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Abstract

A common approach to hybrid control problems is to
alternate refinement of a plant abstraction with trial con-
troller synthesis performed on the current abstraction.
These steps are repeated until a solution to the control
problem can be found, or computational resources are ex-
hausted. In this contribution we use a temporal decompo-
sition of the control problem in order to gain relevant diag-
nostic information for those steps when synthesis fails. We
use this information to focus the abstraction refinement on
those features of the plant that are most crucial for the syn-
thesis task at hand. This work is an advance over earlier
abstraction based synthesis procedures which use an unfo-
cused and global refinement on the plant model.

1. Introduction

In the basic hybrid control configuration, a switched
plant with continuous dynamics accepts discrete inputs
which select which of a finite number of vector fields is to
be active. The plant exhibits discrete outputs via an A/D
map which converts continuous states (or outputs) into dis-
crete symbols. A widely accepted detailed model of this
hybrid control configuration are so called hybrid automata;
e.g. [1, 3]. In this paper, we take the perspective of a dis-
crete supervisor that exclusively interacts with the hybrid
plant via discrete external events. Here, an adequate model
of the hybrid plant is the external behaviour, defined as the
set of all sequences of pairs of input and output symbols that
are compatible with the plant dynamics. Control specifica-
tions are formalised as languages over the same alphabet of
pairs of input and output symbols, and the task of the su-
pervisor is to restrict the plant behaviour so that the closed
loop is guaranteed to only evolve on acceptable trajectories
within the specification. A crucial feature of the hybrid set-

ting is that state machine realisations of the plant typically
evolve on a real-vector valued, and hence uncountable, state
space. The core idea of abstraction based approaches is that,
rather than synthesising a supervisor for the actual plant be-
haviour, one works instead with a plant abstraction that can
be realised by a finite automaton; e.g. [4, 5, 6, 9]. In [7, 8],
we develop l-complete abstractions to allow for the refine-
ment of abstractions in the case that controller synthesis is
not successful because of the abstraction being too coarse.
The high-level strategy is to alternate trial controller synthe-
sis with refinement of the abstraction, until either synthesis
succeeds or computational resources are exhausted.

In the present paper, we undertake a more general study
of the role and strategic use of refinements of abstractions
for the purpose of supervisory controller synthesis. Two
basic questions motivate our present study. How are we to
formulate abstractions so that they readily allow for refine-
ments? How are we to link the alternation of the synthesis
and the abstraction refinement procedures so that a supervi-
sor produced by the process is guaranteed to solve the orig-
inal control problem for the hybrid plant? In addressing
these questions, we develop a new approach to adaptively
linking the synthesis and refinement steps. Our synthesis
procedure not only reports failure, but in a precise sense lo-
cates the potential reason in the current abstraction. The re-
finement procedure then focuses its efforts on those aspects
of the abstraction that have “caused” the failure in synthesis,
rather than doing an unfocused global refinement.

The paper is organised as follows. Section 2 summarises
key results from our earlier work in abstraction based super-
visory controller synthesis for hybrid systems. In Section 3,
we introduce the notion of a finite experiment to provide a
flexible tool for model abstraction. Section 4 investigates
the decomposition of a control problem in a start up phase
and a long term component. In Section 5, we use the tem-
poral decomposition to extract diagnostic information on an
unsuccessful controller synthesis and we use this informa-
tion to focus the efforts in the abstraction refinement.



2. Abstraction based supervisory control

The purpose of this section is to summarise key results
of our earlier work in abstraction based supervisory con-
troller synthesis for hybrid systems [7, 8]. In the cited pa-
pers, we discuss both abstraction and supervisory controller
synthesis within J.C. Willems’ behavioural system theory;
e.g. [11]. The choice of a common framework for both tasks
facilitates a consistent discussion of the important question
whether a supervisor that enforces a specification for a plant
abstraction will also solve the problem for the original plant.

