
Hierarchical Design of Discrete Event Controllers:

An Automated Manufacturing System Case Study

Technical Report

Sebastian Perk, Klaus Schmidt and Thomas Moor

Lehrstuhl für Regelungstechnik

Friedrich-Alexander Universität Erlangen-Nürnberg

Cauerstraße 7, D–91058 Erlangen, Germany

sebastian.perk@rt.eei.uni-erlangen.de

November 2004

Contents

1 Introduction 1

2 Hierarchical Control of Decentralized Discrete Event Systems:

Multi-Level Extension of the Hierarchical and Decentralized Approach 2

2.1 Multi-Level Hierarchy . 2

2.2 Refinement Automata . 6

2.3 Modified Supervisor Implementation . 7

3 Case Study: An Automated Manufacturing System 14

3.1 Application Example: A Fischertechnik Production Plant Model 14

3.2 Modeling and Supervisor Implementation 16

3.2.1 Conveyor Belt cb15 . 17

3.2.2 Rail Transport System rts1 . 23

3.2.3 Rail Transport System 1 and Conveyor Belt 15 24

3.2.4 Module 5 . 30

3.3 Suggestions for Implementation on PLC 31

3.4 State Comparison . 33

4 Conclusion 34

References 35

1

1 Introduction

Over the past years several new methods for the control of discrete event systems (DES)

based on the framework provided by P.J. Ramadge und W.M. Wonham [10] and the su-

pervisory control theory [2] have been developed. Up to now, most of the research efforts

in this context have been spent on reducing the complexity of the supervisor synthesis,

which becomes enormous when dealing with discrete event systems of relevant sizes.

In [8], a new approach for the control of a class of decentralized discrete event systems

has been presented that adresses the complexity combining a hierarchical and a decen-

tralized design method. Certain system properties, local nonblocking and marked state

acceptance, have been identified that guarantee consistency of the hierarchical architec-

ture and nonblocking behavior of the controlled system.

In this technical report, the above-mentioned approach is extended and modified. The

extended method is then applied to an automated manufacturing system.

For a detailed introduction to discrete event systems and the supervisory control theory

(SCT) refer to [10, 2]. Basic notations and definitions of the SCT and previous results of

hierarchical control of decentralized DES are adopted from [8] and [7].

The outline of this report is as follows.

In Section 2, an extension and modification of the hierarchical and decentralized control

system presented in [8] is introduced in the form of a decentralized multi-level hierarchy.

The notion of refinement automata is presented, which extend the decentralized system

models by refinement events that for example abstract a complex task to be reported to the

next level in the hierarchy. Furthermore, the property of local nonblocking is replaced by

the practically relevant condition of single event controllability in combination with a modi-

fied supervisor implementation in the low-level.

In Section 3, the modified and extended approach is applied to an automated manufactur-

ing example, which is the Fischertechnik model of an industrial production process con-

trolled by a standard programmable logic controller (PLC).

The report is concluded by a prospect to possible future research activities.

2

2 Hierarchical Control of Decentralized Discrete Event

Systems:

Multi-Level Extension of the Hierarchical and Decen-

tralized Approach

In this section the approach presented in [8] will be extended to a multi-evel hierarchy and

modified such that a property less restrictive than local nonblocking guarantees hierarchi-

cal consistency and nonblocking behavior of the controlled system.

2.1 Multi-Level Hierarchy

An example of this decentralized multi-level structure with 4 subsystems and 3 levels in the

hierarchy is shown in Figure 2.1. Generally, there is no restriction on the number of levels

and the number of subsystems at each level.

Figure 2.1: Example of a decentralized 3-level hierarchy

At the lowest level (0), the plant is described by detailed models of subsystems G(0)
i

(i = 1,2,3,4) that are locally controlled by decentralized supervisors S(0)
i .

2.1 Multi-Level Hierarchy 3

The locally controlled systems are then refined, i.e. additional events, defined in a refine-

ment alphabet, are added by composition of the locally controlled plant S(0)
i /G(0)

i with a

refinement automaton R(0)
i . One possible function of a refinement automaton is identifying

unique low-level strings representing a certain task.

The refined system models G(0)
re f ,i = (S(0)

i /G(0)
i)||R(0)

i are abstracted to level 1 by the natu-

ral projection to the set of high-level events Σ(1)
i , which consists of the refinement alphabet

as well as those events out of the respective local event set Σ(0)
i , that are defined to be

high-level events. Arbitrary groups of the abstracted subsystems are then composed to

several modules G(1)
j of level 1, where in this example j = 1,2. For each level-1 subsys-

tem, level-1 supervisors S(1)
i are synthesized. For this abstraction, level 0 is viewed as the

low level, and level 1 represents the high level of the hierarchy.

In a next step, the level-1 system can be considered as a low-level system which shall be

abstracted to a higher level 2. Thus the locally controlled level-1 subsystems are refined by

refinement events and abstracted to level 2, where they are composed to (in the example

case) one level-2 system G(2). The behavior of G(2) is controlled by S(2), whose decen-

tralized low-level implementations are S(2−1)
1 and S(2−1)

2 . These low-level implementations

are a translation of the abstract control actions of level 2 to detailed level-1 control actions

for each locally controlled subplant in level 1. So, S(2−1)
1 and S(2−1)

2 restrict the locally con-

trolled behaviors S(1)
1 /G(1)

1 and S(1)
2 /G(1)

2 on level 1.

Analogously, the control action resulting on level 1 is implemented on level 0 by S(1−0)
i ,

which additionally restrict the controlled behavior of each local subsystem S(0)
i /G(0)

i (i =

1, . . . ,4) on level 0.

Note that each pair S((j+1)− j)
i and G(j)

re f ,i can be interpreted as an interface that translates

detailed strings generated in the lower level to high-level events as well as high-level con-

trol actions to more complex tasks in the lower level. The notion of an interface connecting

two levels is found in several approaches to hierarchical control, see for example [4].

For convenience and to be able to easily apply the notations of [8], we will focus on a two-

level hierarchy with a lower level defined over the event set Σlo and a higher level defined

over Σhi, as for example the part of the system marked by the dark box in Figure 2.1. For

the general structure of a two-level hierarchy see Figure 2.2.

