
Technical Report
Lehrstuhl für Regelungstechnik
Friedrich-Alexander-Universität Erlangen-Nürnberg
Cauerstraße 7, D-91058 Erlangen

Technical details regarding
compositional verification with event priorities

Yiheng Tang, Thomas Moor, April 24th, 2022

Abstract: In this study, we address the verification of non-blockingness for mod-
ular discrete-event systems, i.e., discrete-event systems that are composed from
component models by synchronous composition. Specifically, we extend the ap-
proach of compositional verification as poposed by Flordal and Malik (2009) and
Pilbrow and Malik (2015) to prioritised events. This report is meant as a sup-
plement to a manuscript submitted to WODES 2022 in that it contains various
technical proofs omitted due to page restrictions. In turn, we do neither repeat the
introduction, nor the application examples in this document. 1

1 Preliminaries

We recall some common notation regarding finite automata as relevant for the
present paper.

An alphabet A is a finite set of symbols, also referred to as events. Given an
alphabet A, its Kleene closure A∗ denotes the set of all finite strings, i.e., sequences
of events. By convention, A∗ includes the empty string ε < A. The concatenation
of two strings s, t ∈ A∗ is written st ∈ A∗. We say that s is a prefix of r if there
exists t such that st = r. This is denoted s ≤ r. Given r, t ∈ A∗, there can exist at
most one s ∈ A∗ which satisfies st = r. If such s exists, it is denoted s = r/t.

A non-deterministic finite automaton over A is a tuple G := 〈Q, A,→,Q◦〉with

1In this revision, we fixed some annoying typos in the original report, dated March 29th, 2022

the finite state set Q, the transition relation→⊆ Q × A × Q, and the set of initial
states Q0 ⊆ Q. Using infix form, we write x

α−→ y or x 6α−→ y whenever (x, α, y) ∈→
or (x, s, y) <→, respectively. Throughout this paper, when using the infix form for
a relation, left out parameters are interpreted as existential quantification, e.g., the
expression (x

α−→) evaluates true if and only if (∃y : x
α−→ y). For a state x, the set

of enabled events is denoted G(x) := {α ∈ A | x α−→}. A sequence of states related
via transitions is referred to as a trace, written x0

α1−−→ x1
α2−−→ x2

α3−−→ · · · αk−−→ xk, or,
when the intermediate states are regarded not relevant, more concisely x0

α1−−→ α2−−→ α3−−→
· · · αk−−→ xk or x

s−→ y with x = x0, s = α1α2 · · ·αk and y = xk. This effectively
extends the transition relation to string-valued labels in the common way. Here,
we stipulate x

ε−→ x for all x ∈ Q. For further notational convenience, we write
X

s−→ Y with X,Y ⊆ Q if there exist x ∈ X and y ∈ Y such that x
s−→ y. Likewise,

X
s−→ and G

s−→ are short forms for X
s−→ Q and Q0 s−→ Q, respectively. We say x ∈ Q

is reachable if G
s−→ x.

Regarding termination, we consider the distinguished termination event ω ∈ A
and require the existence of a unique terminal state xT ∈ Q with the properties (i)
for all x

α−→ y we have that y = xT if and only if α = ω, and (ii) xT ω−→ xT. In
graphical representations, predecessors of xT are depicted as full black circles and
ω-transitions are omitted. A state x ∈ Q is co-reachable if it can be continued
to attain xT, i.e., if there exists s ∈ A∗ such that x

s−→ xT. The latter condition is
equivalent to x

sω−−→. An automaton G is non-blocking if all reachable states are
co-reachable. Provided that the state count of G is not too high, non-blockingness
can be verified by enumeration based methods, i.e., by explicitly computing the
sets of reachable and co-reachable states, respectively.

2 Prioritised Events and Compositional Verification

Consider a universe of events U together with a map prio : U → N to assign a
priority to each individual event. From now on, we will implicitly assume A ⊆ U
for any alphabet relevant for our study. Note that we read priorities as ordinal
numbers, i.e., 1 ∈ N for first priority, 2 ∈ N for second priority, and so on: the
lower the number, the higher the priority, with the highest priority is stets 1. For
notational convenience, we introduce the following short forms regarding priorities
for an alphabet A ⊆ U and an automaton G, respectively:

(a) events of priority higher than n ∈ N
A<n := {α ∈ A | prio(α) < n} ;

(b) events of priority higher than prio(α) for α ∈ U
A<α := A<prio(α);

- 2 -

(c) lowest priority within A
lo(A) := max{prio(α) |α ∈ A};

(d) enabled events at state x with priority above n ∈ N
G<n(x) := G(x) ∩ U<n;

We shall now formally represent the behavioural restriction caused by event
priorities imposed on an automaton G = 〈Q, A,→,Q◦〉. In any state x, if some
event α is enabled, it preempts any transition labeled by an event α′ with lower
priority, i.e., with prio(α) < prio(α′). The following shaping operator removes the
affected transitions.

Definition 1. Given an automaton G = 〈Q, A,→,Q◦〉, the shaping operator S (·) is
defined byS(G) := 〈Q,Σ,→S,Q◦〉where x

α−→S yif and only if x
α−→ y and G<α(x) =

∅. �

With this definition, S (G) represents the behaviour of G with prioritised events
as specified by the map prio : U → N. It should be noted that shaping can turn
a blocking automaton into a non-blocking one and vice versa. Hence, to verify
non-blockingness of a system with event priorities, we may first set up G, second
apply S(·) and finally perform a reachability analysis, e.g. on enumeration basis.

We now turn to a variation of the common synchronous composition in order
to address modular systems with event priorities. Technically, we refer to a disjoint
union composition U = Σ ∪̇Υ of our universe of events, with Σ the regular events
and Υ the silent events Υ. The latter are not subject to synchronisation. Since, on
the other hand, termination is meant to be synchronous, we have ω ∈ Σ. Moreover,
it is assumed that for each regular event σ ∈ Σ there exists a unique silent event
τ ∈ Υ with matching priority and this event is denoted τ =: hide(σ); i.e., we have
hide : Σ → Υ with prio(hide(σ)) = prio(σ). In graphical representations, we use
the convention τ(n) := hide(σ) forσ ∈ Σ with prio(σ) = n. The decomposition U =

Σ ∪̇Υ and the semantics to be introduced in the sequel are seen as a generalisation
of a single distinguished silent event Υ = {τ}, as commonly used in the context of
compositional verification in the absence of event priorities; see e.g. Flordal and
Malik (2009); Milner (1989).

Before proceeding with our discussion, we introduce additional notational con-
ventions for a concise reference to the partition into silent and regular events:

(e) the natural projection denoted p : U∗ → Σ∗ removes silent events from
strings in U∗, see e.g., Cassandras and Lafortune (2008) for a formal def-
inition;

(f) the abstract transition relation⇒⊆ Q × Σ∗ × Q, defined by x
s

=⇒ y for s ∈ Σ∗

if and only if there exists some s′ ∈ U∗ such that p(s′) = s and x
s−→ y;

(g) we may omit explicit intermediate states, e.g., we write x
s−→ t

=⇒ y as a short

form for the existence of z ∈ Q such that x
s−→ z and z

t
=⇒ y;

- 3 -

(h) a trace is silent if all its event labels belong to Υ;

(i) enabled silent events (with priority above n ∈ N)
Gslnt(x) := G(x) ∩ Υ; G<n

slnt(x) := G<n(x) ∩ Υ;

(j) enabled regular events (with priority above n ∈ N)
Grglr(x) := G(x) − Υ; G<n

rglr(x) := G<n(x) − Υ.

Considering the composition of two specific automata over alphabets A1 and
A2, respectively, A1 ∩ A2 ∩ Σ are called the shared events, while all other events
from A1 ∪ A2 are private events. By the following definition, the composition
of two automata will synchronise the execution of shared events while allowing
private events to be executed independently.