In [11], the behaviour of a dynamical system is intro-
duced as the set of all trajectories on which the system can
possibly evolve. Thus, behaviours represent dynamics in a
similar way as formal languages are used to model DESs.

Definition 2.1. (See [11]) A behaviour B over W is a sub-
set B ⊆ W N0 := {w : N0 → W }. 1 �

Our target class of hybrid plants inherits its input/output
structure from the underlying continuous dynamics. Conse-
quently, we assume throughout this paper that W the prod-
uct composition of an input- and an output-component; i.e.
W = U × Y . This contrasts with the common practice in
DES theory of working with the disjoint union of control-
lable and uncontrollable events. Willems characterises the
traditional notion of inputs and outputs as follows.

Definition 2.2. (See [11], also [7]) A behaviour B ⊆ W N0

is said to be an I/- behaviour if 2

(i) the input is free, i.e. for all u ∈ U N0 exists a y ∈ Y N0

such that (u, y) ∈ B; and
(ii) the output does not anticipate the input, i.e. for all k ∈

N0, (ũ, ỹ), (û, ŷ) ∈ B, ũ|[0,k) = û|[0,k) there exists
(u, y) ∈ B such that y|[0,k) = ỹ|[0,k) and u = û. �

Following the concepts of P.J. Ramadge and W.M. Won-
ham’s supervisory control theory for DESs [10], the task of
a supervisor Bsup ⊆ WN0 is to restrict a plant behaviour
Bp ⊆ WN0 so that the closed loop Bcl := Bp ∩ Bsup is
guaranteed to only evolve within the set of acceptable sig-
nals Bspec ⊆ WN0 ; i.e. we aim for Bcl ⊆ Bspec. How-
ever, when interconnecting the plant and the supervisor one
needs to ensure that: (i) the supervisor may enable or dis-
able certain input events at any time but no restrictions must
be imposed on the plant outputs; (ii) at any time there is a
possible future evolution, so the closed-loop must not “get
stuck”. We state our admissibility conditions in terms of
behaviours:

Definition 2.3. (See [7] 3 ) Let Bp, Bsup ⊆ WN0 . Then

1
N denotes the positive integers, N0 denotes the nonnegative integers.

2The restriction operator ( · )|[k1,k2) maps sequences w ∈ W N0 to finite
strings w|[k1,k2) := w(k1)w(k1 + 1) · · · w(k2 − 1) ∈ W k2−k1 where
k1, k2 ∈ N0, k1 ≤ k2, and W 0 := {ε}. Let ( · )|[k1,k2] := ( · )|[k1,k2+1).

3The definition here of generic implementability corresponds to imple-

(i) Bsup is generically implementable if k ∈ N0,
(u, y)|[0,k] ∈ Bsup|[0,k], (ũ, ỹ)|[0,k] ∈ W k+1, ũ|[0,k] =

u|[0,k], ỹ|[0,k) = y|[0,k] implies that (ũ, ỹ)|[0,k] ∈

Bsup|[0,k].
(ii) Bp and Bsup are non-conflicting if Bp|[0,k] ∩

Bsup|[0,k] = (Bp ∩ Bsup)|[0,k] for all k ∈ N0. �

These definitions lead to the following formulation of the
problem of supervisory control.

Definition 2.4. (See [7]) Given a plant Bp ⊆ WN0 and a
specification Bspec ⊆ WN0 , the pair (Bp, Bspec)svc is a
supervisory control problem. A supervisor Bsup ⊆ WN0

is admissible to the plant Bp, if Bp and Bsup are non-
conflicting and Bsup is generically implementable. A super-
visor Bsup ⊆ WN0 enforces the specification Bspec ⊆ WN0

if Bcl := Bp ∩ Bsup ⊆ Bspec. A supervisor Bsup that
is admissible to Bp and that enforces Bspec is said to be
a solution of (Bp, Bspec)svc. A solution Bsup is nontriv-
ial if it imposes a nontrivial closed loop behaviour Bcl =