2.1 Multi-Level Hierarchy 4

Figure 2.2: Two-level hierarchy

This part of two connected levels can be seen as a elementary hierarchical and decen-

tralized control system, the results of which can be transferred to an arbitrary multi-level

hierarchy.1

At first, we define the resulting hierarchical and decentralized control system, when refine-

ment languages are applied.

Definition 2.1 (Extended Hierarchical and Decentralized Control System)

An extended hierarchical and decentralized control system (EHDCS) is a structure that

consists of the following components.

• The detailed low-level plant model Glo over the event set Σlo :=
� n

i=1 Σlo
i is given

as a decentralized control system according to [8] with a number of n subsys-

tems Glo
i over the respective event sets Σlo

i , generating the respective languages

Llo
i := L(Glo

i) and marking Llo
i,m := Lm(Glo

i). The overall system is defined as

Glo := ||ni=1Glo
i over the alphabet Σlo :=

� n
i=1 Σlo

i . The controllable and uncon-

trollable events are Σlo
i,c := Σlo

i ∩ Σlo
c and Σlo

i,u := Σlo
i ∩ Σlo

u , respectively, where

Σlo
c ∪Σlo

u = Σlo and Σlo
c ∩Σlo

u = /0.

• Nonblocking local low-level controllers Slo
i : Llo

i → Γlo
i , where Γlo

i are the respective

control patterns. The resulting low-level closed-loop languages are denoted

1For clarity reasons the local high-level subsystems Ghi
i are not shown in Figure 2.1.

2.1 Multi-Level Hierarchy 5

Llo,c
i := L(Slo

i /Glo
i)

Llo,c
i,m := Llo,c

i ∩Llo
i,m,

Llo,c := ||ni=1Llo,c
i

Llo,c
m := ||ni=1Llo,c

i,m = Llo,c ∩Llo
m .

Glo,c is the canonical recognizer of the globally resulting locally controlled behavior

such that

Llo,c = L(Glo,c), Llo,c
m = Lm(Glo,c).2

• High-level events Σhi :=
� n

i=1 Σhi
i are introduced, where Σhi

i and Σlo
i are not neces-

sarily disjoint: /0 ⊆ Σlo
i ∩Σhi

i , i.e. low-level events can also be defined as high-level

events. Furthermore, Σre f :=
� n

i=1 Σre f ,i = Σhi−Σlo ⊆ Σhi is the set of all refinement

events, i.e. all refinement events are high-level events. Moreover, all shared events

are high-level events:
� n

j=1,i 6= j(Σlo
i ∩Σlo

j) ⊆ Σhi
i .

• The refinement automata are denoted Rlo
i . They generate the refinement languages

Klo
re f ,i := L(Rlo

i) ⊆ (Σlo
i ∪Σre f ,i)

∗ and mark the languages

Klo
re f ,i,m := Lm(Rlo

i) ⊆ (Σlo
i ∪Σre f ,i)

∗

with the set of refinement events Σre f ,i such that

Llo
re f ,i := Llo,c

i ||Klo
re f ,i,

Llo
re f ,i,m := Llo,c

i,m ||Klo
re f ,i,m

are the refined languages. The canonical recognizer of Llo
re f ,i,m is denoted Glo

re f ,i,i.e

L(Glo
re f ,i) = Llo

re f ,i and Lm(Glo
re f ,i) = Llo

re f ,i,m.

• Hierarchical abstractions (Glo
re f ,i, phi,Ghi

i), with the reporter map to the high-level

θ := phi, where phi : (Σlo ∪Σre f ,i)
∗ → (Σhi)∗ is the natural projection to high-level

events.

The local high-level languages are given by the abstraction of the refined languages:

Lhi
i = L(Ghi

i) := phi(Llo
re f ,i),

Lhi
i,m = Lm(Ghi

i) := phi(Llo
re f ,i,m)

• The high-level plant is given by Ghi := ||ni=1Ghi
i , so Lhi := ||ni=1Lhi

i and Lhi
m :=

||ni=1Lhi
i,m. Each pair Ghi

i , Ghi
j of abstracted subsystems is synchronized by shared

events if Σhi
i ∩Σhi

j 6= /0.

• The high-level supervisor is denoted Shi : Lhi → Γhi with the high-level closed-loop

language L(Shi/Ghi) and a valid low-level supervisor implementation Shi−lo : Llo,c →

2Note that by definition Llo,c = Llo,c
m .

2.2 Refinement Automata 6

Γhi−lo with the control pattern Γhi−lo ⊆ 2(Σlo∪Σre f) has to guarantee that

phi(L(Shi−lo/Glo
re f)) ⊆ L(Shi/Ghi).

• The decentralized implementation of Shi−lo is given by valid supervisors Shi−lo
i .

2.2 Refinement Automata

One modification of the approach described in [8] is the notion of refinement automata,

which are an important tool for the abstraction process. They can be used to identify unique

low-level strings representing a certain detailed task and to introduce refinement events to

report the beginning and the completion of these tasks to the high-level. The refinement

automata have to fulfill the following requirements:

Definition 2.2 (Admissible Refinement Automaton) Let Glo be a finite automaton over

the event set Σlo with L(Glo) = Llo ⊆ (Σlo)∗ and Llo
m = Lm(Glo). Furthermore, let Σhi be

the set of high-level events with Σre f ⊆ Σhi. Also let Rlo be an automaton over the event set

(Σlo∪̇Σre f) generating the language L(Rlo) = Klo
re f ⊆ (Σlo∪̇Σre f)

∗ and marking Lm(Rlo) :=

Klo
re f ,m. Then the refined languages are Llo

re f = Llo||Klo
re f and Llo

re f ,m = Llo
m ||Klo

re f ,m.

Rlo is said to be an admissible refinement automaton with respect to Glo, if:

1. Rlo meets the following structural property:

Let s, s′ ∈Rlo and plo(s) = plo(s′). If ∃u∈ (Σre f)
∗, σuc ∈Σlo

uc such that suσuc ∈Rlo
re f ,

then ∃u′σuc such that s′u′σuc ∈ Rlo
re f .

