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A Finite Field Framework for Modeling, Analysis and Control

of Finite State Automata
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SUMMARY

In this paper we address the modeling, analysis and contrbhite state automata, which represent a
standard class of discrete event systems. As opposed to tapretical methods we consider an algebraic
framework that resides on the finite fidid, which is defined on a set of two elements with the operations
addition and multiplication, both carried out modulo 2. Key characteristic of the model is its functional
completeness in the sense that it is capable of describirgg @fithe finite state automata in use, including
non-deterministic and patrtially defined automata. Stgriom a graphical representation of an automaton
and applying techniques from boolean algebra we derivaéimsition relation of our finite field model. For
cases, in which the transition relation is linear, we dgvefeans for treating the main issues in the analysis
of the cyclic behavior of automata. This involves the corafiah of the elementary divisor polynomials
of the system dynamics, and the periods of these polynonidieh are shown to completely determine
the cyclic structure of the state space of the underlyingalirsystem. Dealing with non-autonomous linear
systems with inputs, we use the notion of feedback in ordeptrify a desired cyclic behavior of the
automaton in the closed loop. The computation of an appatepstate feedback is achieved by introducing
an image domain and adopting the well-established polyalomatrix method to linear discrete systems
over the finite fieldf,. Examples illustrate the main steps of our method.

Keywords: Finite State Automata, Linear Modular Systems, FinitedSel

1. INTRODUCTION

In the world of continuous dynamic systems, state space ln@ate the dominant
paradigm of representing a system algebraically. It is dubis algebraic setting that
most of the real world system properties can be retrievelddratgebraic model, since
the algebra entails a certain structural framework. In @®ttto continuous systems,
discrete event systems characteristically show a lackwdstre, that is, these systems
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do not fit naturally into an algebraic frame since many of twed world properties can
hardly be captured in some nice algebraic structures, aggéowalues, for example,
when dealing with stability issues in linear continuougeyss theory. However, a lot
of effort has been made to setup a link between both classystEims.

In search of analogies to linear continuous systems, gtaieesmodels using so-
calledarithmetical polynomialfiave been introduced for representing finite state au-
tomata [4, 3]. A second method employalsh functiondo model deterministic fi-
nite state automata as autonomous linear systems [10]. iseploout in [13], the
crucial drawbacks, which are common in both approachegharabsence of suffi-
cient and efficient criteria for an algebraic locating of thkerent cyclic properties
of automata. Even for linear systems the former approach prdvides necessary
criteria, whereas the latter runs into numerical diffi@gtby enumerating the whole
state space. Another severe problem is the computationgblexity, as within these
approaches solving for certain cyclic states is of non-poigial complexity (NP-
complete). This is due to the fact that the associated adgebperations do not con-
stitute a group because they are not closed under the apessts. Unfortunately,
there is no polynomial time algorithm that solves a lineatsgn of equations over the
rational numbers for boolean vectors. As a consequence;diipleteness implies
that any problem in practice is rendered intractable.

In contrast to the approaches from above, the model to bdajmabin this paper
is capable of overcoming these obstacles. To this end, wsidenan algebraic state
space description that is formulated strictly in (moduld @serations on the set of
boolean numbers, mathematically speaking, we operate anite field Fo.1 Thus,
contrary to the afore-mentioned approaches, we can beraafit the field property;
at least in the linear case, it is possible to solve for cysfates in polynomial time.
Despite some peculiarities of finite fields, it will turn odnat if one is concerned
with state space modeling of automata, finite fields proviaesé algebraic concepts
that are necessary for relating automata properties totatal, algebraic properties.
This leads to a sufficient and efficient analysis of the cyloibavior of deterministic
and non-deterministic finite state automata, especialthérlinear case. In this case,
the key concepts are given by the notions of invariant patyiaéss and the period
of a polynomial, which will be shown to grant the statemensuwafficient criteria for
determining all cycles of a deterministic linear automatomultiplicity and length.