Bp ∩ Bsup 6= ∅. �

It can be seen that a solution Bsup is trivial if and only if
Bsup = ∅, regardless Bp and Bspec. In the spirit of [10], we
obtain the unique existence of a least restrictive solution:

Corollary 2.5. (See [7]) Let (Bp, Bspec)svc denote a su-
pervisory control problem. The set of all solutions of
(Bp, Bspec)svc is a complete upper semi-lattice with the
usual settheoretic operators “∪” and the partial order “⊆”.
The supremal element B

↓
sup of that lattice is referred to as

least restrictive solution of (Bp, Bspec)svc. �

If both Bp and Bsup were realised by finite automata, the
supervisory control problem could be readily solved with a
slight modification of DES tools. However, since hybrid
plants Bp almost never have a finite realisation, we instead
work with an abstraction Bca, Bp ⊆ Bca, that is realised by
a finite automaton. For complete I/- behaviours Bp, Theo-
rem 2.6 guarantees that any solution of (Bca, Bspec)svc also
solves the original problem (Bp, Bspec)svc. 4

Theorem 2.6. (See [7]) Let Bca ⊆ WN0 be an abstraction
of an I/- behaviour Bp ⊆ WN0 , let Bspec ⊆ WN0 , and let
Bsup ⊆ WN0 be a nontrivial solution to (Bca, Bspec)svc. If
Bp and Bsup are complete then Bsup is a nontrivial solution
of (Bp, Bspec)svc. �

Theorem 2.6 contrasts with the basic DES setting: sup-
pose a supervisor has been synthesised in the framework
provided by e.g. [10] and suppose that synthesis has been

mentability w.r.t. a particular plant in [7], and it can be shown that the
alternative formulation leads to precisely the same closed-loop behaviours.

4A behaviour B ⊆ W N0 is said to be complete if [ w ∈ B ⇔ ∀ k ∈
N0 : w|[0,k) ∈ B|[0,k) ]; see [11]. Regarding Theorem 2.6, the com-
pleteness condition on Bp is not necessary, and alternative results exist for
behaviours that are realised by so called I/S/- state machines; e.g. [8].



based on a plant abstraction that in some states can take
transitions that the original plant cannot take; such a super-
visor may rely on these “artifact transitions” and disable all
other events in certain states; hence, the synchronous prod-
uct of the supervisor with the original plant may block, and
the corresponding languages fail to be nonconflicting.

3. Experiments

Were it possible to observe a phenomenon for infinite
time, the behaviour describes all possible outcomes. In
practice, one finds oneself restricted to finite time, and we
formally define the outcome of such an experiment as a set
of strings that are bounded in length. In this section, we de-
velop an abstract notion of experiments to provide a general
tool for generating models from other models.

Definition 3.1. A set of finite strings S ⊆ W ∗ := ∪l∈N0 W l

is an experiment over W if there exists a k ∈ N0 such that
|s| ≤ k for all s ∈ S. 5 6 �

For practical purposes, we restrict experiments to be fi-
nite sets, i.e. |S| ∈ N0. 7 For the following discussion, the
weaker assumption of a bounded length is sufficient. When
the signal space W is a finite set, both conditions are equiv-
alent. Rather than perform an experiment on the actual phe-
nomenon, our interest here is on constructing models from
other models, and therefore we introduce the notion of an
experiment on a behaviour.

Definition 3.2. Let S ⊆ W ∗ and B ⊆ W N0 be an experi-
ment and a behaviour, respectively. Then S is an experiment
on B if the following conditions are fulfilled:

(i) s ∈ S ⇒ s ∈ B|[0,|s|) ,
(ii) w ∈ B ⇒ ∃ l ∈ N0 : w|[0,l) ∈ S . �

By the first condition, an experiment must not hold
strings that cannot occur according to the behaviour. The
second condition requires an experiment to give some ac-
count of each trajectory that can occur.