Definition 2. Given two automata G1 = 〈Q1, A1,→1,Q0
1〉 and G2 = 〈Q2, A2,→2

,Q0
2〉, their synchronous composition is defined by

G1 ‖ G2 := 〈Q1 × Q2, A1 ∪ A2,→,Q0
1 × Q0

2〉

where (x1, x2)
α−→ (y1, y2) if and only if one of the following three conditions is

satisfied:

α∈ (A1 ∩ A2) − Υ, x1
α−→1 y1, and x2

α−→2 y2 ; (1)

α∈ (A1 − A2) ∪ Υ, x1
α−→1 y1, and x2 = y2 ; (2)

α∈ (A2 − A1) ∪ Υ, x1 = y1, and x2
α−→2 y2 . (3)

We say that the transition (x1, x2)
α−→ (y1, y2) is driven by G1 if x1

α−→1 y1, or, driven
by G2 if x2

α−→1 y2. �

Now consider again a modular system M = G1 ‖ G2 ‖ · · · ‖ Gn, however, with
event priorities as defined above. Here, we would like to verify non-blockingness
of S(M). In other words, we consider event priority as having a global effect on
M, e.g., a high priority event in one component is meant to preempt lower-priority
events in other components.

Definition 3. A family of automata (Gi)1≤i≤n is non-conflicting w.r.t. prioritised
events if S(G1 ‖ G2 ‖ · · · ‖ Gn) is non-blocking. �

For the scope of the present paper, the above property is also concisely referred
to as non-conflicting and it is precisely this property, that we seek to verify in an ef-
ficient manner. If it was that the shaping operator distributed over the synchronous
composition, we could utilize exactly the same abstraction methods as those es-
tablished for the situation without event priorities. Unfortunately this is not the
case and, for our situation, a suitable notion of conflict equivalence will need to
explicitly refer to S(·). Since the synchronous composition is commutative, we

- 4 -

focus attention without loss of generality on an abstraction of G1. Technically, we
consider the situation of

S(G1︸︷︷︸
:=G

‖ G2 ‖ · · · ‖ Gk︸ ︷︷ ︸
:=H

) , (4)

and ask for an abstraction G′ of G such that S(G′ ‖ H) is non-blocking if and only
if S(G ‖ H) is so.

A first and rather simplistic candidate for a suitable abstraction is to obtain G′

from G by re-labeling any transition with a private but regular event σ ∈ Σ by
its silent counterpart hide(σ). This substitution is referred to as hiding of private
events. It is immediate from Definitions 1 and 2 that this abstraction does not affect
blockingness in the shaped product with one and the same automaton H. Thus,
from now on we will assume without loss of generality that all private events of G
in G||H are silent.

A second and likewise simple candidate for a suitable abstraction is to obtain
G′ from G by shaping w.r.t. silent events only. Given G = 〈Q, A,→,Q◦〉, we de-
fine the Υ-shaping operator by SΥ(G) := 〈Q,Σ,→SΥ ,Q◦〉 where x

α−→SΥ y if x
α−→

y and G<α
slnt(x) = ∅. In other words, SΥ(·) discards all transitions which are pre-

empted by a silent transition. As an immediate consequence from Definitions 1
and 2 we obtain S(G′ ‖ H) = S(G ‖ H) for the abstraction G′ = SΥ(G). In partic-
ular, this abstraction does not affect blockingness in the shaped product with any
automaton H. Thus, from now on we will assume without loss of generality that
G has is Υ-shaped, i.e., that G = SΥ(G).

Most relevant for practical purposes, the two abstraction rules identified so
far can be applied without the potentially intractable evaluation of the transition
relation of H = G2 ‖ · · · ‖ Gk. This concept is made explicit in the following
formal definition of conflict equivalence w.r.t. event priorities, which, as in e.g.
Flordal and Malik (2009); Mohajerani et al. (2014), is inspired by test-theory; see
e.g. Nicola and Hennessy (1984).

Definition 4. Two automata G and G′ are conflict equivalent w.r.t. prioritised
events, denoted G 'S G′, if for any test-automaton T , G and T are non-conflicting
w.r.t. prioritised events if and only if G′ and T are non-conflicting w.r.t. prioritised
events. �

For the scope of the present paper, the above property is also concisely referred
to as conflict equivalence.

Conventions. Whenever discussing the product G ‖ T , we assume implicitly and
without loss of generality that all private events are silent and that G is Υ-shaped by
suitable pre-processing. For the sake of a concise notation, we indicate states from
G with a subscript (·)G and states from T with a subscript (·)T and assume all state
sets to be disjoint. In consequence, we can at most instances omit the respective

- 5 -

subscripts for transition relations, since e.g. xG
α−→ yG implies the transition to be

in G. �

3 Abstraction rules based on Prioritised weak bisimulation

A generic approach to obtain an abstraction with reduced state count of an au-
tomaton G = 〈Q, A,→,Q◦〉 is to consider an equivalence relation ∼⊆ Q × Q on
Q and to merge states per equivalence class [x] := {x′ ∈ Q | (x, x′) ∈ ∼} to obtain
the so called quotient automaton. For our situation with prioritised silent events,
an adaptation that addresses silent live-locks turns out useful.

Definition 5. Given an Υ-shaped automaton G = 〈Q, A,→,Q◦〉, an n-live-lock in
G is a silent trace

x0
τ1−→ x1

τ2−→ · · · τk−→ xk = x0 (5)

where k ≥ 1, lo({τ1, · · · , τk}) = n and for any i ∈ {1, · · · , k}, x ∈ Q and τ ∈ Υ,
xi

τ−→ x implies that there exists some j ∈ {1, · · · , k} so that x = x j. �

We use the short hand α-live-lock to denote prio(α)-live-lock for some α ∈ A.
Note that due to event priority, live-locks may indefinitely trap other automata
under synchronisation, i.e. when in an n-live-lock of some automaton G, a syn-
chronised automaton T can never execute a silent event τ with prio(τ) > n.

With this notion of n-live-locks, we define the quotient automata as follows.

Definition 6. Given an Υ-shaped automaton G = 〈Q, A,→,Q◦〉 and an equiva-
lence relation ∼⊆ Q × Q, the quotient automaton G/∼ of G w.r.t. ∼ is defined by
G/∼ := 〈Q/∼,Σ,−→∼ , Q̃

◦,M〉 where Q/∼ = {[x] | x ∈ Q}, Q̃◦ = {[x◦] | x◦ ∈ Q◦} and

−→∼= {[x]
α−→ [y] | x α−→ y}

− {[x]
τ−→ [x] | τ ∈ Υ and not all states of a τ-live-lock are in [x]} �

Comparing with the conventional quotient automata construction, our defini-
tion avoids introducing inexistent live-locks while the existent live-locks are still
preserved. This potentially renders the trapping power before and after abstraction
consistent.

Lemma 7. Given a wf automaton G = 〈Q, A,→,Q◦〉 and an equivalence relation
∼⊆ Q × Q. If [x]

α−→∼ [y] in G/∼ for some x, y ∈ Q and α ∈ ΣΥ, then there exist
x′ ∈ [x], y′ ∈ [y] so that x′

α−→ y′ in G. �

- 6 -

Based on the conventional process algebra CCS (Milner (1989)), Lüttgen (1998)
introduced the variant CCSch to model concurrent systems with global event pri-
ority. In fact, the semantics inferred by a shaped automaton in our framework are
quite similar to the operational semantics of CCSch. By extending the well-known
weak bisimulation from CCS, Lüttgen (1998) defines the prioritised weak bisim-
ulation (PWB) as a reasoning framework in CCSch. Following the convention in
Lüttgen (1998), we distinguish certain types of transitions in order to give a defi-
nition of PWB for the context of the present paper.