Based on this knowledge the synthesis of linear state feddbaimposing prop-
erties on the controlled linear system with respect to cysfiates is carried out. We
demonstrate that this amounts to setting the (invariaethehtary divisor polyno-

IFinite field models have already been under consideratiothéncontrol community [5]. Still, neither
were finite fields utilized for determining the cyclic struet of automata nor were any analogies drawn
to continuous time systems. On the other hand much of theytheas already developed as early as the
sixties — for instance the design of linear feedback shifisters [7, 6] — but has not been adapted for
control purposes yet.
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mials of the closed loop dynamics. In the scope of continsystems, resorting to
standard methods as for example employing the parametpimaph [15], this is a
difficult task to perform — we comment on that in detail. Irstewe propose an im-
age domain method for linear discrete systems [14], an &dapf the polynomial
matrix method [11], in which our synthesis goal of setting thvariant polynomials
apparently proofs to be more practicable. This results irlgorithm for generat-
ing a linear state feedback which fits a given linear automatioh specified cyclic
properties. Additionally, the algorithm meets the reguieats burdened by structural
constraints, as stated in Rosenbrock’s structure theatéin [

The outline of the paper is as follows: Section 2 introdubegtinimum necessary
algebraic terminology. Section 3 exposes, in an exempkslidn, two methods for
obtaining a multilinear automaton model over the finite fiéldby referring to ele-
mentary boolean algebra. In Section 4 we are concerned hétlanalysis of linear
discrete models ovéf». Taking advantage of the notion of feedback we show how to
impose structural properties on closed loop systems irnd@e6t Finally, in Section 7
we recall the main ideas and give some hints in view of extemthie setting.

2. ALGEBRAIC PRELIMINARIES

Linear algebra over the fields of real and complex humberswidaly spread tool
all over the engineering sciences. On the contrary, except ignal processing and
coding theory, discrete mathematics and finite fields arewamered quite rarely in
the academic education of engineers. On this account, tiseimportant conceptual
terms from algebra which represent the bases for our autonmaddel in view (Sec-
tion 3) are recapitulated in the sequel. Some remarks spotlifferences between
finite and infinite fields. We refer to the comprehensive amddhgh introduction to
finite fields by Lidl and Niederreiter [12].

2.1. Finite Fields

Definition 1 (Group)
A group is a setj together with a binary operationsuch that

Forallabe G,axbeg.

The operatior is associative, i. e (b c) = (axb) «cforanya,b,ce G.

An identity elementg € G, exists such that forali € G, axe=exa=a.

For anya € G an inverse elemerat ! € G exists such thaaxal=alxa=e.

PR

Moreover, a group is commutative (or abelian) if foralb € G, axb=b=xa. A group
is called finite if the se§ contains finitely many elements.
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As we will make abundant use of polynomials in the subsegsections we need to
define the notion of a ring.

Definition 2 (Ring)
Aring is a setR together with two binary operations, addition + and muiiation -,
such that

1. R is a commutative group with respect to addition.

2. Multiplication is associative , i. @- (b-c) = (a-b)-cforanya,b,ce R.

3. R is distributive with respect to addition and multiplicatiahat is
a-(b+c)=a-b+a-cand(b+c)-a=b-a+c-aforallab,ceR.

Aring is called commutative if its multiplication is comnative.

The setR of polynomials in the independent variatNewith the usual addition and
multiplication of polynomials forms a ring, the ring of polgmials denoted bR [A].

It is essential for a ring that a multiplicative inverse newd exist in general. In
order to be able to solve for multiplicatively bound indet@rates it is helpful to
increase the requirements by excluding the critical eldrffrtem the set.

Definition 3 (Field)

A ring on a sefF with the operations addition an multiplication, + andis a field
if the subseff \ {0} is a commutative group with respect to multiplication. Adi&l
with g elements, denoted tHy, is called finite ifq is finite.