Suppose we know S and we know that S is an experi-
ment on some behaviour B, but we do not know B itself.
Our objective is then to recover a model BS from S that is
an abstraction of B; i.e. B ⊆ BS . Clearly, in the recovery
process one wants to take into account any structural knowl-
edge of the underlying B. In the subsequent argument, we
focus attention on time invariant behaviours B. 8

Definition 3.3. Let MW be the set of all time invariant be-
haviours over W . An experiment S ⊆ W ∗ is consistent with

5W∗ denotes the set of finite strings over W ; i.e. W ∗ := ∪l∈N0
W l .

6|s| ∈ N0 denotes the length of the finite string s ∈ W ∗.
7We write |A| ∈ N0 to indicate that A is a finite set.
8A behaviour B is said to be time invariant if σB ⊆ B. Here, σ

denotes the shift operator; i.e. σ k : WN0 → WN0 is defined by σ kw(κ) :=
w(κ + k), κ, k ∈ N0, and σ := σ 1. See [11].

time invariance, if there exists a B ∈ MW such that S is
an experiment on B. Let EW be the set of all experiments
over W that are consistent with time invariance. For any
S ∈ EW , we say BS ⊆ WN0 is a model from S under the
assumption of time invariance, if for all B ∈ MW :

S is an experiment on B ⇒ B ⊆ BS . �

Given S ∈ EW , we are most interested in a particularly
strong model BS , i.e. a small behaviour w.r.t. the partial
order “⊆”. We define our candidate as follows:

M
↓(S) := {w ∈ W N0 | ∀ k ∈ N0 ∃ l ∈ N0 : σ kw

∣

∣

[0,l) ∈ S}.

By the below proposition, M↓( · ) indeed characterises the
strongest model under the assumption of time invariance:

Proposition 3.4. For any S ∈ EW , the following hold:
(i) M↓(S) ∈ MW is a model from S under the assump-

tion of time invariance.
(ii) S is an experiment on M↓(S).

(iii) M↓(S) ⊆ BS holds for any model BS ⊆ WN0 from
S the under assumption of time invariance. �

The map M↓( · ) is interpreted as a parametrisation of
the class of behavioursM↓(EW ) ⊆ MW , and, in an abstract
sense, we say that the behaviour B = M↓(S) is realised by
the experiment S. Note that, if |W | ∈ N0 then the behaviour
B = M↓(S) can in fact be realised by a finite automaton.
A behaviour B is realisable by some experiment S ∈ EW if
and only if there exists an l ∈ N0 for which B is l-complete.
9 Given a behaviour B ∈ M↓(EW ), there exist multiple
experiments that realise B. We ask for a canonical reali-
sation, i.e. an experiment S ∈ EW with M↓(S) = B that
is uniquely defined by a distinguishing feature. In the con-
text of hybrid systems, a reasonable objective is to keep the
number of strings small and the length of strings short, as
this will reduce the computational effort when conducting
the experiment. Consistent with the partial order on strings,
we define an order relation on experiments 10

S1 4 S2 :⇔ ( ∀ s2 ∈ S2 ∃ s1 ∈ S1 : s1 4 s2 )

and ( ∀ s1 ∈ S1 ∃ s2 ∈ S2 : s1 4 s2 ) .

Indeed, it can be seen that for each B ∈ M↓(EW ) there
uniquely exists a minimal (w.r.t. “4”) experiment Smin ∈

EW with B = M↓(Smin). Moreover, minimal experiments
are prefix-free. 11

We now turn to the task of systematic refinement of ex-
periments, which is central to our abstraction based synthe-
sis procedure as developed in Section 2.

9Given l ∈ N0, a behaviour B ⊆ W N0 is l-complete if [ w ∈ B ⇔
∀ k ∈ N0 : σ kw

∣

∣

[0,l) ∈ B
∣

∣

[0,l) ]; see [11].
10The partial order “4” on the set of finite strings W ∗ is defined by

a 4 b if and only if there exists c ∈ W ∗ such that b = ac. We write a ≺ b
if and only if a 4 b and a 6= b.