Definition 8. Given an Υ-shaped automaton G = 〈Q, A,→,Q◦〉, define the fol-
lowing extended transition relations for ∆ ⊆ Σ:

(T1) −−→
∆:n
⊆ Q × A × Q: x

α−−→
∆:n

y if and only if x
α−→ y and G<n

rglr(x) ⊆ ∆;

(T2) ==⇒
∆:n
⊆ Q × {ε} × Q: x

ε
==⇒
∆:n

y if and only if x
τ1−−→
∆:n

τ2−−→
∆:n
· · · τk−−→

∆:n
y, k ≥ 0 and

τ1 · · · τk ∈ (Υ<(n+1))∗. �

Definition 9. Let G = 〈Q, A,→,Q◦〉 be an Υ-shaped automaton. A symmetric
relation ≈⊆ Q × Q is a prioritised weak bisimulation on G (PWB) if for any
x, x′ ∈ Q so that x ≈ x′, the following hold:

(P1) If G<n
slnt(x) = ∅ for some n ≥ 0, then there exists y′ so that x ≈ y′, G<n

slnt(y
′) =

∅, G<n
rglr(y

′) ⊆ ∆ and x′
ε

==⇒
∆:n

y′ where ∆ = G<n
rglr(x);

(P2) If x
α−→ y, then there exists y′ so that y ≈ y′ and x′

ε
==⇒
∆:α

p(α)−−−→
∆:α

ε
==⇒
Σ:1

y′ where

∆ = G<α
rglr(x). �

In the original literature Lüttgen (1998), PWB as a binary relation over au-
tomata in CCSch has been shown to be a congruence w.r.t. composition “|” and
restriction “/L”. in CCSch, which is synonymous to synchronous composition
without private events for automata. 2 Thus, by a similar line of thought as in Ma-
lik et al. (2004), PWB implies conflict equivalence w.r.t. event priority. To prove
this, the following proposition is a useful preparation.

Proposition 10. Let G = 〈QG, A,→G,Q◦G〉 an Υ-shaped automaton with a PWB
≈ ⊆ QG × QG on G. The following two statements hold for any automaton T =

〈QT , A,→T ,Q◦T 〉, any xG, yG ∈ QG, any α ∈ A and any xT , yT ∈ QT :

(C1) if ([xG], xT)
α−→S ([yG], yT) in S(G/≈ ‖ T), then for all x′G ∈ [xG], there

exists some y′G ∈ [yG] so that (xG, xT)
p(α)
==⇒S (yG, yT) in S(G ‖ T).

(C2) if (xG, xT)
α−→S (yG, yT) in S(G ‖ T), then ([xG], xT)

p(α)−−−→S ([yG], yT) in
S(G/≈ ‖ T).

2Generally, combining the CCSch composition combinator and restriction combinator results in a
binary operation which is synonymous to shaping the synchronous composition of two automata in our
framework. This was also mentioned in the original CCS Milner (1989), where the composition of
automata was referred to as conjunction.

- 7 -

Proof. (C1): There are two cases:

(Case 1) If ([xG], xT)
α−→S ([yG], yT) is driven by G/≈, then from (P2), for all

x′G ∈ [xG], there exists some x̄G ∈ QG, ȳG ∈ QG and y′G ∈ [yG] so that x′G
ε

==⇒
∆:α

x̄G
p(α)−−−→
∆:α

ȳG
ε

==⇒
Σ:1

y′G where ∆ = G<α
rglr(xG). Note that ∆ ⊆ G/≈<αrglr([xG]). This

indeed enables a transition (x′G, xT)
ε

==⇒
∆:α
S (x̄G, xT)

p(α)−−−→
∆:α

S (ȳG, yT)
ε

==⇒
Σ:1
S (y′G, yT)

in S(G ‖ T).

(Case 2) Otherwise, ([xG], xT)
α−→S ([yG], yT) is not driven by G/≈. This implies

that [xG] = [yG], α ∈ Υ and G/≈<αslnt([xG]) = ∅. Then from (P1), for all x′G ∈ [xG],

there exists y′G ∈ [yG] = [xG] so that G<α
slnt(y

′
G) = ∅, G<α

rglr(y
′
G) ⊆ ∆ and x′G

ε
==⇒
∆:n

y′G

where ∆ = G<n
rglr(xG). This indeed enables a transition (x′G, xT)

ε
=⇒S (y′G, xT)

α−→S
(y′G, yT) in S(G ‖ T)

(C2): There are two cases:

(Case 1) Let (xG, xT)
α−→S (yG, yT) be driven by G. In this case, if xG ≈ yG and

α ∈ Υ, then we have a trivial transition (xG, xT)
ε−→S (yG, yT) = (xG, xT) in S(G ‖

T). Otherwise, suppose ([xG], xT) 6α−→S ([yG], yT) in S(G ‖ T). There must then

exist some α′ ∈ A so that ([xG], xT)
α′−→S in S(G/≈ ‖ T) and prio(α′) < prio(α).

Clearly, ([xG], xT)
α′−→S cannot be driven by T from (xG, xT)

α−→S (yG, yT). There
are two further sub-cases:
(i) α′ ∈ Υ. Note that in this case, α′ cannot appear as a self-loop over [xG] in

G/≈. If so, then [xG] contains some α′-live-lock in G. Note that G<α
slnt(xG) = ∅

must hold from the Υ-shapedness. Then from (P1), [xG] cannot contain such
α′-live-locks. Thus, there exists some x′G ∈ [xG] and yG ∈ QG − [xG] so that

x′G
α−→ yG. From (P2), it implies the existence of some τ ∈ Gslnt(xG) so that

prio(τ) ≤ prio(α′), which contradicts (xG, xT)
α−→S (yG, yT).

(ii) If α′ ∈ Σ, then similar to (i), there must exist some α′′ ∈ G<α(xG) so that
prio(α′′) ≤ prio(α′), which contradicts (xG, xT)

α−→S (yG, yT).

(Case 2) Otherwise, (xG, xT)
α−→S (yG, yT) is not driven by G. This case can be

reasoned from (i) and (ii) as in Case 1 of C2 directly. �

By performing a simple induction on the result of the above proposition, we
are in the position to state the following result.

Theorem 11. Let G = 〈QG, A,→G,Q◦G〉 be an Υ-shaped automata with an PWB
≈ ⊆ Q × Q. It then holds that G 'S (G/≈).

Proof. Let T = 〈QT , A,→T ,Q◦T 〉 be any automaton. Suppose S(G ‖ T) is non-
blocking, we shall attempt to prove that S(G/≈ ‖ T) must be non-blocking (The

- 8 -

III

τ(2)G G/∼I II [I] [III]

I∼IIσ(1)

σ(1) T i ii

I,iii

τ(2)

S(G ‖ T) I,i

τ(2)

III,iv

σ(1)

II,iii

S(G/∼ ‖ T) [I],i σ(1) [III],ii

σ(1)

τ(2)

σ(1)

iii iv

II,i III,iiτ(2) σ(1)

Figure 1: a silent step with priority lower then its delayed non-silent action
may not be mergable

proof for the conversed case is similar). Pick any yG ∈ QG so that ([x◦G], x◦T)
s

=⇒S
([yG], yT) for some s ∈ Σ∗, x◦G ∈ Q◦G, x◦T ∈ Q◦T and yT ∈ QT . Note that [x◦G] ∈ Q̃G

must hold. By Proposition 10.(C1), it follows from induction on concatenated
transitions of any trace in ([x◦G], x◦T)

s
=⇒S ([yG], yT) that there exists y′G ∈ [yG] so

that (x◦G, x
◦
T)

s
=⇒S (y′G, yT) in S(G ‖ T), i.e. S(G ‖ T)

s
=⇒S (y′G, yT). Moreover,

since S(G ‖ T) is non-blocking, (y′G, yT)
tω
=⇒S in S(G ‖ T) for some t ∈ Σ∗ must

hold. Again from Proposition 10.(C2), we can conclude through induction that

([y′G], yT) = ([yG], yT)
tω
=⇒S in S(G/≈ ‖ T). The proof is indeed closed since yG is

arbitrarily picked. �

Note that PWB is defined such that if at some state a regular event σ ∈ Σ

can be executed, an equivalent state must be able to execute σ as well, either
immediately or after a number of silent steps with priority not lower then prio(σ).
The importance of this restriction for conflict equivalence can be seen from the
following example. For the brevity in figures, we directly write the priority of
each event in the subscript of transition labels. For simplicity, we always assume
that prio(ω) = 1 in the current and subsequent section.