2. Klo
re f and Klo

re f ,m are not restrictive with respect to Llo and Llo
m .

plo(Llo
re f) = Llo, plo(Llo

re f ,m) = Llo
m

with the natural projection to low-level events plo : (Σlo∪Σhi)∗ → (Σlo)∗

3. Klo
re f and Klo

re f ,m are consistent with respect to the controllability of low-level events:

(Σlo∪Σre f)
∗Σre f ,cΣ∗

re f Σlo
uc(Σlo ∪Σre f)

∗∩Llo
re f = /0 ,

(Σlo∪Σre f)
∗Σre f ,cΣ∗

re f Σlo
uc(Σlo ∪Σre f)

∗∩Llo
re f ,m = /0

The first requirement means that if one low-level string is represented in Rlo by several

different refined strings, then all uncontrollable events possible after the low-level string

have to be possible in Rlo after these refined strings.

2.3 Modified Supervisor Implementation 7

The second requirement says that K lo
re f is not allowed to restrict the behavior of Glo in any

sense.

The third requirement means that all sequences of refinement events containing a control-

lable event must not be followed by an uncontrollable low-level event, such that uncontrol-

lable low-level events can never be disabled by a high-level supervisor disabling a high-

level event. So it is guaranteed that any controllable behavior E lo
re f can be implemented by

an admissible low-level supervisor as stated in the following lemma.

Lemma 2.1 (Consistency of Controllability) Let Glo be a finite automaton and Rlo be a

refinement automaton generating K lo
re f with the refined language Llo

re f as stated in Definition

2.2. The requirements on K lo
re f in Definition 2.2 guarantee that any behavior E lo

re f that is

controllable with respect to the refined language Llo
re f can be implemented by an admissible

low-level supervisor:

∀E lo
re f ∈ C (Llo

re f) : plo(E lo
re f) ∈ C (Llo)

A proof is given in [6]. A further modification of the approach described in [8] is the relax-

ation of the property of local nonblocking of the hierarchically abstracted subsystems in

combination with a low-level supervisor implementation that is different from the standard

supervisor implementation defined in [8].

2.3 Modified Supervisor Implementation

We recall the Definition of a locally nonblocking hierarchical abstraction (G, phi,Ghi) in [8].

Definition 2.3 (Locally Nonblocking Hierarchical Abstraction)

Let (G, phi,Ghi) be a a hierarchical abstraction. The high-level string shi ∈ Lhi
m is said to be

locally nonblocking if

∀s ∈ L(G) with phi(s) = shi and ∀σ ∈ Σhi(shi) with phi(s)σ ∈ Lhi
m :

∃uσ ∈ (Σ−Σhi)∗ such that suσσ ∈ L(G)

where Σhi(shi) := {σ ∈ Σhi|shiσ ∈ Lhi} is the set of all high-level events that are possible

in Ghi after string shi.

(G, phi,Ghi) is locally nonblocking if the above condition holds ∀shi ∈ Lhi
m .

So all strings s in the low-level which project to shi can always be extended with local

strings u leading to any high-level event possible in the high-level after shi. In many appli-

cation examples this property can be fulfilled only with restrictive models of the subplants,

2.3 Modified Supervisor Implementation 8

as different local extensions of low-level strings usually have influence on the subsequent

high-level behavior. These alternative local extensions can be seen as local predecessors

for different high-level events.

If local nonblocking is not fulfilled, the problem is to guarantee that two decentralized sub-

systems generate the local predecessors of the same shared event, otherwise blocking is

possible that is not noticed by Ghi. The following figure illustrates a case of local blocking.

(a) G1lo
re f ,1 (b) Glo

re f ,2 (c) Glo
re f ,1||G

lo
re f ,2 (d) Ghi

Figure 2.3: Two subsystems causing local blocking

The set of high-level events is given by the shared events Σhi = {x,y}. So, if the local

event a is generated in the refined subsystem Gre f ,1 and event b happens in Gre f ,2, the

concurrent behavior Glo
re f = Glo

re f ,1||G
lo
re f ,2 (Figure 2.3 (c)) of both subsystems has a block-

ing state, because the subsystems are not able to execute the same high-level event. This

blocking is not noticed in Ghi = phi(Glo
re f ,1)||p

hi(Glo
re f ,2), i.e. a nonblocking high-level super-

visor Shi does not prevent it. A way to avoid this problem is to design a low-level supervisor

implementation that disables local predecessors of different high-level events.

Because of this, the implementation of a low-level supervisor is modified as follows.

Definition 2.4 (Modified Supervisor Implementation) Given an extended hierarchical

control system of Definition 2.1, the modified supervisor implementation is defined as

L(Shi−lo/Glo
re f) := κLlo

re f
(Lm(Shi/Ghi)||Lm(Glo

re f))

The above expression points out, that the controlled high-level behavior can be seen as a

specification for Glo
re f , for which Shi−lo is the nonblocking and admissible supervisor. With

this supervisor implementation, only those successor strings are allowed at any state in

Glo , from which one of the high-level events enabled by Shi can be reached, while local

2.3 Modified Supervisor Implementation 9

strings leading to disabled high-level events are disabled. In a general EHDCS according

to Definition 2.1, the low-level consists of several decentralized refined subsystems (as

there are Glo
re f ,1 and Glo

re f ,2 in the above example), to which a decentralized form of the

above supervisor implementation is applied.

Definition 2.5 (Decentralized Modified Supervisor) Given an extended hierarchical

control system of Definition 2.1, the decentralized modified supervisors are defined as

L(Shi−lo
i /Glo

re f ,i) := κLlo
re f ,i

(pi(Lm(Shi/Ghi))||Lm(Glo
re f ,i))

where pi : (Σlo ∪Σhi)∗ → (Σlo
i ∪Σhi

i)∗ is the natural projection to the event set of each local

subsystem .

The overall behavior of the subsystems controlled by the decentralized modified supervi-

sors is implemented according to the subsequent definition.

Definition 2.6 (Decentralized Modified Supervisor Implementation) Given an ex-

tended hierarchical control system of Definition 2.1, the decentralized modified supervisor

implementation is defined as

L(Shi−lo/Glo
re f) = L(Shi/Ghi)

∣

∣

∣

∣

(

||ni=1(L(Shi−lo
i /Glo

re f ,i)
)

So the interaction of the subsystems is coordinated by the high-level. One important con-

dition in that context is the fact that all shared events are high-level events and thus can be

observed and controlled by Shi.