11An experiment S is said to be prefix-free if (∀ s ∈ S ∀ s̃ ∈ W ∗ : if s̃ ≺
s then s̃ 6∈ S).



Definition 3.5. An experiment S2 ∈ EW is a refinement of
S1 ∈ EW if M↓(S2) ⊆ M↓(S1). �

For two experiments S1, S2 ∈ EW with S1 4 S2 it is
readily observed that S2 is a refinement of S1. However,
this condition is not necessary. Given an experiment S1 on
B ∈ MW , a refinement S2 can be generated by replacing
strings s1 ∈ S1 by longer strings s2 such that s1 4 s2. In or-
der to obtain again an experiment on B, care must be taken
to cover all possible future evolution from a string s1 in the
refinement S2. As a simple example for a sequence of re-
fined experiments, let S1 := B|[0,1) and iteratively define

S j+1 := {s ∈ W ∗| ∃ s̃ ∈ S j :

s̃ ≺ s and |s| = |s̃| + 1 and s ∈ B|[0,|s|) } .

Observe that for each j , S j ∈ EW is indeed an experiment
on B. Obviously, S j 4 S j+1, and hence B ⊆ M↓(S j+1) ⊆

M↓(S j ) for all j ∈ N0. In fact, the generated sequence of
models is identical to the so called strongest l-complete ap-
proximation; see [7]. One major advantage of the more gen-
eral framework of experiments is that we still get a refine-
ment if only selected strings are considered, rather than ex-
tending every string in an experiment. Consequently, only
certain portions of the restricted behaviour B|[0, j) need to
be computed in each refinement step. The crucial question
here is how to determine which strings are worthy of the
effort of refinement. Naturally, this depends on the particu-
lar problem addressed by the abstraction M↓(S j ). In what
follows, we derive a well motivated notion of strategic re-
finements for supervisory control.

4. Temporal decomposition of control tasks

We decompose the supervisory control task into two
subproblems. A start up control problem asks for a con-
troller that drives the plant into a certain mode of opera-
tion: closed-loop trajectories are required to initially evolve
into a target set of finite strings. Once a string in the target
is reached, the start up control problem imposes no further
performance criteria.

Definition 4.1. Given a plant Bp ⊆ WN0 , a specification
Bspec ⊆ WN0 , and a target T ⊆ W ∗, let

B
stc
spec := {w ∈ W N0 | ∃ l ∈ N0 : w|[0,l) ∈ T ∩ Bspec|[0,l)} .

A supervisor Bstc
sup ⊆ WN0 is said to be a solution of the

start up control problem (Bp, Bspec, T )stc if Bstc
sup solves

the control problem (Bp, Bstc
spec)svc. �

The unique existence of a least restrictive solution to the
start up control problem follows from Corollary 2.5. If T
exhibits a bound on the length of its elements, then Bstc

spec
is complete. This important case corresponds to targets T

that are experiments. Then, the least restrictive solution of
(Bp, Bspec, T )stc is complete.

A long term control problem asks for a controller that,
once a trajectory evolves into a specified domain, restricts
all future evolution according to a language inclusion spec-
ification. If the closed loop happens not evolve into the
domain, this conditional performance criteria imposes no
further restrictions on the closed-loop trajectory.

Definition 4.2. Given a plant Bp ⊆ WN0 , a specification
Bspec ⊆ WN0 , and a domain D ⊆ W ∗, let

B
ltc
spec := {w ∈ W N0 | ∀ l ∈ N0 :

(w|[0,l) ∈ D ⇒ w ∈ Bspec) } .