Consider the automaton G as given in Figure 1 again. The failure of the ab-
straction can be seen as being caused by the reachable state (I, i) in S(G ‖ T) as
state i has the chance to execute τ whose priority is lower then σ since σ < Grglr(I).
Interestingly, adding further restriction on the automaton can render such “bad”
states to be unreachable. As for G in Figure 1, we could switch the initial state to
a new state IV and add a new transition IV

τ(3)−−→ I. For such an automaton G′ as
given in Figure 2, merging I and II yields a conflict preserving abstraction. The
intuition behind this modification is that due to the new transition, (I, i) becomes
unreachable. In this case, we say I

τ−→ II is a redundant silent step.

Definition 12. Let G = 〈Q, A,→,Q◦〉 be an Υ-shaped automaton. A transition
x

τ−→ y with x, y ∈ Q and τ ∈ Υ is a redundant silent step if this is the only

- 9 -

III

τ(2)
G′ G′/∼I II [IV] [I]

I∼IIσ(1)

IV τ(3)

[III]

σ(1)

τ(3)

Figure 2: redundant silent step rule

transition outgoing from x, x < Q◦ and z
α−→ x for any z ∈ Q implies α ∈ Υ and

prio(α) > prio(τ). An equivalence ∼⊆ Q × Q on G is induced by the transition
x

α−→ y if x ∼ y and for all z < {x, y}, [z] is a singleton class. �

Before proceeding, we first note that the definition of a redundant silent step
does not specifically handle the existence of live-locks. The key point is that the
active event set of the target state of a redundant silent step can be completely
preserved in the quotient automaton. This is stated by the following lemma.

Lemma 13. Let G = 〈Q, A,→,Q◦〉 be a Υ-shaped automaton and the equivalence
∼⊆ Q × Q is induced by the redundant silent step x

τ−→ y. Then G(y) = G/∼([y]).

Proof. It suffices to consider the case that [x]
τ′−→∼ [x] in G/∼ for some τ′ ∈ Υ.

In this case, [x] contains a τ′-live-lock from G which is formed either by {x, y} or
solely by {y} (solely by {x} is clearly impossible). The case of solely by {y} is rather

trivial, while when {x, y} forms a τ′-live-lock, we must have y
τ′−→ x since from the

definition of a redundant silent step, prio(τ′) > prio(τ) must hold. �

Given a redundant silent step xG
τ−→ yG in G with some non-silent eventσ active

in yG whose priority is higher than τ, x and y are never prioritised weak bisimilar.
Intuitively, this invalidates the property given in Proposition 10 if it is assumed
that the resulting quotient automaton and the original one are “equivalent”. More

precisely, for some state xT in a test automaton T , if xT
τ′−→ for some prio(τ′) ≤

prio(τ), we must have (xG, xT)
τ′−→S in S(G ‖ T), while ([xG], xT)

τ′−→S may not
hold in S(G/∼ ‖ T) when prio(σ) < prio(τ′). Interestingly, such (xG, xT) is never
reachable in S(G ‖ T).

Proposition 14. Let G = 〈QG, A,→G,Q◦G〉 be a Υ-shaped automaton and the

equivalence ∼⊆ QG × QG is induced by the redundant silent step x̄G
τ−→ x̄′G. Let

n = prio(τ) + 1 and T = 〈QT , A,→T ,Q◦T 〉 be any automaton. Then for all x̄T ∈ QT

so that T<n
slnt(x̄T) , ∅, (x̄G, x̄T) is not reachable in S(G ‖ T).

Proof. We prove through contradiction: Pick any x̄T ∈ QT so that T<n
slnt(x̄T) , ∅.

To reach (x̄G, x̄T), one shall first reach some (yG, yT) where yG ∈ QG, yT ∈ QT so

- 10 -

that yG
τ′−→ x̄G with some τ′ ∈ Υ. From Definition 12, it is clear that prio(τ′) ≥ n.

This implies that (yG, x̄T) 6τ
′
−→S (x̄G, x̄T). With this observation, we continue the

proof by attempting to construct a trace from (yG, yT) to (x̄G, x̄T), which must fail.
Consider the following cases:

(Case 1) T<n
slnt(yT) , ∅. Let yT

τ′′−−→ ȳT for some ȳT ∈ QT and τ′′ ∈ T<n
slnt(yT).

Clearly, prio(τ′′) < prio(τ′), and we concatenate (yG, yT)
τ′′−−→S (yG, ȳT). If

T<n
slnt(ȳT) , ∅ always holds for such concatenation, then the construction is

trapped in Case 1 and x̄G can never be visited. Otherwise, let T<n
slnt(ȳT) = ∅,

which leads to a Case 2 situation.

(Case 2) T<n
slnt(yT) = ∅. From (yG, yT), since only private and silent events can

be executed, consider the possibility of concatenating (yG, yT)
τ′−→S (x̄G, yT) in

S(G ‖ T), since executing a private transition in T indeed rolls the construction

back to the beginning of either Case 1 or 2. However, if (yG, yT)
τ′−→S (x̄G, yT), it

implies that the next transition which can be concatenated must be (x̄G, yT)
τ−→S

(x̄′G, yT) since prio(τ) < prio(τ′) and executing any shared event with priority
higher than τ in (x̄G, yT) is not possible. Recall that yT , x̄T due to T<n

slnt(x̄T) , ∅,
i.e. for any zT ∈ QT so that (x̄G, zT) is reachable in S(G ‖ T), T<n

slnt(z̄T) = ∅ must
hold. This indeed closes the proof. �

When merging a redundant silent step, states characterised in Proposition 14
are exactly those “bad” states which potentially invalidate conflict preservation.
This implies the following proposition which in turn implies conflict preservation.

Proposition 15. Let G = 〈QG, A,→G,Q◦G〉 be an Υ-shaped automaton. The equiv-

alence ∼⊆ QG × QG is induced by the redundant silent step x̄G
τ−→ x̄′G. The follow-

ing two statements hold for any T = 〈QT , A,→T ,Q◦T 〉:

(R1) If ([xG], xT)
α−→S ([yG], yT) in S(G/∼ ‖ T), then for all x′G ∈ [xG], at least

one of the following two statements is true:
(i) There exists some y′G ∈ [yG] so that (x′G, xT)

p(α)
==⇒S (y′G, yT) in S(G ‖ T).

(ii) (x′G, xT) is not reachable in S(G ‖ T).

(R2) If (xG, xT)
α−→S (yG, yT) in S(G ‖ T), then at least one of the following two

statements is true:

(i) ([xG], xT)
p(α)−−−→S ([yG], yT) in S(G/∼ ‖ T).

(ii) (xG, xT) is not reachable in S(G ‖ T).

Proof. (R1): We assume that [xG] = [x̄G], since if not, [xG] is a singleton and
statement (i) must hold due to Lemma 7.(i). In this case, note that if ([xG], xT)

α−→S
([yG], yT) is not driven by G, then statement (i) must be true as well since either
(x̄G, xT)

α−→S (x̄G, yT) or (x̄G, xT)
τ−→S (x̄′G, xT)

α−→S (x̄′G, yT) holds in S(G ‖ T).

- 11 -

Thus, let ([xG], xT)
α−→S ([yG], yT) be driven by G, implying α ∈ G(x̄′G). There are

two cases:

(Case 1) x′G = x̄′G. We shall note that G(x̄′G) = G/∼([x̄′G]) from Lemma 13. Thus,
in this case, statement (i) must hold.

(Case 2) x′G = x̄G. We directly suppose that statement (i) is not true, i.e. (x̄G, xT) 6p(α)
==⇒S

(y′G, yT) in S(G ‖ T) for any y′G ∈ [yG]. This implies that T<τ
slnt(xT) , ∅, since

otherwise, we must be able to execute (x̄G, xT)
τ−→S (x̄′G, xT), which is indeed

Case 1. Thus, in this case, statement (ii) must hold from Proposition 14.