In further sections of the paper a special type of field i9agd that is based on the
division remainder operatiomodula

Definition 4 (Galois-Field)
The set of integer$0,1,...,q— 1}, whereq is a prime number, with the operations
addition and multiplication modulg, is a finite field, called Galois-FielBl.

The primality ofq is decisive for the existence of a multiplicative inversenaént.
Otherwise zero divisors would occur (for instance82nodulo 6= 0, hencéFg is not
afield). In the sequekq will always denote a Galois Field and beginning with Section
3 we will concentrate on Galois-Fields fiells only. Consequently, foa, b € I,

a+b:=a+bmod 2,

a-b := a-bmod 2
Note that in this case subtraction modulo 2 coincides withitaah modulo 2.
Theorem 1 (Fermat’s Little Theorem)

Let g € Z be a prime number. Then for all integerswhich are not divisible by, q
dividesA\9-1 —1.
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Consequently, every € Fq satisfiesA9 = . Hence, a polynomigb € Fq[A] can be
identical to zero for arbitrark € Fq, sincep may contain polynomials9— A, which
are identical to zero. In contrast to finite fields, a polynalmic R[A] over the infinite
field of real number® is identical to zero if and only if all coefficients are zero.

2.2. Polynomials over Finite Fields

According to Gaul¥’ fundamental theorem of algebra, a furetdai property of poly-
nomials is that all polynomials over the field of real numbRrgan be factorized
(reduced) in quadratic factors R[A], or over the extension fiel@ even more in lin-
ear factors inC[A]. Naturally one would expect that this holds true for finitédgeas
well. We will see that for finite field¥q, in general, this is not the case.

Factorization of Polynomials

Definition 5 (Monic Polynomial)
A polynomialp(A) = T4 ;& Al with degree is called monic ifag = 1.

Definition 6 (Irreducible Polynomial)
A non-constant polynomigd € F[A] is called irreducible oveF if wheneverp(A) =
g(M)h(A) in F[A] then eitheig(A) or h(A) is a constant.

In view of irreducibility we can rephrase Gaul3' fundamettalorem of algebra.

Theorem 2 (Unique Factorization Theorem)
Any polynomialp € F[A] can be written in the form

p=ap® - p*, (1)

whereac F, py, ..., pk € F[A] are distinct polynomials that are irreducible offeand
e1,...,& € N. This factorization is unique apart from the sequence ofdhtors.

For the fieldR all polynomialsp; in Theorem 2 are of degres < 2. This does not
apply for finite fields, for examplep(A) = A5+ A2+ A +1= A3+ A +1)(A +1)?,
p € F2[\], because\® + A + 1 andA + 1 are irreducible oveF,. Another property
which is peculiar to finite fields is the periodicity property

Period of Polynomials

Definition 7 (Period of a Polynomial)

Let p € F4[A] be a non-zero polynomial. if(0) # O, then the least positive integer
T for which p(A) dividesA™ — 1 is called the period (order) of the polynomjal If
p(0) = 0, thenp(A) = A"g(A), whereh € N andg € Fq[A] with g(0) # 0, andt is
defined as the period of
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For polynomials which are powers of irreducible polynomsjado-called powered
polynomials, we have the following theorem.

Theorem 3 (Period of a Powered Polynomial)
Let p € Fq[A] be irreducible ovelFq with p(0) # 0 and period. Let f = p® € Fg[A]
with e € N. Let| be the least € Z such that] > e. Then the period of is g't.

Example 1
We calculate the period df(A) = A*+ A2+ 1 € F2[A]. From

MEA)+fAN) =N+DfN) =A+1 = f0)A8+1
it follows thatts = 6. If we use the factorizatioh = p? with p=A2+A + 1 then
ApA)+pA)=A+1)pA)=A3+1 = pA)r+1
implies thatt, = 3. Thus, observing= 2 and considering Theorem 3, we obthia 1

and therefore we gety = 21-3= 6 with 1, = 3.