A supervisor Bltc
sup ⊆ WN0 is said to be a solution of

the long term control problem (Bp, Bspec, D)ltc if Bltc
sup

solves the control problem (Bp, Bltc
spec)svc and if d ∈ (Bp ∩

Bltc
sup)|[0,|d|) for all d ∈ D. 12 �

The uniqueness of a least restrictive solution to the long
term control problem follows from two observations: (i) the
solutions of (Bp, Bltc

spec)svc are an upper semi-lattice; and

(ii) the extra condition d ∈ (Bp∩B
ltc
sup)|[0,|d|) is retained un-

der unions of long term controllers. The latter non-triviality
condition rules out the trivial solution Bltc

sup = ∅ whenever
the domain D is nonempty. Hence, for a long term con-
trol problem, there is no general guarantee that a solution
will exist. This raises the question whether we can at least
find a supremal subset Dmax ⊆ D on which a solution to
(Bp, Bspec, Dmax)ltc does exist. The answer is yes.

Proposition 4.3. Given a complete I/- behaviour Bp ⊆

WN0 , a complete specification Bspec ⊆ WN0 , and a prefix-
free candidate domain D ⊆ W ∗ that is an experiment. Then
there exists a supremal (w.r.t. “⊆”) subset Dmax ⊆ D such
that (Bp, Bspec, Dmax)ltc has a solution. We refer to a
Dmax as the maximal domain of (Bp, Bspec, D)ltc. �

We point out an important conceptual feature of our
compositional framework. Consider the case where, for
the long term control problem, a desired domain can not be
achieved. Then we are in the position to weaken our speci-
fication to just the maximum domain that can be achieved.
This can be interpreted as constructive diagnostic informa-
tion of what is the best that can be done in the direction
of the desired control objective. If this original objective
was the ultimate specification in an application context, the
diagnosis will not help. However, we continue our frame-
work and decompose the original control problem into start
up and long term subproblems. We can then shuffle respon-

12Viewed as temporal properties (e.g. [2]), B
stc
spec is seen to express an

eventuality or guarantee closed-loop property, while B
ltc
spec is the union of

the original Bspec with a safety property (w.r.t. the complement of D).



sibilities between the two controllers and thereby gain valu-
able hints on why, for a particular overall specification, syn-
thesis has failed. This information allows for a much more
focused refinement of a plant abstraction than this would be
possible from a plain report of failure.

Proposition 4.4. Given a plant Bp ⊆ WN0 and a speci-
fication Bspec ∈ WN0 , let Bsup denote a nontrivial solu-
tion to the control problem (Bp, Bspec)svc with closed loop
Bcl = Bp ∩ Bsup. Let S ⊆ W ∗ be an experiment on Bcl.
Then Bsup is a nontrivial solution to the start up control
problem (Bp, Bspec, T )stc with target T = S. Further-
more, Bsup is a solution to the long term control problem
(Bp, Bspec, D)ltc on the domain D = S. �

Proposition 4.4 shows how the overall solution of a con-
trol problem can be decomposed into start up and long term
components. We now turn to the converse question of how
to compose a start up and a long term controller to form an
overall solution to a control problem. We define two ver-
sions of an operator for the temporal composition of two
controllers. In both cases, the switch from one controller
to the other is triggered by the trajectory evolving into a
certain switching set. For the first operator, the switching
condition is tied to the time axis and must be fulfilled from
time k = 0 onwards.

Definition 4.5. Given two behaviours Bstc
sup, Bltc

sup ⊆ WN0

and a switching condition C ⊆ W ∗, the combined be-
haviour B

stc
sup ∧◦

C B
ltc
sup ⊆ WN0 is defined to be the set of

all w ∈ WN0 satisfying either (i) or (ii):
(i) there exists an l ∈ N0 such that w|[0,l) ∈ Bstc

sup|[0,l)∩C ,

and w ∈ B
ltc
sup;

(ii) w|[0,l) 6∈ C for all l ∈ N0, and w ∈ B
stc
sup. �

In contrast, our second operator resets time for the sec-
ond controller when switching takes place, and here the
switching condition does not depend on absolute time.