(R2): Note that statement (i) must hold if [xG] is a singleton. In addition, statement
(i) holds for xG = x̄′G as well from Lemma 13. Let xG = x̄G. If (xG, xT)

α−→S (yG, yT)

is driven by G, then statement (i) holds from a trivial transition ([xG], xT)
ε−→

([yG], xT). Let (xG, xT)
α−→S (yG, yT) be not driven by G. In this case, statement

(ii) must hold from Proposition 14 since prio(α) ≤ prio(τ), i.e. α ∈ T<n
slnt(xT) with

n = prio(τ) + 1. �

From this we obtain the following abstraction rule.

Theorem 16 (redundant silent step rule). Given an Υ-shaped automaton G =

〈QG, A,→G,Q◦G〉 and the equivalence ∼⊆ QG × QG induced by a redundant silent
step. It then holds that G 'S (G/∼).

Proof. The proof is indeed the same as that of Theorem 11. �

4 Abstraction rules based on incoming equivalence

For ordinary conflict-preserving abstraction without event priorities, Flordal and
Malik (2009) introduce the active events rule and the silent continuation rule
which are based on a pre-partition through incoming equivalence. The key prop-
erty of incoming equivalence in the ordinary set-up is that, if there is a trace begin-
ning with a non-silent event in the composition after abstraction, then a trace with
the same non-silent events can be constructed in the original automaton as well.
To achieve this property with event priorities, we use the following notion string
preservation.

Definition 17. Let G = 〈QG, A,→G,Q◦G〉 be an Υ-shaped automaton. An equiv-
alence ∼⊆ Q × Q on G is string-preserving if for any arbitrary automaton T =

〈QT , A,→T ,Q◦T 〉 and any trace

([xG0], xT0)
α1−−→S ([xG1], xT1)

α2−−→S · · · αk−−→S ([xGk], xTk)

- 12 -

in S(G/∼ ‖ T) where k ≥ 1, α1 ∈ Σ and αi ∈ A for all i ∈ {2, · · · , k}, there exist

x′G0 ∈ [xG0] and x′Gk ∈ [xGk] so that (x′G0, xT0)
p(α1···αk)
======⇒S (x′Gk, xTk) in S(G ‖ T).

�

To achieve string preservation, we first conveniently define some new notations
for transitions.

Definition 18. Given an Υ-shaped automaton G = 〈Q, A,→,Q◦〉, define the fol-
lowing extended transition relations:

(T3) −→
!
⊆ Q × Υ × Q: x

τ−→
!

y if x
τ−→ y and G<τ

rglr(x) = ∅.
(T4) ↪−→

!n
⊆ Q × {ε} × Q: x

ε
↪−→
!n

y if

(i) either n = 1 and x
ε

==⇒
Σ:1

y,

(ii) or n ≥ 2, x
τ1−→
!

τ2−→
!
· · · τk−→

!
y, k ≥ 1 and lo({τ1, · · · , τk}) = n. �

Transition relations introduced in Definition 18 are generally more restrictive
than those in Definition 8 in that all non-final states are individually in shaped form.
Note that we intentionally use the new transition symbol “↪→” since when n ≥ 1,
we do not have x

ε
↪−→
!n

x for all x as at least one τ transition with prio(τ) = n must

happen during
ε
↪−→
!n

. Based on Definition 18, we introduce the modified incoming

equivalence when considering priority:

Definition 19. Let G = 〈Q, A,→,Q◦〉 be an Υ-shaped automaton. An equivalence
∼inc ⊆ Q×Q on G is an incoming equivalence if for any x, x′ ∈ Q so that x ∼inc x′,
it holds that

(I1) for all σ ∈ Σ, n ≥ 0 and y ∈ Q, y
ε

==⇒
∆:σ

σ−−−→
∆:σ

ε
↪−→
!n

x ⇔ y
ε

==⇒
∆:σ

σ−−−→
∆:σ

ε
↪−→
!n

x′ where

∆ = G<σ
rglr(y);

(I2) for any n ≥ 0, Q◦
ε
↪−→
!n

x ⇔ Q◦
ε
↪−→
!n

x′ ;

(I3) for any y ∈ Q and τ ∈ Υ, y
τ−→ ε

=⇒ x or y
τ−→ ε

=⇒ x′ implies G<τ
rglr(y) = ∅. �

Similar to the original version in Flordal and Malik (2009), Definition 19 at-
tempts to equalise states which can be reached in the same way, i.e. we only care
about the past of a state and ignore its future behaviour. However, such intuition is
inadequate when event priorities are considered since string preservation requires
the same state xT0 and xTk from some test T to be connected before and after ab-
straction. If no restriction over the future behaviour of incoming equivalent states
is given, one may fail to achieve string preservation in that two equivalent states
may have different preemption power. In this regard, we first introduce our defini-
tion of active-event equivalence and silent-continuation equivalence.

Definition 20. Let G = 〈Q, A,→,Q◦〉 be an Υ-shaped automaton. An equivalence
∼ae ⊆ Q×Q on G is an active-event equivalence if for any x, x′ ∈ Q so that x ∼ae x′,
either x = x′ or:

(AE1) Gslnt(x) = Gslnt(x′) = ∅;

- 13 -

(AE2) Grglr(x) = Grglr(x′). �

Definition 21. Let G = 〈Q, A,→,Q◦〉 be an Υ-shaped automaton. An equivalence
∼sc ⊆ Q × Q on G is a silent-continuation equivalence if for any x, x′ ∈ Q so that
x ∼sc x′, either x = x′, or there exists some τ ∈ Υ so that:

(SC1) τ ∈ Gslnt(x) ∩Gslnt(x′);

(SC2) G<τ
rglr(x) = G<τ

rglr(x′) = ∅;
(SC3) Neither x nor x′ is in any live-lock. �

Before proceeding to prove Proposition 25, note that ∼ae imposes a relatively
strong restriction on equivalent states that silent events are never active on any
state in a non-singleton class. Readers may be curious about the possibility of
relaxing Definition 20 to equate states with non-silent active events delayed by
τ∗(1)−−→, i.e., by defining ∆ae(x) := {σ ∈ Σ | x

τ∗(1)σ−−−→}, one may expect that x ∼ x′ when
∆ae(x) = ∆ae(x′), since τ(1) transitions is will not be preempted by any events.
More attractively, relaxing in this manner also preserves the Υ-shapedness of a
given automaton. Consider the following example:

Example 22. Let G = 〈QG, A,→G,Q◦G〉 and T = 〈QT , A,→T ,Q◦T 〉 be such as given
in Figure 3 with Σ = {σ,ω}. Note that G is Υ-shaped and it clearly holds that I ∼inc
III since state III can be reached from the initial state through τ∗(0). Furthermore,
from ∆ae(x) = ∆ae(x′), we are able to equate states I and III to construct G/∼.
However, this is not the case of ∼ae as defined in Definition 20 which causes the
invalidation of string preservation. Although ([II], ii) is reachable in S(G/∼ ‖ T),

(II, ii) is not reachable in S(G ‖ T) since i
τ′−→ ii cannot happen before I

τ−→ II
and the transition I

σ−→ II is labelled by a shared event σ. One observe that in
this example, I

τ−→ III somewhat “disables” I
σ−→ II although both events are with

the same priority. In this case, equating I and III is unacceptable, especially when
both states have different future behaviour, e.g. one leads to a marking state while
another only has blocking future behaviour. �

From the above example, the importance for two equivalent states allowing the
same set of silent events from other modules to happen is revealed. This property
can be guaranteed by both ∼ae and ∼sc, which is summarised by the following
lemma.