Considering the example of Figure 2.3, the difference between the standard and modified

supervisor implementation is as follows. Assume a high-level supervisor Shi that disables

the event y, as shown in Figure 2.4 a). As the standard supervisor implementation always

enables all local events, Slo
standard allows the events a,b and x in Glo

re f ,1||G
lo
re f ,2. This control

action causes a blocking, whenever event b has happened (Figure 2.4 b)). Different from

that, the decentralized supervisor Shi−lo
2 disables event b, because after b no high-level

event can be reached in Glo
re f ,2. So the resulting overall low-level supervisor implementa-

tion Shi−lo
modi f ied is nonblocking, see Figure 2.4 (c).

2.3 Modified Supervisor Implementation 10

(a) Shi/Ghi (b) Shi−lo
standard/Glo

re f (c) Shi−lo
modi f ied/Glo

re f

Figure 2.4: Standard and modified low-level supervisor implementation

However, if both high-level events x and y are allowed in the high-level, i.e.

Shi−lo
modi f ied/Glo

re f = Glo
re f (Figure 2.3 c)), also the modified supervisor implementation causes

a blocking as local paths leading to different events of the same set of shared events are

still not disabled and thus there remain competitive paths in Glo
re f ,1 and Glo

re f ,2 that block

each other in the synchronized behavior.

For that reason, we introduce an additional property concerning the high-level supervisor.

Definition 2.7 (Single Event Control) Given an extended hierarchical and decentralized

control system with a modified supervisor implementation as in Definition 2.4, single event

control is defined as follows:

∀shi ∈ L(Shi/Ghi),∀σ ∈ Σhi(shi)∩Σhi
c,i ∩Shi(shi), ∀i = 1,2, . . . ,n :

Shi(shi)∩ (Σhi(shi)−σ)∩Σhi
c,i = /0

This means that after any high-level string, Shi enables at most one controllable high-level

event out of each local alphabet, such that each pair of low-level subplants that share

events agrees on the same shared high-level event. Thus there are no competing paths

that block each other in the concurrent behavior. When considering application examples

like the one of this work, this property is not very restrictive. A possible implementation is

to set priorities of high-level events of one set of shared events, such that if Shi enables a

choice of more than one high-level event, only the event with the highest priority is imple-

mented in the low-level.

2.3 Modified Supervisor Implementation 11

A further useful property of the system models is the single event controllability, which

says that low-level strings leading to different controllable high-level events always begin

with a controllable low-level event, i.e. these strings can always be disabled by a low-level

supervisor implementation.

For that purpose, we recall the definition of entry strings stated in [8].

Definition 2.8 (Entry Strings) Given shi ∈ Lhi, the set of entry strings of shi is defined as

Len,shi := {s ∈ L(G) | phi(s) = shi ∧@s′ < s such that phi(s′) = shi}

Let σhi ∈ Σhi be the last event of shi, then Len,shi consists of all low-level strings correspond-

ing to shi that end with the event σhi, i.e. these low-level strings do not have a prefix with

the same high-level projection shi.

Definition 2.9 (Single Event Controllability) Let H be an extended hierarchical and de-

centralized control system. For a given high-level string shi ∈ Lhi
i with a controllable high-

level successor event α ∈ Σhi
i (shi)∩Σhi

c,i, the language

Lsen,shi,α := {uσ|u ∈ (Σlo−Σhi)∗∧ senuσ ∈ L(Glo
re f ,i)∧σ ∈ α∪Σhi

uc,i}

is the set of all local extensions of an entry string sen ∈ Len,shi of shi that can be extended

by α or an uncontrollable high-level event.

The high-level string shi is said to be single event controllable, if

κLsen,shi (Lsen,shi,α) is locally nonblocking.

H is said to be single event controllable if the above property holds ∀shi ∈ Lhi
i , i =

1,2, . . . ,n.

Remark: Note that it can be shown that an EHCDS that is locally nonblocking automatically

is single event controllable, further suggestions on that issue are given in Section 4.

Further required system properties are the marked state acceptance of the hierarchical

abstractions and the mutual controllability of the abstracted subplants, for the latter see

also [5]. Another property identified in [7] and required for this approach is the marked

state controllability.

Definition 2.10 (Marked State Acceptance) Let (Glo
re f , phi,Ghi) be a hierarchical ab-

straction. (Glo
re f , phi,Ghi) is marked state accepting if

∀shi
m ∈ Lhi

m ,∀s ∈ Lshi
m ,ex : ∃s′ ≤ s with phi(s′) = shi

m and s′ ∈ Lm

2.3 Modified Supervisor Implementation 12

This means every exit string corresponding to a marked high-level string has a marked

predecessor string in the low level.[8]

Definition 2.11 (Mutual Controllability, High-Level) Given a EHDCS, two high-level lan-

guages Lhi
i and Lhi

j are said to be mutually controllable if ∀i, j = 1...n, i 6= j

Lhi
j (Σhi

uc ∩Σi ∩Σ j)∩ p j((phi
i)−1(Lhi

i)) ⊆ Lhi
j

This means that an uncontrollable shared event possible in the abstracted subplant Ghi
j

is never prevented from occuring because of the synchronization with another subplant

Ghi
i .[8]

In the case that no high-level event is possible after a marked high-level string, marked

state controllability guarantees that the low-level can be driven to a marked state.[7]

Definition 2.12 (Marked State Controllability) Let (Glo
re f ,i, phi,Ghi

i) be a hierarchical ab-

straction and let γhi ∈ Γhi
i be the control patterns of Shi

i with L(Shi
i /Ghi

i) = pi(L(Shi/Ghi).

Choose shi ∈ Lhi
i,m such that γhi ∩Σhi

i (shi) = /0. The string shi is marked state controllable if

∀s ∈ Len,shi : κLs,shi(Ls,shi,γhi) 6= /0

(Glo
re f ,i, phi,Ghi) is marked state controllable if shi is marked state controllable for all

shi ∈ Lhi
i,m with γhi ∩Σhi

i (shi) = /0.

The above properties are used in [8, 7] to show nonblocking behavior in the low level and

are met in the application example of this work.

Theorem 2.1 (Main Result [6])

Let H be an extended hierarchical and decentralized control system with the following

properties:

• All refinement languages are admissible.

• All hierarchical abstractions are marked state accepting and

marked state controllable.

• All local high-level languages Lhi
i are mutually controllable.

• The low-level supervisors are given by the decentralized modified supervisor imple-

mentation of Definition 2.5 implemented according to Definition 2.6.

2.3 Modified Supervisor Implementation 13

• H is single event controllable.