Remark 1
Nilpotent polynomialsp € Fg[A] with p = A¥ for somek € N are not periodic by
definition. Hence, polynomials over finite fields are eitheripdic or nilpotent.

Remark 2
In practice, periods of polynomials can be found in tablles iln [12], or are internally
tabulated in computer algebra software like M&ler Mathematic®.

2.3. Similarity and Invariants of Linear Systems over the firite field Fq
Many major properties of a matrix are invariant by its stawetand are preserved
under elementary row and column operations, so-calledasityitransformationg.

Similarity of Matrices

Definition 8 (Similarity of a Matrix)
MatricesA1, A, € F™"M are similar if for some invertible constant matilixe F ™"

A1 =T 1A,T. 2)

When properties which are invariant under similarity tfan®s are concerned, poly-
nomial matrices, matrices the elements of which are polyatsyare a tool of practi-
cal relevance.

2For brevity, we refrain from defining vector spaces and lirteansformations since the well-known con-
ventional definitions can be extended right away to the fiiedd case.
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Theorem 4 (Smith Form of the Characteristic Matrix)
For anyA € F™", polynomial matricesJ(A),V(A) with non-zero determinant inde-
pendent fromh exist such that

UM =A)V(A) =S(A),  S(A) = diag(c(A),...,cn(A)) (3)
in which the monic polynomials;;1|ci, i = 1,...,n—1. The polynomial matrid§(A)
is called the Smith (normal) form of (the characteristic rxairt.) A.

Matrices are similar iff they have the same Smith form. As ploé/nomialsc;, i =
1,...,nare preserved under similarity transforms this gives nsgefine invariants.

Invariant Polynomials

Definition 9 (Invariant polynomials)
The unique non-constant monic polynomigid\), i = 1,...,n, referring to the Smith
form S(A\) of a matrixA, are the invariant polynomials (similarity invariants)Aof

The uppermost polynomiad;(A) is the minimal polynomial of the matriA. The
product of all invariant polynomials is its characterigimynomial detAl — A).

Definition 10 (Elementary Divisor Polynomials)
Letc € F[A], i =1,...,n, be the invariant polynomials of a matri and letc; =

p?‘ll e pmi with N; € N be the unique factorization af due to Theorem 2. Then, the
N = ¥ ; Ni non-constant factor polynomi GTJ:J', i=1....,nandj=1....N;, are
termed elementary divisor polynomialsAf

The Rational Canonical Form

In addition to the Smith form (3), we will use a normal formeging to the elementary
divisor polynomials. This will involve the notion of a comman matrix.

Definition 11 (Companion Matrix)
Letp(\) = T2 qaA' € F[A] be a monic polynomial of degree The matrixC ¢ 9%

o 1 0. O 0
o o 1.-- 0 0

o I R (4)
o 0 o0.-- O 1

—a —a& —& - —&d-2 —ad-1
is called the companion matrix with respect to the polyndmp{a).

Companion matrices have some useful properties, e. g. éscteristic polynomial
coincides with its minimal polynomial, which is just the defig polynomialp(}).
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Theorem 5 (Rational Canonical Form)
For anyA € F™" there exists a similarity transforiin by virtue of which

Arat=TAT 1, A =diagCy,...,Cn) (5)

with j = 1,...,N companion matrice€; defined by theN elementary divisor poly-
nomials ofA. The matrixA 4 is unique up to block ordering and is called (elementary
divisor form of the) rational canonical form or classicahoaical form ofA.

Example 2
For the following Smith form of a matriA € F5*6,

S(A) = diag(A\? + A +1)(A +1)°A, A +1,1,1,1,1)
we have the elementary divisor polynomials
PLA) =N+A+1 p(A) =(A+1)?% psA)=A, pa\) =A+1.

defining the companion matrices in the rational canoniaahfof A, that is

Ci= <‘i’ 1) Co = <‘1’ é) .Cs=(0). Ca= (1), A= diagCs.Cz.C5.Ca).