Definition 4.6. Given two behaviours Bstc
sup, Bltc

sup ⊆ WN0

and a switching condition C ⊆ W ∗, the combined be-
haviour Bstc

sup ∧C Bltc
sup ⊆ WN0 is defined to be the set of

all w ∈ WN0 with either (i) or (ii):
(i) there exist k, l ∈ N0 such that w|[0,k+l) ∈ Bstc

sup|[0,k+l),

and σ kw ∈ Bltc
sup, and σ kw|[0,l) ∈ C , and σ κw|[0,λ) 6∈

C for all κ , λ ∈ N0 where κ + λ < k + l;
(ii) w ∈ B

stc
sup and σ κw|[0,λ) 6∈ C for all κ , λ ∈ N0. �

It can be shown that if both component controllers are
generically implementable and/or complete then so are their
compositions. Furthermore, the composition operator ∧◦

C
neatly matches our definitions of the start up and long term
control problems in that it allows for the composition of
an overall solution, provided the target set of the start up
controller lies within the domain of the long term controller.
This appears an intuitively natural condition for temporal

controller composition.

Theorem 4.7. Given a plant Bp ⊆ WN0 and a specification
Bspec ∈ WN0 , let Bstc

sup ⊆ WN0 be a nontrivial solution to
the start up control problem (Bp, Bspec, T )stc for a target
T ⊆ W ∗. Furthermore, let Bltc

sup ⊆ WN0 denote a solution
to the long term control problem (Bp, Bspec, D)ltc on a
domain D ⊆ W ∗. If Bp is a complete I/- behaviour, and if
Bspec, Bstc

sup and Bltc
sup are all complete, and if T ⊆ D, then

Bsup := Bstc
sup ∧◦

T Bltc
sup is a nontrivial solution to the control

problem (Bp, Bspec)svc. �

5. Strategic experiments

We develop a novel procedure for abstraction based syn-
thesis. In contrast with [7, 8], the main additional feature is
that rather than use a global refinement procedure, we focus
the refinement according to diagnostic information given
when synthesis fails for a particular abstraction. To obtain
this diagnostic information, we use the temporal decompo-
sition of the synthesis problem and, in particular, the notion
of the maximum domain of the long term control problem.
The abstraction procedure is based on experiments and re-
finement focuses on the complement of the maximum do-
main of the long term control problem.

Throughout this section, we discuss the supervisory con-
trol problem (Bp, Bspec)svc, subject to the following as-
sumptions, on which we comment below.
(A1) The plant Bp ∈ MW is a complete I/- behaviour and

the specification Bspec ∈ WN0 is complete.
(A2) There exists an experiment S ∈ EW on Bp such that

(M↓(S), Bspec)svc exhibits a nontrivial solution.
(A3) We are given a further experiment S̃ ∈ EW on Bp

such that S̃ 4 S, and there exist only trivial solutions
of the control problem (M↓(S̃), Bspec)svc.

(A4) Let lspec denote the length of a shortest string in S̃; i.e.
lspec := min{|s̃| | s̃ ∈ S̃}. For all w ∈ W ∗ such that
there exists a k ∈ N0 with w|[0,k+l) ∈ Bspec|[0,k+l)
and σ kw ∈ Bspec, we require that w ∈ Bspec.

Ad (A1). If the plant Bp fails to be complete but is realised
by an I/S/- machine, we can replace Bp by its completion 13

and appeal to a variation of Theorem 2.6; see [8, 11]. Ad
(A2) and (A3). In order to give a constructive discussion of
strategic refinement, we require that the control problem can
be solved for the abstraction M↓(S), while we are given an-
other abstraction M↓(S̃), S̃ 4 S, on which synthesis fails.
In other words: M↓(S) is, in general, more than sufficiently
accurate while M↓(S̃) is too coarse. Without loss of gener-
ality, we may additionally assume that S̃ is prefix-free and

13The completion of a behaviour B is its smallest complete superset,
namely {w ∈ WN0 | ∀ k ∈ N0 : w|[0,k) ∈ B|[0,k)}.



that S = Bp|[0,l) for some l ∈ N0. Ad (A4). We demand
that the strings in S̃ are at least as long as are required for a
realisation of Bspec by an experiment. Note that this tech-
nical requirement is fulfilled for any lspec-complete Bspec.