Lemma 23. Let G = 〈QG, A,→G,Q◦G〉 be a well-formed automaton. Let ∼⊆ Q×Q
be an equivalence on G so that either ∼⊆∼ae or ∼⊆∼sc. For any automaton T and
any silent trace

(xG, xT0)
τ1−→S (xG, xT1)

τ2−→S · · · τk−→S (xG, xTk)

in S(G ‖ T) where k ≥ 0 and all transitions are driven by T . It holds that for any
x′ so that x′G ∼ xG, a trace

(x′G, xT0)
τ1−→S (x′G, xT1)

τ2−→S · · · τk−→S (x′G, xTk)

- 14 -

III

σ(1)

τ(1)

G

IV

G/∼I II [I] [II]

[IV]

I∼III
σ(1)

σ(1)

σ(1)

τ′(2)T i ii

σ(1)

III,i

τ(1)

S(G ‖ T) I,i

τ′(2)

IV,ii

σ(1)

III,ii

S(G/∼ ‖ T) [I],i τ′(1)
[II],iiσ(1)[I],ii

[IV],ii

σ(1)

Figure 3: counterexample of equating incoming equivalent states with the
same set of delayed active events

must exist in S(G ‖ T) as well. �

We now consider the properties of
ε
↪−→
!n

, which is utilised in (I1) and (I2). In fact,

when the target states of two
ε
↪−→
!n

transitions are ∼ae or ∼sc equivalent, then both or

neither of them can be synchronised with a same silent trace from another automa-
ton. This property is formalised by the statement (ii) of the following proposition.

Proposition 24. Let G = 〈QG, A,→G,Q◦G〉 be an Υ-shaped automaton with an
equivalence ∼⊆ Q × Q on G so that either ∼⊆∼ae or ∼⊆∼sc. Let

(xG0, xT0)
τ1−→S (xG1, xT1)

τ2−→S · · · τk−→S (xGk, xTk) (6)

be a silent trace in S(G ‖ T) with k ≥ 0. Let n = lo({τi | (xGi−1, xTi−1)
τi−→

(xGi, xTi) is driven by G}) and

x′G0

τ′1−→ x′G1

τ′2−→ · · ·
τ′k′−−→ x′Gk′ (7)

be an arbitrary silent trace in G where k′ ≥ 0 so that lo({τ′1, · · · , τ′k′ }) = n and for

all i′ ∈ {1, · · · , k′ − 1}, G<τ′i
rglr(x′Gi′) = ∅. The following two statements hold:

(i) For the trace given in (6), if k ≥ 1 and the last transition (xGk−1, xTk−1)
τk−→S

(xGk, xTk) is driven by G, then (x′G0, xT0)
ε
=⇒S (x′Gk′ , xTk) in S(G ‖ T) where the

last transition is driven by G.
(ii) If xGk ∼ x′Gk′ , then (x′G0, xT0)

ε
=⇒S (x′Gk′ , xTk) in S(G ‖ T). �

The correctness of Proposition 24.(ii) can be seen from its weaker version,
namely Proposition 24.(i). We consider a silent trace as given in “grid” as depicted
in Figure 4, where points on the horizontal axis correspond to states in QG, while
those on the vertical axis correspond to states in QT . Recall that within ↪→, pre-
emption through shared events is impossible. We first notice that each time when
the “transition-driving” automaton alternates (i.e. in those states where the trace

- 15 -

QG

QT

xGi xGi+1 xG j xG j+1 xGk

xT j

xT j+1

xTk

τ(m)
τ′(n)

τ′′(r)

Figure 4: A silent trace in shaped synchronisation

“turns“), the priority of the silent event on the next transition cannot elevate. This
immediately implies that m ≤ n ≤ r for the trace in Figure 24. More importantly,
if the trace ends with a transition driven by G (as shown in Figure 4), we can
immediately conclude that

(O1) the last “T -state” of the last state (xTk in Figure 4) cannot execute any silent
event whose priority is higher than any transition in the trace and

(O2) the lowest priority of all transitions driven by G cannot be higher then the
lowest priority of all transition driven by T .

With both observations, the correctness of Proposition 24.(i) is clear in that for
a silent trace as given in (7), we can simply construct a silent trace from (x′G0, xT0)
to reach (x′Gk′ , xTk) in S(G ‖ T). Due to the observation (O2), we must be able to
reach xTk before reaching x′Gk′ and due to (O1), we can fill the rest part from T to
reach xTk. Afterwards, combining either ∼ae or ∼sc of the last state, Proposition
24.(ii) can be verified easily due to Lemma 23. The proof is formally given as
follows:

Proof of Proposition 24. Note that the possibility of preemption through shared
prioritised events at any (x′Gi′ , xT j) where i′ ∈ {0, · · · , k′ − 1} and j ∈ {0, · · · , k} is
excluded. For convenience, let n′ = lo({τ′1, · · · , τ′k′ }).

(i) It suffices to construct a silent trace from (x′G0, xT0) to (x′Gk′ , xTk) which will not
be influenced by shaping and the last transition is driven by G. Let i′ = j = 0 and
we start the construction from the first state (x′Gi′ , xT j) = (x′G0, xT0). Note that due
to Case 2 of Step 2 in the following, it is not possible to reach x′Gk′ before xTk is
reached.

(Step 1) Consider two possible cases:
(Case 1) Only j = k holds, i.e. xTk is reached. Consider the trace given in

(6) and from Observation (O1), it follows that T<n
slnt(xTk) = ∅. Since n = n′

is required, we are able to directly complete the construction by concatenat-
ing the remaining transitions driven by G to reach x′Gk′ , i.e. we must have

- 16 -

(x′Gi′ , xTk)
ε
=⇒S (x′Gk′ , xTk) where all transitions are driven by G in S(G ‖ T),

since priority of all remaining transitions driven by G cannot be lower then
any τ ∈ Tslnt(xTk) and preemption through shared events is impossible. This
terminates the construction.

(Case 2) Neither i′ = k′ nor j = k holds. Go to Step 2.

(Step 2) Since preemption through shared prioritised events is not possible, we
can proceed from (x′Gi′ , xT j) with either one transition driven by G or one driven
by T , or both. Consider the two possible cases:

(Case 1) prio(τ′Gi′+1) , n′. Then concatenate either (x′Gi′ , xT j)
τ′i′+1−−−→S (x′Gi′+1, xT j)

or (x′Gi′ , xT j)
τ j+1−−−→S (x′Gi′ , xT j+1) according to their priority and update either

i′ := i′ + 1 or j := j + 1, respectively. Go to Step 2.

(Case 2) prio(τ′Gi′+1) = n′. Since n = n′ was required, from Observation (O2),

it follows that prio(τ′Gi′+1) = n ≥ lo({τi | (xGi−1, xTi−1)
τi−→S (xGi, xTi) is driven by T }).

Thus, we are able to concatenate the remaining transitions driven by T to
reach xTk, i.e. we have (x′Gi′ , xT j)

ε
=⇒S (x′Gi′ , xTk) where all transitions are

driven by T in S(G ‖ T). Go to Step 1 and we will be in Case 1 of Step 1.

(ii) The statement is trivially true if all transitions are driven by T due to Lemma
23. Otherwise, for the trace given in (6), consider the trace fragment (xGi, xTi)

τi+1−−→S
· · · τk−→S (xGk, xTk) where i ∈ {1, · · · , k − 1} so that all transitions are driven by T
and (xGi−1, xTi−1)

τi−→S (xGi, xTi) is driven by G (i.e. xGi = xGi+1 = · · · = xGk). From
statement (i), (x′G0, xT0)

ε
=⇒S (x′Gk′ , xTi) in S(G ‖ T) holds. Furthermore, due to

Lemma 23, we must be able to concatenate the remaining transitions driven by T
to reach xTk, i.e. (x′Gk′ , xTi)

ε
=⇒S (x′Gk′ , xTk). �

With Proposition 24, we are well prepared to prove that ∼inc conjuncted with
either ∼ae or ∼sc is string preserving.

Proposition 25. Let G = 〈QG, A,→G,Q◦G〉 be an Υ-shaped automaton with an
equivalence ∼⊆ Q × Q on G be such that either ∼⊆∼inc∩∼ae or ∼⊆∼inc∩∼sc. It
holds that ∼ is string-preserving.

Proof. Let T = 〈QT , A,→T ,Q◦T 〉 be any automaton. We complete the proof through
induction:

(Base step) The statement is trivially true when k = 0. For k = 1, it holds
immediately that there exists x′G0 ∈ [xG0] and x′G1 ∈ [xG1] so that (x′G0, xT0)

α1−−→S
(x′G1, xT1) in S(G ‖ T) due to Lemma 7.