Remark 3

We did not introduce the Jordan normal form of a matrix, whiakuld follow from
diagonalizing the rational canonical form. The reason @& the Jordan normal form
is accompanied by the notion of an extension figldk = 1,2, ... associated t&q. In
case of a finite field, the calculation of roots in this extendield F is much more
cumbersome than it is in the extension field associated toellenumber®R, which
is C, the field of complex numbers.

3. MULTILINEAR AUTOMATON MODEL OVER THE FINITE FIELD F»

In this section we develop an algebraic model for a non-detestic finite state au-
tomaton with multiple inputs. It takes the form

f(x[k+1],x[K,ulk]) =0, xeF5, ueclFy, (6)

wheref marks an implicit scalar transition functidn: F5 x F3 x F5! — T2, which
relates then states<[k] and theminputsu[k] in an instank with the possibly multiple
successor stategk+1] in the instank+1, indicating possible behavior by mapping
onto 0. The transition function is multilinear in the vecétements ok[k+1], x[k] and
u[k] except for a constant. This will be shown subsequently.
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3.1. The Relation of Boolean Algebra and the Finite Field,

Some boolean algebra is required for calculating the autmmanodel over finite
fields. Therefore the necessary basics of boolean algebracalled for convenience;
concise introductions are given by [16, 1].

Definition 12 (Boolean Operations)
Given the seB = {0,1}. The operationsg, V, & and ~ defined of as per

X1t X[ xaAXe| [X1 Xe[xaVxe] [x1 xe|xa@x2| [X]X]

0 0 0 0 0 0 00 0 01
01 0 01 1 01 1 1|0
10 0 10 1 10 1
11 1 11 1 11 0

are termed boolean operations.

Typically, boolean operations are used for constructingdem functions, usually ex-
pressed in normal forms. Problem oriented normal forms reelpcing complexity in

logical devices and admit an easier decomposition of lddisections into subfunc-

tions in order to improve modularity. One standard normahfés the following.

Definition 13 (Disjunctive Normal Form)
Let f be a boolean function of indeterminatas. .., x, € B andc be a vectore B".
Then the disjunctive normal form dfis given by

lev -5 X \/f

ceBn i

>:

X ®c) . (7)
1

Example 3
The disjunctive normal form of (x1,x2) = X1 ® X2 is

f(x1,%) = (f(0,0)A (X1 ®0)A(x®0)) V (f(0,1)A(xaB0) A (xe® 1))V
(f(LOA(1B A (x®0)V (FLDAB LA (e® 1)) =
(A (2@ 1))V ((xaB 1) AXo) = (Xe AX2) V (Xe AX2) . (8)

Instead of introducing all boolean operations from Defimitil2 it is sufficient to
confine oneself to the operatiogsandA. By using DeMorgan’s Law and observing
X= 1@ X, the disjunction; V xo can be evaluated to

XIVXe =X1AXe =1B ((1dX) A (1B X)) = X1 B X2 B X1Xe, X1,%2 € B.

Thus, if the operations andA on the se8 = {0, 1} are identified with addition and
multiplication, both modulo 2, then the following importaheorem can be stated.
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Theorem 6 (Isomorphism ofF, and B)
The sefB = {0,1} together with the operations:= & and- := A is afinite field. The
finite field B is isomorphic to the Galois-Fielth.

Since any boolean functioh can be manipulated so as to obtain an expressian in
and A only, the calculation of the finite field representationfodverF, amounts to
simply interchangep by + and A by -, respectively (from now on all additions and
multiplications taken modulo 2). Then fag, xo € {0,1} the following applies:

X1 A X2 <= X1X2 9)
X1V X2 <= X1+ X2 + X1X2 (20)
X1 D Xp <= X1+ X2 (11)

X< 1+x (12)

These equivalences are of particular interest in the nexioses.