Theorem 5.1 gives an experiment Ŝ, S̃ 4 Ŝ 4 S, that lies
between S̃ and S, and that allows for successful supervisory
controller synthesis.

Theorem 5.1. Let D̃max ⊆ S̃ denote the maximum domain
of the long term control problem (M↓(S̃), Bspec, S̃)ltc. Let

Ŝ := {s ∈ S| ∃ s̃ ∈ S̃ \ D̃max : s̃ 4 s} ∪ D̃max .

Under assumptions (A1)–(A4), there exists a nontrivial so-
lution for (M↓(Ŝ), Bspec)svc.
Proof (outline). The claim can be established by showing
that: (i) Ŝ is an experiment on Bp; (ii) M↓(S), M↓(Ŝ) and
M↓(S̃) are complete I/- behaviours; (iii) for T̂ := D̃max ∪

(D ∩ Ŝ), the start up control problem (M↓(Ŝ), Bspec, T̂ )stc

exhibits a nontrivial solution; (iv) for D̂ := D̃max ∪(D ∩ Ŝ),
the problem (M↓(Ŝ), Bspec, D̂)ltc has a nontrivial solu-
tion. One then appeals to Theorem 4.7. �

The above theorem suggests the following abstraction
based synthesis procedure to solve the supervisory synthe-
sis control problem (Bp, Bspec)svc, subject to assumptions
(A1) and (A2). To keep notation reasonably compact, we
assume that Bspec is l̂-complete for some l̂ ∈ N0.
(S1) Let S0 := Bp|[0,l̂) and j := 0

(S2) Compute the least restrictive solution B
j
sup of

(M↓(S j ), Bspec)svc.

(S3) If M↓(S j ) ∩ B
j
sup 6= ∅ terminate this iteration.

(S4) Compute the maximum domain D̃ j
max of

(M↓(S j ), Bspec, S j )ltc and refine the experiment by

S j+1 := {s ∈ W ∗| ∃ s̃ ∈ S j \ D̃ j
max :

s̃ ≺ s, s ∈ Bp|[0,|s̃|+1)} ∪ D̃ j
max ,

then proceed with step (S2) for j := j + 1.

Note that the synthesis problem in (S2) and the maxi-
mum domain in (S4) are not stated for the underlying hy-
brid plant Bp, but rather for models from experiments. The
latter, in the case of |W | ∈ N, can be realised by finite au-
tomata, and we can perform the computations in (S2) and
(S4) by highly efficient algorithms from DES theory. It is
readily seen that all S j are indeed experiments on Bp. Obvi-
ously, S j+1 is a refinement of S j , implementing the strategy
to focus on strings that do not lie in the maximal domain.

By (A2), we have assumed that the control problem can
be solved via a model based on an experiment. Therefore,
we expect that our iteration finds such a suitable model.

Theorem 5.2. Under assumptions (A1) and (A2), the iter-
ation (S1)–(S4) terminates after a finite number of steps. �

6. Conclusions

In many approaches to supervisory controller synthesis
for hybrid systems, the major amount of computational ef-
fort lies in a reachability analysis of the underlying con-
tinuous dynamics. These experiments on the hybrid plant
model are used in the construction and in the refinement of
a plant abstraction. We decompose our control problem into
a start-up part and a long-term part and in doing so we can
extract reasons for a failure in the controller synthesis for in-
dividual abstractions. From this diagnostic information we
strategically avoid expensive experiments that are irrelevant
to the particular synthesis task at hand. By Theorem 5.2, we
demonstrate that there is no loss in our divide-and-conquer
strategy: if the synthesis of a nontrivial solution supervisor
can be based on some experiment, our method will detect
such an experiment. Work in progress includes an efficient
implementation of the iteration (S1)–(S4) for a reasonably
large class of hybrid systems so that our promising theoret-
ical results can be challenged by application examples.
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