:Let H be as in Figure 3 with the high-
level alphabetΣhi = {α,β}. We follow the procedure in
Algorithm 4.1. The quasi-congruenceµH̃ in (3) evaluates to
µH̃ = {{0,1,2},{3,6,7},{4,5},{8}} (for example compare
∆nm(3) = ∆nm(6) = ∆nm(7) = /0 and∆nm(4)= ∆nm(5)= {8}).

The quotient automatonHµH̃ ,Σhi is shown in Figure 3. It
has a nondeterministic transitionα in state (0,1,2) and
two σ0-transitions. Thus, the corresponding transitions must
be relabled inHµH̃ ,Σhi and in H according to Algorithm
4.2. As an example, we choose ¯r

(

((0,1,2),α,(3,6,7))
)

=
((0,1,2),ψ,(3,6,7)) and thusr

(

(1,α,3)
)

= (1,ψ,3). The
resulting PS (Ĥ,Ĥhi) with the high-level alphabet̂Σ =
{α,β,ϕ,ξ,ψ} is equal to the PS(H,Hhi) in Example 3.1.
Thus, after one more iteration, the observer algorithm ter-
miniates with the solution(Ĥ, Σ̂hi) in Example 3.1.

V. CONSISTENT RELABELING OFDECENTRALIZED DES

The algorithms in Section IV-C provide a method to compute
a relabeling and a locally nonblocking and marked string
accepting natural projection for a single PS(H,Hhi). As
the control architecture introduced in Section III involves
decentralized projected systems(DPS)(||ni=1Gi , ||

n
i=1Ghi

i), the
effect of relabeling one automatonGk, 1 ≤ k ≤ n, on the
overall synchronous behavior has to be investigated. To this
end, consider a transitionqk = (x1,σ,x2) ∈ TGk which is
relabeled to(x1,τ,x2) in TĜk

, i.e. rk((x1,τ,x2)) = qk. If σ
is not contained in any of the other alphabets, that isσ 6∈ Σi

for all i 6= k, there is no effect on the other subsystems asσ
occurs asynchronously. In case thatσ ∈ Σi for somei 6= k, a
relabeling ofσ in TGk changes the synchronous behavior of
the decentralized subsystems. We can bypass this problem
by adding a new transition containing the eventτ for any
transition containingσ in the subsystemsGi , i 6= k. The
following definitions formalize this idea.

Definition 5.1: Let Gk be an automaton with the relabeled
automatonĜk. The mapRk : Σ̂k → Σk is defined as

Rk(τ) =







σ if ∃qk = (x1,τ,x2) ∈ TĜk
s.t.

rk(q) = (x1,σ,x2) 6= q,
τ otherwise.

The functionRk denotes the map from the relabeled events
to their original events.Rk : Σ̂∗

k → Σ∗
k is the extension ofRk

to strings withRk(ε) = ε andRk(ŝτ) = Rk(ŝ)Rk(τ) for ŝ∈ Σ̂∗
k

andτ ∈ Σ̂k.

Definition 5.2 (Consistent relabeling):Let
(||ni=1Gi , ||

n
i=1Ghi

i) be a DPS and letĜk be a relabeling
of Gk with Rk according to Definition 5.1 and the
high-level alphabetΣ̂hi

k .6 The tuple (Ĝi , Σ̂hi
i), i 6= k is a

consistent relabelingof (Gi ,Σhi
i) w.r.t. (Ĝk, Σ̂hi

k) if (i)
Σ̂hi

i = Σhi
i ∪ {τ ∈ Σ̂hi

k |Rk(τ) ∈ Σi} and (ii) for all τ ∈ Σ̂k

and ∀qi ∈ TGi such thatqi = (x1,Rk(τ),x2), it holds that
(x1,τ,x2) ∈ TĜi

. The DPS(||ni=1Ĝi , ||
n
i=1Ĝhi

i) is a consistent
relabeling of(||ni=1Gi , ||

n
i=1Ghi

i) w.r.t. (Ĝk, Σ̂hi
k) if each tuple

(Ĝi , Σ̂hi
i), i 6= k is a consistent relabeling of(Gi ,Σhi

i) w.r.t.
(Ĝk, Σ̂hi

k).

It is readily observed, that for alli = 1, . . . ,n, it is true
that Rk(L(Ĝi)) = L(Gi). Yet, it has to be shown that the

6The corresponding natural projection is ˆpdec
i : Σ̂∗

i → (Σ̂hi
i)∗.

synchronous behavior of the decentralized systems is not
changed by the consistent relabeling. Lemma 5.1 provides
this result.

Lemma 5.1 (Consistent relabeling):Let (||ni=1Ĝi , ||
n
i=1Ĝhi

i)
be a consistent relabeling of(||ni=1Gi , ||

n
i=1Ghi

i) w.r.t.
(Ĝk, Σ̂hi

k) and define the natural projectionspi : Σ∗ → Σ∗
i and

p̂i : Σ̂∗ → Σ̂∗
i . Then

Rk(L(Ĝ)) = Rk(||
n
i=1L(Ĝi)) = ||ni=1L(Gi) = L(G), (4)

Rk(L(Ĝhi)) = Rk(||
n
i=1L(Ĝhi

i)) = ||ni=1L(Ghi
i) = L(Hhi). (5)

The same equivalence holds for the respective marked lan-
guages.

A further beneficial property of the consistent relabeling
is stated in Lemma 5.2. Besides the language equivalence,
also the locally nonblocking and marked string accepting
condition are preserved.