(Inductive step) Suppose the proposition holds for some k ≥ 1, then it shall
also hold for k + 1. From this hypothesis, for some trace

([xG0], xT0)
α1−−→S · · · αk−−→S ([xGk], xTk) (8)

- 17 -

in S(G/∼ ‖ T) where α1 ∈ Σ and αi ∈ A for i , 1, there exist some x′G0 ∈ [xG0]
and x′Gk ∈ [xGk] so that

(x′G0, xT0)
p(α1···αk)
======⇒S (x′Gk, xTk) (9)

in S(G ‖ T). Consider any successive transition ([xGk], xTk)
αk+1−−−→S ([xGk+1], xTk+1) of trace (8), which shall imply the existence of x′′Gk ∈ [xGk]

and x′Gk+1 ∈ [xGk+1] so that (x′′Gk, xTk)
αk+1−−−→S (x′Gk+1, xTk+1) in S(G ‖ T) due to

Lemma 7. Now if [xGk] is singleton, the proof closes directly since x′Gk = x′′Gk.
Otherwise, from trace (8), we shall find the last non-silent transition driven by G,
i.e. find the largest i for 1 ≤ i ≤ k so that αi ∈ Σ. We consider the trace fragment
([xGi−1], xTi−1)

αi−→S ([xGi], xTi)
αi+1···αk−−−−−−→S ([xGk], xTk) from (8) where αi+1 · · ·αk ∈

Σ∗
Υ

. Due to the inductive hypothesis, we can extract the fragment

(x̄G, x̄T)
αi−→ (x̄′G, x̄

′
T)

ε
=⇒S (x′Gk, xTk) (10)

from some trace expressible by (9) for some x̄G, x̄′G ∈ QG and x̄T , x̄′T ∈ QT . Since

x′Gk ∼ x′′Gk, we have x̄G
ε

==⇒
∆:αi

ȳG
αi−−−→

∆:αi

ȳ′G
ε
↪−→
!n

x′′Gk where ∆ = G<αi
rglr (x̄G) in G for some

ȳG, ȳ′G ∈ QG and n ≥ 1. With the help of Proposition 24.(ii), we have

(x̄G, x̄T)
ε
=⇒S (ȳG, x̄T)

αi−→S (ȳ′G, x̄
′
T)

ε
=⇒S (x′′Gk, xTk) (11)

inS(G ‖ T) which can be concatenated by transition ([xGk], xTk)
αk+1−−−→S ([xGk+1], xTk+1).

�

When the first state in the trace as described in Proposition 25 is a initial state,
string preservation can be further relaxed as follows:

Proposition 26. Let G be a well-formed automaton with an equivalence relation ∼
⊆ QG×QG on G being such that either ∼⊆∼inc ∩ ∼ae or ∼⊆∼inc ∩ ∼sc holds. Then
for any arbitrary automaton T = 〈QT , A,→T ,Q◦T 〉, if S(G/∼ ‖ T)

s
=⇒S ([xG], xT)

for some s ∈ Σ∗, then there exists x′G ∈ [xG] so that S(G ‖ T)
s

=⇒S (x′G, xT).

Proof. We separate the proof into two cases:

(Case 1) s = ε. Note that if G/∼ ε
↪−→
!n ∼

[xG] for some n ≥ 1, then for all x′G ∈ [xG],

G
ε
↪−→
!n

x′G must hold, which can be proven by a simple induction based on (I2).

Also note that G/∼ is Υ-shaped. Thus, this case holds directly from Proposition
24.(ii). Note that we have proven an even more general version of the statement,
i.e. for all states in [xG] instead of the existence of some state in [xG], which
will be utilised in the proof for the next case.

(Case 2) Let s , ε. Then let

S(G/∼ ‖ T)
ε
=⇒S ([yG], yT)

σ−→S ([zG], zT)
t

=⇒S ([xG], xT) (12)

- 18 -

where σ ∈ Σ and t ∈ Σ∗ so that σt = s. From Case 1, for all y′G ∈ [yG], S(G ‖
T)

ε
=⇒S (y′G, yT). From Proposition 25, there exists y′′G ∈ [yG] and x′G ∈ [xG] so

that (y′′G, yT)
σt
=⇒S (x′G, xT), which indeed closes the proof. �

Note that generally, string preservation guarantees the existence of a string
before abstraction from a string after abstraction. We shall also prove a similar
statement in the reversed direction, i.e. we shall ensure that a transition before
abstraction shall also consistently exists after abstraction.

Proposition 27. Let G = 〈QG, A,→G,Q◦G〉 be an Υ-shaped automaton with an
equivalence ∼⊆ QG × QG on G so that either ∼⊆∼inc ∩ ∼ae or ∼⊆∼inc ∩ ∼sc

holds. For any arbitrary automaton T = 〈QT , A,→T ,Q◦T 〉, if (xG, xT)
α−→S (yG, yT)

in S(G ‖ T), then ([xG], xT)
p(α)−−−→S ([yG], yT) in S(G/∼ ‖ T).

Proof. Let prio(α) = m. If xG ∼ yG and xG
α−→ yG for α ∈ Υ being driven

by G, we will have a trivial transition ([xG], xT)
ε−→S ([yG], yT) = ([xG], xT) in

S(G/∼ ‖ T), regardless α-selfloop being preserved by the quotient or not. Other-
wise, ([xG], xT)

α−→ ([yG], yT) in G/∼ ‖ T . This transition will clearly not be shaped
due to the definition of ∼ae and ∼sc. �

With Propositions 25 and 27, we declare the active events rule and silent con-
tinuation rule under event preemption. Flordal and Malik (2009). For the active
events rule, the following lemma is helprooful to clarify the proof.

Lemma 28. Let G = 〈QG, A,→G,Q◦G〉 be a well-formed automaton with an equiv-
alence ∼⊆ QG × QG on G be such that ∼⊆∼ae. Then for any automaton T =

〈QT , A,→T ,Q◦T 〉, if ([xG], xT)
σ
=⇒S in S(G/∼ ‖ T) for some σ ∈ Σ, then for all

x′G ∈ [xG], (x′G, xT)
σ
=⇒S in S(G ‖ T).

Proof. Let ([xG], xT)
ε
=⇒S ([x̄G], x̄T)

σ−→S in S(G/∼ ‖ T) for some x̄G ∈ QG and
x̄T ∈ QT . Note that all states on [xG]

ε
=⇒∼ [x̄G] before [x̄G] in G/∼ are singletons.

The statement is thus directly true from Lemma 7 and Definition 20. �

We are now in the position to state two more conflict equivalent abstraction
rules.

Theorem 29 (active events rule). Let G = 〈Q, A,→,Q◦〉 be an Υ-shaped automa-
ton with an equivalence ∼⊆ Q × Q on G so that ∼⊆∼inc ∩ ∼ae. It holds that
G 'S (G/∼).

Proof. Let T = 〈QT , A,→T ,Q◦T 〉 be any automaton:

- 19 -

III

G
G/∼I II

[I]

[II]

I∼III

σ(1)

σ(1)

σ(1)

ρ(2)

ρ(2)

IV ρ(2) [IV]

σ(1)

Figure 5: active events rule

(⇒) Suppose S(G ‖ T) is non-blocking. Pick ([xG], xT) so that S(G/∼ ‖
T)

s
=⇒S ([xG], xT) for some s ∈ Σ∗. By Proposition 25, there exists x′G ∈ [xG] so that

S(G ‖ T)
s

=⇒S (x′G, xT) and due to the non-blockingness of S(G ‖ T), (x′G, xT)
tω
=⇒S

in S(G ‖ T) for some t ∈ Σ∗. By Proposition 27, it holds that ([xG], xT)
tω
=⇒S.