• All high-level supervisors impose single event control according to Definition 2.7.

Then H is hierarchically consistent and the resulting low-level control is nonblocking.

See [6] for the proof of the above theorem.

With this result, the approach of [8] is extended to a multi-level hierarchy with refinements

for the identification of low-level strings and a modified decentralized supervisor implemen-

tation that, in combination with system properties different from local nonblocking, results

in nonblocking behavior of the controlled system.

We will see in the following section that this approach is applicable for practical examples of

considerable computational size. Refinement languages provide a powerful tool to imple-

ment an unlimited number of abstraction levels consisting of subsystems of manageable

size.

14

3 Case Study: An Automated Manufacturing System

In this section, the application of the extended hierarchical and decentralized approach to a

realistic model of an automated manufacturing plant will be presented. At first, an overview

of the plant will be provided, followed by the main section which contains the description of

the modeling process based on the approach of Section 2. Then the application example is

used to evaluate the computational complexity of this approach. The section is concluded

with suggestions for a modular implementation on a programmable logic controller (PLC)

with online generation of the low-level control action.

3.1 Application Example: A Fischertechnik Production Plant Model

The application example is provided by the discrete event systems group of the Lehrstuhl

für Regelungstechnik of the Universität Erlangen-Nürnberg [1] and represents a typical

structure of an automated manufacturing system. It is implemented as a Fischertechnik

model and controlled by a industrial standard PLC, a SIEMENS SIMATIC S7-300. The

following picture contains an overwiew of the production plant.

3.1 Application Example: A Fischertechnik Production Plant Model 15

Figure 3.5: Fischertechnik automated manufacturing system with schematic overwiev

The production process starts at the stack feeder (sf) that inputs workpieces to the con-

veyor belt cb1, where they are distributed to either a reject depot (dep) or to conveyor belts

cb2 an cb3 via pushers pu1 and pu2.

The conveyor belts cb12 and cb13 on the rotary tables rt2 and rt3 can determine the di-

rection of the workpieces arriving from cb2 and cb3 such that they can be transported

to machine head mh1 equipped with a drill d1 positioned above conveyor belt cb4 or to

machine head mh2 equipped with drill d2 above conveyor belt cb6, respectively, or they

are transported to further conveyor belts cb8 and cb9. The rotary tables rt2 and rt3 are

connected via conveyor belt cb5.

The exit of both manufacturing cells is either the way back to rt2 and rt3, or the workpieces

are transported to conveyer belts cb7 and cb10 via conveyor belts cb11 and cb14 installed

on rotary tables rt1 and rt4.

If a workpiece arrives at one of the conveyor belts cb7-cb10, it can be loaded on one of

two rail transport systems rts1 and rts2 equipped with conveyor belts cb15 and cb16. The

range of rts1 is delimited to the left by roll conveyor rc1, which is an exit buffer for up to 4

workpieces, and by conveyor belt cb9 to the right. Consequently, rts2 can serve conveyor

belts cb8, cb9, cb10 as well as the second exit for workpieces, roll conveyor rc2. Note

that the ranges of both rail transport systems overlap at coveyor belts cb8 and cb9. The

3.2 Modeling and Supervisor Implementation 16

positions, at which rts1 and rts2 can exchange workpieces with the rest of the system are

denoted by gate 1-6.

Sensor signals, for example the arrival/departure of workpieces at each conveyor belt or

the position of the rail transport systems at the respective gate are reported to the PLC,

that can set actor signals like the movement of each belt according to a control program.

As any of these sensor and actor signals is binary, the plant can be modeled as a dis-

crete event system using finite state automata. The application of the theoretical approach

presented in Section 2 to the plant is described in the following section.

3.2 Modeling and Supervisor Implementation

The theoretical approach presented in Section 2 has been implemented to the whole plant.

Therefore, a hierarchy was developed containing the detailed lowest-level models of the

plant up to 5 functional modules in the highest level of abstraction, as shown in Figure

3.5. In this report, we will focus on module 5, as it is examplary for the rest of the plant. It

consists of the rail transport systems rts1 and rts2 combined with the conveyor belts cb15

and cb16 and the roll conveyors rc1 and rc2.

Figure 3.6: Module 5

The result of the application of the theoretical approach is the hierachical and decentralized

structure shown in the subsequent figure.

3.2 Modeling and Supervisor Implementation 17

Figure 3.7: Hierarchy of module 5

Because of the symmetric structure of module 5, a description of the modeling process

will be given for submodule rts1cb15, the results will then be transferred to submodule

rts2cb16. We begin with the low-level model of conveyor belt 15.

3.2.1 Conveyor Belt cb15

The conveyor belt can be seen as an elemantary component of the plant as it consists of

one actor (the belt drive) and one sensor for a workpieces presence, and its structure is the

same for all conveyor belts except for cb1. The low-level model has already been developed

in former works, e.g. [3, 9, 8] and is shown in Figure 3.8. For detailed explanations on how

to derive a finite automaton from a discrete event system, see [3]. The resulting model of

subplant cb15(0) is shown in the subsequent picture.

3.2 Modeling and Supervisor Implementation 18

Figure 3.8: Low-level model of conveyor belt cb15: cb15(0)

In the initial state the conveyor belt does not move and there is no workpiece at the sensor.

The initial state is marked, which means that a task of the conveyor belt is not completed

before the it is back in the initial state and thus ready for the next task. This property will

be applied to all subsequent plant models as well.

Now that the low-level model of cb15 has been derived, we proceed to the computation of

the low-level supervisor S(0)
cb15, the first step of which is to formulate local specfications that

are as follows:

• To avoid sudden changes of the direction of movement, the belt has to stop, before

the direction is changed.

Figure 3.9: Specification cb15(0)
spec1

• If the belt moves, it has to move until either a workpiece arrives or a present work-

piece leaves to rc1, cb8 or cb9.

3.2 Modeling and Supervisor Implementation 19

Figure 3.10: Specification cb15(0)
spec2

• When a workpiece arrives (or leaves to rc1,cb8 or cb9), the belt has to stop. Event

cb15stp is forcible, as it can force the belt to stop, before the workpiece leaves (or

the next workpiece arrives).

Figure 3.11: Specification cb15(0)
spec3

• Until a workpiece arrives, movement only in negative y-direction is allowed, then

movement only in positive y-direction is allowed until the workpiece leaves to rc1,

cb8 or cb9.