Lemma 5.2:Let (||ni=1Ĝi , ||
n
i=1Ĝhi

i) be a consistent relabeling
of (||ni=1Gi , ||

n
i=1Ghi

i) w.r.t. (Ĝk, Σ̂hi
k). If the projected system

(Gi ,Ghi
i) is marked string accepting and locally nonblocking,

then the projected system(Ĝi ,Ĝhi
i) is also marked string

accepting and locally nonblocking.

Using Lemma 5.1 and Lemma 5.2, we develop an iterative
relabeling algorithm. As stated in Theorem 5.1, it results in
a DPS which is suitable for hierarchical and decentralized
control according to [7].

Algorithm 5.1 (Decentralized relabeling):
Input: (||ni=1Gi , ||

n
i=1Ghi

i)

1. Initialize k = 0.

2. k := k+1,
compute L(Gk)-msa-observer ˆphi

k for (Ĝk,Ĝhi
k) from

(Gk,Ghi
k) using Algorithm 4.1,

determineRk as in Definition 5.1.

3. compute(||ni=1Ĝi , ||
n
i=1Ĝhi

i) as consistent relabeling of
(||ni=1Gi , ||

n
i=1Ghi

i) w.r.t. (Ĝk, Σ̂hi
k) according to Definition

5.2.
4. if k = n

• terminate

else

• (||ni=1Gi , ||
n
i=1Ghi

i) := (||ni=1Ĝi , ||
n
i=1Ĝhi

i).

• go to step 2.

Output: (||ni=1Ĝi , ||
n
i=1Ĝhi

i), {R1, . . . ,Rn}.

Theorem 5.1:Let (||ni=1Gi , ||
n
i=1Ghi

i) be a DPS and let
(||ni=1Ĝi , ||

n
i=1Ĝhi

i) be the output of Algorithm 5.1 applied to
(||ni=1Gi , ||

n
i=1Ghi

i). Then all projected systems(Ĝi ,Ĝhi
i) are

marked string accepting and locally nonblocking. Addition-
ally, R1 ◦ · · · ◦Rn(L(Ĝ)) = L(G) and R1 ◦ · · · ◦Rn(L(Ĝhi)) =
L(Ghi).

Theorem 5.1 suggests the following hierarchical control
design for decentralized DES||ni=1Gi . Starting from the
natural projectionpdec

i on the set of shared eventsΣhi
i :=

S

j 6=i(Σi ∩ Σ j), Algorithm 5.1 can be applied to the DPS
(||ni=1Gi , ||

n
i=1Ghi

i). As all PSs(Ĝi ,Ĝhi
i) of the resulting DPS

(||ni=1Ĝi , ||
n
i=1Ĝhi

i) are locally nonblocking and marked string
accepting, the hierarchical and decentralized approach in[7]
can be applied.

VI. CONCLUSIONS

A hierarchical and decentralized control architecture which
reduces the computational complexity of DES controller
synthesis for large-scale composed systems was elaborated
in [7]. Nonblocking and hierarchically consistent controlcan
be guaranteed if the natural projection used for hierarchical
sbstraction is (i)locally nonblockingand (ii) marked string
acceptingfor each subsystem. In this paper we investigated
the problem of automatically determining a natural projection
such that (i) and (ii) are fulfilled. To this end, we first
provided an algorithm which computes the natural projection
with the coarsest equivalence kernel that is finer than that
of an initial natural projection for an individual subsystem.
In our case, the initial natural projection is given by the
natural projection on theshared eventsof the composed
system. Using this fact and applying the above method for
all subsystems of a given composed system, we developed an
algorithm which computes the coarsest hierarchical abstrac-
tion complying with the method for large-scale composed
systems in [7].

REFERENCES

[1] A.E.C. da Cunha, J.E.R. Cury, and B.H. Krogh. An assume guarantee
reasoning for hierarchical coordination of discrete eventsystems.
Workshop on Discrete Event Systems, 2002.

[2] J.-C. Fernandez. An implementation of an efficient algorithm for
bisimulation equivalence.Science of Computer Programming, 13:219–
236, 1990.

[3] B. Gaudin and H. Marchand. Efficient computation of supervisors for
loosely synchronous discrete event systems: A state-basedapproach.
IFAC World Congress, 2005.

[4] R.J. Leduc. Hierarchical interface based supervisory control. PhD the-
sis, Department of Electrical and Computer Engineering, University
of Toronto, 2002.

[5] S-H. Lee and K.C. Wong. Structural decentralised control of con-
current DES. European Journal of Control, 35:1125–1134, October
2002.

[6] C. Ma. Nonblocking supervisory control of state tree structures.Ph.D.
Dissertation, Department of Electrical and Computer Engineering,
University of Toronto, 2004.

[7] K. Schmidt. Hierarchical control of decentralized discrete event
systems: Theory and application.Phd-thesis, Lehrstuhl für Regelung-
stechnik, Universität Erlangen-Nürnberg, 2005.

[8] K. Schmidt. Computation of marked string accepting observers for dis-
crete event systems.Technical Report, Lehrstuhl für Regelungstechnik,
Universität Erlangen-Nürnberg, 2006.

[9] K. Schmidt, T. Moor, and S. Perk. A hierarchical architecture
for nonblocking control of discrete event systems.Mediterranean
Conference on Control and Automation, 2005.

[10] K. Wong and W.M. Wonham. On the computation of observersin
discrete-event systems.Discrete Event Dynamic Systems, 14(1):55–
107, 2004.

[11] K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event
systems.Discrete Event Dynamic Systems: Theory and Applications,
1996.

[12] W.M Wonham. Notes on control of discrete event systems.Department
of Electrical Engineering, University of Toronto, 2004.