(⇐) Suppose S(G/∼ ‖ T) is non-blocking. Pick (xG, xT) so that S(G ‖ T)
s

=⇒S
(xG, xT) for some s ∈ Σ∗. From Proposition 27 and the non-blockingness of

S(G/∼ ‖ T), there exists t ∈ Σ∗ so that S(G/∼ ‖ T)
s

=⇒S ([xG], xT)
tω
=⇒S. If t = ε,

then (xG, xT)
tω
=⇒S in S(G ‖ T) follows direct from Lemma 28. Otherwise, we must

first have ([xG], xT)
ε
=⇒S σ−→S in S(G/∼ ‖ T) for some σ ∈ Σ − {ω}. By applying

Lemma 28, we have (xG, xT)
ε
=⇒S (x̄G, x̄T)

σ−→S inS(G ‖ T) for some (x̄G, x̄T) where
x̄G ∈ QG and x̄T ∈ QT . By applying Proposition 27 and then Lemma 28 again,

we have altogether (xG, xT)
ε
=⇒S (x̄G, x̄T)

σ−→S ε
=⇒S (yG, yT)

σ′−−→S in S(G ‖ T) for
some σ′ ∈ Σ and (yG, yT) where yG ∈ QG and yT ∈ QT . From Proposition 26 and
the non-blockingness of S(G/∼ ‖ T), there exists y′G ∈ [ȳG] so that (y′G, yT)

uω
=⇒S

for some u ∈ Σ∗. If [yG] is singleton, the proof closes directly. Otherwise, from
Definition 19, we have x̄G

σ−→ ε
↪−→
!n

yG for some n ≥ 0. Since y′G ∼ yG, we have

x̄G
ε

==⇒
∆:σ

σ−−−→
∆:σ

ε
↪−→
!n

y′G where ∆ = G<σ
rglr(x̄G), implying (x̄G, x̄T)

σ
=⇒S (y′G, yT) in S(G ‖ T)

due to Proposition 24.(ii). This indeed closes the proof. �

Theorem 30 (silent continuation rule). Let G = 〈QG, A,→G,Q◦G〉 be an Υ-shaped
automaton with an equivalence ∼⊆ Q × Q on G so that ∼⊆∼inc ∩ ∼sc. It holds
that G 'S (G/∼).

Proof. For any T = 〈QT , A,→T ,Q◦T 〉:

(⇒) Same as the proof for Theorem 29

(⇐) Suppose S(G/∼ ‖ T) is non-blocking. Pick (xG, xT) so that S(G ‖ T)
s

=⇒S
(xG, xT) for some s ∈ Σ∗. From Proposition 27 and the non-blockingness of

S(G/∼ ‖ T), there exists t ∈ Σ∗ so that S(G/∼ ‖ T)
s

=⇒S ([xG], xT)
tω
=⇒S. Con-

sider three cases:

- 20 -

III

G G/∼I II [I] [II]

II∼III

σ(1)

IV [IV]

σ(1)

ρ(2)

τ(2)

σ(1)

ρ(2)

τ(2)

τ(2)

Figure 6: active events rule

(Case 1) [xG] is singleton and ([xG], xT)
σ−→S for some σ ∈ Σ. This case is

directly true from Proposition 25 and 26.
(Case 2) [xG] is not singleton. Since xG is not in any live-lock but there exists

some τ ∈ Gslnt(xG), there must exist some yG ∈ QG so that xG
ε
=⇒ yG and

Gslnt(yG) = ∅ in G. There are two further possibilities:
(i) There exists some yT ∈ QT and σ ∈ Σ so that (xG, xT)

ε
=⇒S (yG, yT)

σ−→S in
S(G ‖ T). Note that since ([yG], yT) is reachable in S(G/∼ ‖ T) which is non-
blocking, it must be co-reachable as well. In addition, since Gslnt(yG) = ∅,
[yG] must be a singleton. Thus we have met a Case 1 situation.

(ii) If (i) does not hold, then there must exist some zG ∈ QG and zT ∈ QT so
that
a) xG

ε
=⇒S zG

ε
=⇒S yG and zG , yG,

b) there exists some τ′ ∈ Gslnt(zG) and
c) (xG, xT)

ε
=⇒S (zG, zT)

σ−→S in S(G ‖ T) for some σ ∈ Σ so that prio(σ) <
prio(τ′).

This again implies that [zG] is a singleton state from (SC1) and (SC2), i.e. a
Case 1 situation is met.

(Case 3) [xG] is a singleton but ([xG], xT)
α−→S for any α ∈ A implies α ∈ Υ.

If in ([xG], xT)
tω
=⇒S, each state consists of a singleton state from QG/∼, the

statement is trivially true. Else, let ([x̄G], x̄T)
α−→S ([yG], yT) be the first transition

in ([xG], xT)
tω
=⇒S so that α ∈ A and [yG] is not a singleton. Clearly, this transition

is driven by G since [x̄G] is singleton and from Lemma 7, since [x̄G] is singleton,
there exists y′G ∈ [yG] so that (x̄G, x̄T)

α−→S (y′G, yT) in S(G ‖ T). This indicates
that Case 3 always reaches a Case 2 situation if at least one non-singleton state
in G/∼ can be reached. �

While the two previous abstraction rules requiured a careful adaptation to
event priorities, the following two carry over immediately from Flordal and Malik
(2009).

Theorem 31 (only silent incoming rule). Let G = 〈Q, A,→,Q◦〉 be an Υ-automaton

and let x̄ ∈ Q be such that x̄ is not in any live-lock, x̄
τ(1)−−→ and y

α−→ x̄ implies
α = τ(1). Then for the automaton H = 〈Q,Σ,−→H ,Q◦〉 with

−→H = {(x, α, y) | x α−→ y and y , x̄} ∪ {(x, α, y) | x τ(1)−−→ x̄
α−→ y} (13)

- 21 -

it holds that G 'S H. �

Theorem 32 (only silent outgoing rule). Let G = 〈Q, A,→,Q◦〉 be a Υ-shaped
automaton and let x̄ ∈ Q be such that x̄

α−→ y implies α = τ(1) and y is not in any

live-lock, while z
α′−→ x̄ implies α′ < Υ. Let Q̄ := {y ∈ Q | x̄ α−→ y for any α ∈ A},

then for the automaton H = 〈Q\{x̄},Σ,−→H ,Q◦H〉 with

Q◦H =

{
Q◦ if x̄ < Q◦

(Q◦\{x̄}) ∪ Q̄ if x̄ ∈ Q◦ (14)

−→H={(x, α, y) | x α−→ y and x , x̄ and y , x̄}
∪ {(x, α, y) | x α−→ x̄ and y ∈ Q̄} (15)

it holds that G 'S H. �

Conclusion

Considering a class of modular discrete-event systems with event priorities, we
have presented a number of conflict equivalent abstractions to be used for compo-
sitional verification of non-blockingness. Technically, our study builds on Flordal
and Malik (2009) and we inspect the abstraction rules presented there in order to
derive adaptations that address priorities. This approach is closely related to the
development of CCSch by Lüttgen (1998) which introduces priorities to process
algebra CCS (Milner (1989)).

References

Cassandras, C.G. and Lafortune, S. (2008). Introduction to Discrete Event Systems.
Springer, second edition.

Flordal, H. and Malik, R. (2009). Compositional verification in supervisory control. SIAM
J. Control and Optimization, 48, 1914–1938.

Lüttgen, G. (1998). Pre-emptive modeling of concurrent and distributed systems.

Malik, R., Streader, D., and Reeves, S. (2004). Fair testing revisited: A process-algebraic
characterisation of conflicts. In F. Wang (ed.), Automated Technology for Verification
and Analysis, 120–134. Springer.

Milner, R. (1989). Communication and Concurrency. Prentice-Hall, Inc., USA.

- 22 -

Mohajerani, S., Malik, R., and Fabian, M. (2014). A framework for compositional synthesis
of modular nonblocking supervisors. IEEE Transactions on Automatic Control, 59(1),
150–162.

Nicola, R.D. and Hennessy, M. (1984). Testing equivalences for processes. Theoretical
Computer Science, 34(1), 83 – 133.

Pilbrow, C. and Malik, R. (2015). An algorithm for compositional nonblocking verification
using special events. Science of Computer Programming, 113.

	Preliminaries
	Prioritised Events and Compositional Verification
	Abstraction rules based on Prioritised weak bisimulation
	Abstraction rules based on incoming equivalence