Figure 3.12: Specification cb15(0)
spec4

These specifications are composed to form the overall specification cb15(0)
spec =

||4i=1cb15(0)
spec(i), for which the supervisor S(0)

cb15 is computed that leads to the following con-

trolled behavior.

L(cb15(0),c) = κL(cb15(0))

(

L(cb15(0)
spec)||L(cb15(0))

)

= L(S(0)
cb15/cb15(0))

3.2 Modeling and Supervisor Implementation 20

Figure 3.13: Controlled low-level behavior of cb15: cb15(0),c

Because of their general nature, the specifications cb15(0)
spec1 - cb15(0)

spec3 can be transferred

to all remaining conveyor belts.

Now, the locally controlled behavior of cb15 is refined by high-level events, which are

events shared with the adjacent modules (rc1, cb7, cb8 and cb9) representing the begin-

ning and the end of a detailed low-level task. The introduction of starting and terminating

events is useful for the identification of unique low-level strings. Note that this is similar to

the notion of request and answer events in [4].

So if cb15 is in the initial state and starts moving, this means that the transport of a work-

piece from cb7, cb8 or cb9 to cb15 is started. This beginning of the task shall be repre-

sented in the high-level by the refinement events cb7− 15, cb8− 15 and cb9− 15. As

the first event of the low-level task is controllable, also the respective refinement events

cb7/8/9−15 are controllable. If the workpiece arrives at cb15 and the belt has stopped,

this task is finished, so the refinement events wp7−15, wp8−15 and wp9−15 are in-

troduced to designate the end of the task. These events are uncontrollable, because once

a low-level task is started, the high-level has to wait for the completion of this low-level

task and therefore is not allowed to disable a termination event. The resulting refinement

automaton R(0)
cb15,1 corresponding to this task is shown in Figure 3.14

3.2 Modeling and Supervisor Implementation 21

Figure 3.14: Refinement automaton R(0)
cb15,1

In the automaton in Figure 3.14, the task "transport of workpiece from cb7, cb8 or cb9 to

cb15" is identified.

Consequently, the remaining task to be refined is "transport of workpiece from cb15 to rc1,

cb8 or cb9" 3, which is identified by the following refinement automaton R(0)
cb15,2.

Figure 3.15: Refinement automaton R(0)
cb15,2

Again, the refinement events representing the state of the low-level string are controllable,

and the finishing refinement events are uncontrollable.

Both refinement automata are now applied to the controlled low-evel model cb15(0),c by

parallel composition resulting in the refined automaton cb15(0)
re f shown in Figure 3.16.

3As cb7 will be be used only in -y direction, it can not receive a workpiece from cb15.

3.2 Modeling and Supervisor Implementation 22

Figure 3.16: Refined automaton cb15(0)
re f

Note that all strings possible in cb15(0) are contained in the strings of cb15(0)
re f , and there

is no uncontrollable low-level event that occurs after a controllable refinement event. Thus,

R(0)
cb15,1 and R(0)

cb15,2 are admissible according to Definition 2.2.

As all low-level tasks are now uniquely identified, in this case the set of high-level events

is given by the set of refinement events Σhi
cb15 = Σre f ,cb15 = {cb7− 15,cb8− 15,cb9−

15,wp7 − 15,wp8 − 15,wp9 − 15,cb15 − rc1,cb15 − 8,cb15 − 9,wp15 − rc1,wp15 −

8,wp15−9}. The refined automaton can now be projected to level 1. The result is shown

in Figure 3.17.

Figure 3.17: Projected level-1 automaton: cb15(1)

For cb15, it is still not determinend with which one of the adjacent modules rc1, cb7,cb8 or

cb9 it can momentarily interact. Controlling this task concerns cb15 as well as rts1. So in

level 1, cb15 has to be composed with rts1, such that the concurrent behavior of both can

be controlled by a level-1 supervisor.

3.2 Modeling and Supervisor Implementation 23

3.2.2 Rail Transport System rts1

The detailed low-level model of a rail transport system has been presented in [3]. Different

from [3], the initial state is the inactive rts1 standing at gate2 in line with cb7. Analogously

to the development process of cb15, at first several specifications of general kind are ap-

plied by a low-level supervisor to the low-level model of rts1. So rts1 is not allowed to leave

the range between rc1 and cb8. Furthermore, it has to stop whenever one of the gate po-

sitions 1-4 is reached, but between two gate positions it is neither allowed to stop nor to

change the direction of movement.

The locally controlled model of rts1, rts1(0),c is then refinened by high-level events that

identify the low-level tasks "movement from one gate to a neighboring gate". For exam-

ple, if rts1 moves from gate 2 to gate 3, this low-level task is started by the refinement

event "rts1_2-3" and terminated by "rts1_3". This results in the refined automaton rts1(0)
re f

presented below.

Figure 3.18: Refined low-level model of rts1: rts1(0)
re f

3.2 Modeling and Supervisor Implementation 24

The projection of this model to level 1 is given by rts1(1) shown in the figure below.

Figure 3.19: Projected level-1 automaton rts1(1)

The local level-1 submodules cb15(1) and rts1(1) are now composed to the level-1 subplant

rts1cb15(1).

3.2.3 Rail Transport System 1 and Conveyor Belt 15

For the level-1 subplant rts1cb15(1), the procedure of supervisory control followed by re-

finement is the same as it has been in Sections 3.2.1 and 3.2.3. There are two kinds of

specifications for rts1cb15, one is the security aspect, which is the mutual exclusion of belt

movement and movement of rts1, the second aspect is the efficiency, which is to avoid

unnecessary paths.

According to that, the resulting specifications to rts1cb15 can be formulated as follows:

• No movement of the conveyor belt while rts1 moves and vice versa.

• Events cb8-15 and cb15-8 are only possible, if rts1 is at gate 3. Specifications with

the same sense are formulated respectively for the remaining gates 1,2 and 4.

3.2 Modeling and Supervisor Implementation 25

• If a workpiece is loaded on cb15 (e.g. from cb8), this workpiece has to be unloaded

at a different gate (e.g. gate 1, 2 or 4, but not gate 3).

• Movement of rts1 to gate1 is only useful, if a workpiece is present at cb15.

• Every change of direction of the movement of rts1 is only possible after a load or

unload task of cb15.