3.2. Deriving the Algebraic Model by Use of the Disjunctive Mrmal Form

In the following, a single input example is elaborated toddtice the main steps for
obtaining the transition function for a non-deterministitomaton over the finite field
FF,. The underlying algorithm can be generalized easily anefiout for clearness.

Consider the automaton depicted in Figure 1. The nodes aexday binary vec-
tors, which represent values for the statés= (x1,X%2). Arcs connect the states and
indicate possible transitions between the states. Manke=ddeenote that the transition
depends on a certain condition on the input variabldéno marking is specified on
an arc a transition is possible for any choice of inputs. Inegal, leaving arcs do not
determine unigue successor states, i. e. the automaton4ideterministic.

We will omit the symbok in the denotation of; [k] andu[k] and abbreviate [k+1]
by X. Also, the logical interconnection of stateg xp, inputu and successor states
X1,X, is represented by a state table (see Figure 1). Regardiigreacin the state
table, a transition is possible if and only if its functiorwais fc = 1.

Therefore, in view of Definition 13 and along the lines of ExdeB, the disjunctive
normal form of the functiorf with respect to the state table of Figure 1 reads

f (X1, X9, X1,X2,U) = UXGX7XoXa V UXGX] XoXa V UXGXq XoXa V UXGXq XoXa \V UXoXq XoXa
UXpX] XX V UXpX] XoXa V UX5X) XoXq V UXpXG XoXq V UXpXg XoXq \V
UXpX] X2X1 V UXpX] XoX1 V UXpX] XoX1 V UXoX] XoX1
— RIS iRV TRV GXi5ax  XgRL TR v

XpX1X2X1 V XgX1 XoX1 V UXpX1 XXy = 1, (13)
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Fig. 1. Graph of an example automaton (above) and its
state table (right hand side). The column marked
fc signifies whether a transition frorfx;,x2)T to
(x1,%)T under inputu is possible and vice versa.
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HOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHO__
HOHHOOOHOOHOOHOHHOHOOOOHOOHHOHOH__

where we used the abbreviatian b = ab. Observe that all disjunctions can be
eliminated according to

avaV..Va=1 = (Iea)Ar(lea)A...AN(1da) =0, (14)

which amounts to applying DeMorgan’s law. The remainingatiems in (13) vanish
by settinga=a® 1. As a result, we get a function consisting of the operatioand®
only. Therefore, via (9) and (11) we finally obtain the reprastion of the transition
function in the finite fieldF,

F0q20, X0, %,0) = (14 (14x5)(1+Xq) (14 %) (14 x1)) -+
(14 xoxpxox1 ) (1+uxoxg (14 X2) (14x1)) =0, (15)

& (X7, %0, X1,X2,U) = Xq + X1Xq + XoX] + XoX5 + X1 XoX5 + X1X5 + X1X1 X +

X1X2X] X5 4 X1 U+ X1 X1 U -+ XX U+ XgXXq U = 0. (16)
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3.3. Simplifications Using Reed-Muller Generator Matrices

The regular tabulation of the state table in Figure 1 — whgchihary counting, row

by row — allows an efficient calculation of the transition étien f. So-called Reed-

Muller codes, well-known from linear coding theory, areddsn this property [8].
Consider the recursively defined Reed-Muller generatorioesst

. (Gica O .
Gi = <Gi1 Gil) ., Goi=1. (17)

Then following [8] we have the simple matrix—vector prodoeerFo

Con+m = Gonymfec, (18)

in which canm is the (22"™ 1)-vector of coefficients associated to a particular tab-
ulation of monomials in a(22”+m, 1)-vector ¢onim. In generalponim contains all
monomials of then statesx, of them inputsu; and of the next stateg. The vector

fc is the (22™M 1)-vector with respect to the rightmost column in the statdetalf
Figure 1. Using equation (18) the demanded transition fanct