These specifications are composed to form an overall specification rts1cb15(1)
spec im-

plemented in plant rts1cb15(1) by the supervisor S(1)
rts1cb15 according to Figure 3.7. The

controlled plant on level 1 is then given by rts1cb15(1),c with

L(rts1cb15(1),c)= κL(rts1cb15(1))(L(rts1cb15(1)
spec||rts1cb15(1)))= L(S(1)

rts1cb15/rts1cb15(1))

Now all movements of rts1 are synchronized correctly with the conveyor belt actions, so

the events of rts1 are not reported to level 2. The only information about rts1, that has to

be reported to level 2, is the return of rts1 from gates 3 and 4 to gate 2, which means that

subplant rts2cb16 is now allowed to serve these gates. For that reason, the refinement

event "rts1rdy" (rts1 ready) is introduced. The resulting refined automaton rts1cb15(1)
re f is

shown in Figure 3.20.

3.2 Modeling and Supervisor Implementation 26

Figure 3.20: Refined automaton rts1cb15(1)
re f

3.2 Modeling and Supervisor Implementation 27

The set of high-level events is given by "rts1rdy" and all events of cb15, as all events of

cb15 are shared with the adjacent modules.

Note that rts1cb15(1)
re f is not locally nonblocking. To show this, consider the initial state

(state 1) in Figure 3.20. If a high-level supervisor enables cb7-15 and disables cb8-15

and cb9-15, there is a low-level string (rts1_2-3,rts1_3), after which cb7-15 is no longer

possible. A further example is state 8, where we find a branching into two low-level signal

pathes, each one ending with a different controllable high-level event (cb15-9 and cb15-

rc1).

Here, the necessity of the property of single-event controllability in Definition 2.9 becomes

obvious. So, whenever there is a branching to seperated low-level signal pathes, each end-

ing with a different controllable high-levle event, the first event of each branch has to be

controllable, such that it can eventually be disabled by the modified low-level implementa-

tion of the high-level control action given in Definition 2.4.

The high-level projection of rts1cb15(1)
re f denoted by rts1cb15(2) is given in the subsequent

figure.

Figure 3.21: rts1cb15(2)

3.2 Modeling and Supervisor Implementation 28

For an illustration of the modified supervisor implementation S(2−1)
rts1cb15, as-

sume a level-2 supervisor S(2)
rts1cb15rts2cb16 with the decentralized implementation

prts1cb15(S
(2)
rts1cb15rts2cb16) := S(2)

rts1cb15, that imposes the following control action: "A

workpiece coming from conveyor belt 9 (cb9) shall be transported to roll conveyor 1 (rc1)."

This results in the following controlled behavior L(S(2)
rts1cb15/rts1cb15(2)).

Figure 3.22: Controlled behavior of rts1cb15(2)

According to the modified low-level supervisor implementation of Definition 2.4, this behav-

ior can be used as a specification for the refined level-1 plant rts1cb15(1)
re f , such that the

nonblocking supervisor for this specification is the correct low-level supervisor implemen-

tation. The following figure shows the resulting controlled behavior of rts1cb15(1)
re f , which

is the control action for rts1cb15(1),c.

3.2 Modeling and Supervisor Implementation 29

Figure 3.23: Controlled behavior of rts1cb15(1)
re f resulting from the modified low-level su-

pervisor implementaion

3.2 Modeling and Supervisor Implementation 30

One can see, that the level-2 control action is implemented in nonblocking detailed level-1

control actions.

3.2.4 Module 5

With the development of the hierarchical and decentralized control architecture of sub-

module rts1cb15, the main steps of the implementation of the theoretical approach for

module 5 are completed.

The models of submodule rts2cb16 can be derived directly from rts1cb15 using the sym-

metry of the plant structure. The composed subplant rts1cb15rts2cb16(2) is then con-

trolled by S(2)
rts1cb15rts2cb16, such that a collision of rts1 and rts2 in the overlapping range

between cb8 and cb9 is avoided.

The remaining subplants are roll conveyor 1 and 2, which both just consist of a sensor that

detects the arrival and departure of a workpiece, i.e. its low-level automaton model gener-

ates uncontrollable events only. Consequently, a level-0 supervisor is obsolete. These sen-

sor signals "rc1wpar","rc1wplv" and "rc2wpar","rc2wplv" are translated by the refinement

events "cb15-rc1","wp15-rc1" and respectively "cb16-rc2","wp16-rc2", which are shared

with rts1cb15 and rts2cb16, and additional events "rc1rdy" and "rc2rdy". The purpose of

these events is to report to level 2 that the respective roll conveyor can receive the next

workpiece. The refined models rc1(0)
re f and rc2(0)

re f are shown in the subsequent figure.

(a) rc1(0)
re f (b) rc2(0)

re f

Figure 3.24: Refined level-0 automata of roll conveyors 1 and 2

3.3 Suggestions for Implementation on PLC 31

Note that if cb15-rc1 happened once, it can not happen a second time before rc1 has

reported "rc1rdy". If rc1 has received 4 workpieces, it is full, and "rc1rdy" happens not

before at least one workpiece is removed from rc1 (which is done by hand).

These refined automata are then projected directly to level 2, as they are composed with

the level-2 subplant rts1cb15rts2cb16(2),c to form module 5.

Analogously to the example of module 5, the approach presented in [8] and modi-

fied in Section 2 has been applied the whole Fischertechnik production plant.

It turns out that all subplants are of manageable size on any level of abstraction. This

indicates that our method can be used for synthesizing supervisory controllers for

large-scale systems.

3.3 Suggestions for Implementation on PLC

For implementation of finite automata we use Step7, which is one of several possible lan-

guages to program the SIMATIC S7-300 that controls the Fischertechnik plant model. The

SIMATIC framework allows to define all events on the PLC introduced during the modeling

process as user-defined datastructures. This could be for example a list of booleans with

the name of the respective events. The value of each boolean indicates, whether the event

is enabled or disabled. The current state of each automaton implemented on the PLC can

simply be stored as an integer.

The remaining task is to correctly implement the hierarchical and decentralized structure.

Given a specification for the highest level of abstraction, one possibility of implementation

is to calculate controlled behavior S(j, j−1)
i /G(j−1)

i resulting of the low-level supervisor im-

plementations S(j, j−1)
i for each subsystem i of each level j−1 offline and then translate it

to PLC-code. This results in a hierarchical and decentralized control program with instruc-

tions for all possible future behavior beginning at the initial state. One disadvantage of this

procedure is, that whenever the highest-level specification is changed, the program has to

be recalculated throughout the whole hierarchy.

For that reason we implement each locally controlled and refined behavior G(j−1)
re f ,i of the

subsystems of each level in program code, where at first all high-level events Σ(j) are dis-

abled. The controlled behavior of level j according to a given specification in the highest

level then enables the respective high-level events out of Σ(j) and thus starts the processes

in the subsystems of the level j−1. Single event control is automatically guaranteed, if only

one high-level event out of a choice of enabled high-level events is executed in the lower

3.3 Suggestions for Implementation on PLC 32

level by means of priority. If a low-level subsystem is in a state with a branching to several

low-level pathes leading to different high-level events, the PLC program first checks, which

one of these high-level events is enabled and then executes only the low-level path corre-

sponding to this high-level event. This is an online implementation of the modified low-level

supervisor implementation.

The implementations of all locally controlled subsystems of each level can be seen as a

hierarchical structure of general subroutines that are called with the respective high-level

events as input variables and the low-level events as output variables for the level below.

If the high-level specification allows maximum performance of the plant, i.e. each state

of each subsystem can be reached potentially at least once during the production pro-

cess, this kind of implementation guarantees a control program of minimal size, as the

automaton of each subsystem is the minimal recognizer of all possible future behavior

of this subsystem. Furthermore, if the specification of the highest level is changed, only

the highest-level supervisor has to be recalculated, the corresponding low-level tasks are

generated automatically by the online low-level implementation.

3.4 State Comparison 33

3.4 State Comparison

The approch presented in this report shows the same computational benefits as the ap-

proach presented in [8]. This can be seen by the fact that all finite automata in the hierarchy

are of manageable size. The following figure shows the size of the controlled plants of the

hierarchy of module 5 that are supposed to be implemented on PLC.

Figure 3.25: Number of states of each automaton of module 5 implemented on PLC

If the monolithic approach is applied, one has to compose all low-level subplants G(0)
i to

the overall plant of module 5. This composition has a number of 63 504 states, while the

abstracted module 5 that results of the hierarchical and dezentralized approach results in

a high-level plant with only 294 states. A monolithic supervisor S, that achieves the same

controlled behavior that results from the approach of this report would result in a controlled

behavior S/G, which also counts more than 3× 104 states. Thus it is not advisable to

implement this controller on PLC, opposed to the controller that consists of the hierarchical

submodules shown in Figure 3.25.

34

4 Conclusion

In this report, the approach of [8] has been extended to a multi-level hierarchy, and it has

been modified such that it can be applied to a class of discrete event systems that do not

necessarily fulfill the property of local nonblocking. Also the method has been applied to

an automated manufacturing system with a large number of decentralized subsystems

and a hierarchy of several levels of abstraction as a result. It could be shown that the

computation of the approach is manageable for systems of praxis relevant size and that

the resulting control actions can be implemented on a standard industrial PLC.

However, there are several points of interest remaining for future research efforts. As

already indicated in [8], the maximal permissiveness of the control design in [8] and in this

report compared to a monolithic approach is to be examined.

An interesting point in this context is the fact, that on the one hand requiring local

nonblocking generally for all subsystems of a plant restricts the class of DES to which

the approach can be applied, while on the other hand single event control can be too

restrictive for those parts of the system that are locally nonblocking a priori. As locally

nonblocking systems are always single event controllable as well, there is a way for

a controller design to be found that takes into account systems that are composed of

both, single event controllable subsystems as well as those that are additionally locally

nonblocking.

A second point of interest is as follows. Given a specification for the highest level of the

control architecture that designates the desired sequencial tasks in the real system, a

maximally permissive high-level supervisor often imposes control actions, that lead to

branchings and circularities in the controlled behavior of the subsystems at the lowest

level. This means that there are several different possibilities of low-level behavior that

do not violate the specification for the system up to the worst case of theoretically infinite

repitions of certain tasks. This degree of freedom can be used to optimize the controlled

behavior with regard to the cost (energy, material, time, money etc.) of each alternative

low-level task. So there is room for future investigations on the combination of this

approach with new or existing optimization tools for discrete event systems.

Acknoledgement:

Special thanks to the Department of Electrical and Computer Engineering of the Carnegie

Mellon University Pittsburgh, in particular to Professor Bruce Krogh, associate head of

department, for the hospitality and support.

35

References

[1] Forschungsgruppe Ereignisdiskrete Systeme, Lehrstuhl für Regelungstechnik, Uni-

versität Erlangen-Nürnberg.

www.rt.e-technik.uni-erlangen.de/fgdes/index_en.html

[2] CASSANDRAS, C.G ; LAFORTUNE, S. Introduction to Discrete Event Systems. Kluwer.

1999

[3] ERSOY, G. Anwendung und Erweiterung Dezentraler Steuerungskonzepte in der Su-

pervisory Control Theory. Diploma Thesis, Lehrstuhl für Regelungstechnik, Univer-

sität Erlangen-Nürnberg. 2004

[4] LEDUC, R.J. Hierarchical Interface-based Supervisory Control. PhD-Thesis, Depart-

ment of Electrical & Computer Engineering, University of Toronto. 2002

[5] LEE, S-H. ; WONG, K.C. Structural Decentralised Control of Concurrent Discrete-

Event Systems. EJC. 2002

[6] PERK, S. Hierarchical Design of Discrete Event Controllers: An Automated Manufac-

turing System Case Study. Diploma Thesis, Lehrstuhl für Regelungstechnik, Univer-

sität Erlangen-Nürnberg. 2004

[7] SCHMIDT, K. ; MOOR, T. ; PERK, S. A Hierarchical Architecture for Nonblocking Con-

trol of Discrete Event Systems. Mediterranean Conference on Control and Automa-

tion. 2005

[8] SCHMIDT, K. ; PERK, S. ; MOOR, T. Nonblocking Hierarchical Control of Decentralized

DES. IFAC. 2005

[9] SCHMIDT, K. ; REGER, J. ; MOOR, T. Hierarchical Control of Structural Decentral-

ized DES. WODES. 2004

[10] WONHAM, W.M. Notes on Control of Discrete Event Systems. Department of Electri-

cal & Computer Engineering, University of Toronto. 2001