1! ! T
f(XlﬂXZa e Xy X1, X2, 00, Xn, U, U2, . Um> = C2n+m¢2n+m+ 1=0 (19)

follows. It remains to explain how to tabulate the monomial¢z,.m. We return to
the example of Figure 1 with = 2 states andh= 1 inputs. In this case we have

o 1
0 X

X2
X1%2
X
x1X]
xX|
XXX
)
xlxé
xzxé
Xlxzxé
X{%y
X109
X%
v

Jbs=| i | (20)
XU
XU

X XU
xju

o

xxqu
Xpxqu
x1XX{u
xpu
X1 X5u

/
XpXpu
X1 XpXoU
Xpx5u
X1 X] XU
XpX) XpU

v

A X1 XpX] Xpu

&
\
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with the Reed-Muller generator matis and the vector of monomiagss. The tabu-
lation regarding the elementsf is carried out recursively: if we start the inspection
with the vector entry 1 from the top, then for every new vaegathe vector is extended
by a copy of the former part of the vector multiplied with thewnvariable, and so on.
Substituting (20) in (18) and (19) verifies the result fror6)(1

3.4. Enhancements and Generalizations

Abstracting from the latter exemplary viewpoint, in gerlava obtain a multilinear
transition functionf : F x F§ x FJ' — F»

f(x[k+1],x[k],uk}) = 0=

8% [lierd)) ([1x0)  [unld). @)
8§1€2In §5e2In S3e2Im jesr €52 mes3

with x € F5 andu € FJ, where the set§, = {1,2,...,n}, I, = {1,2,...,m} are
index sets, 2 denotes the (possibly empty) power setZgfand 515253 are con-
stants inF». If for fixed x[k] andu[k] we focus orx[k-+1], we might observe multiple
successorsg[k+1]. Strictly speaking, we then should call (21) not a functibat a
relation. As a consequence, the finite field representafibhi¢ capable of modeling
non-deterministic finite state automata as well.

Leaving aside the details in the following paragraphs, faavily, we will only
bring to light the ideas of some straight forward extensiftte setting.

Additional States

Considering more detailed and refined process models dtémei remedy against
the lack of information in coarse automaton models. In thecpss, usually further

states and inputs have to be added to the automaton modele Tingher states and
inputs may be integrated by concatenating the state taliteedaft with the respective

columns of the new states and inputs (see Figure 1). Usirasteciated, bigger Reed-
Muller generator matrices, the calculation of the monom@éfficients in the state

transition function still amounts to the same procedurevéier, one special feature
of the Reed-Muller approach comes to the fore: only the adeffts referring to the

new variables need to be calculated, the coefficients ofdiradr representation are
left unchanged. This is one major advantage of the Reede¥agiproach.

Partially Defined Transition Functions

A partially defined transition function is a functidn: X x X xt{ — F, which is
defined on proper subsef$ C 5 andi/ C 7', respectively. This means that only
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some states and inputs may be defined, for example not thewboiber of 2 states.
Accordingly, only a few rows in the entire state table may bérged. To this account
a check functiom (xa, ..., Xn, U1,...,Un) can be introduced in the same mannefas
The value of equals 0 if the respective state and/or input is defined, aiselvhere.
Finally, the check functiom and the transition functiori can be combined in one
single equation. Thus, for a statf] and an inputi[k] the extended transition function
is 0 if and only ifx[K] € X andulk] € .

Determinism

In case of deterministic automata, the state tables candteped as illustrated in
Figure 2. Thus, by employing the methods of Section 3.2 aBdB explicit transition
function, a so-called state equation, can be determinad.rébults in

x[k+1] =f(x[k],ulk]), x€F5 ueF3 (22)

and reminds of a discrete time system in the continuous whbrlithe next sections we
will restrict the further examinations to the determirddinear case.

[un [ Jwe [w [ [Jx[xa] [ ] % [x |
0Ol ---To0 0 Ol .-1T 01O fo1 fo1 f11
ol .- o0 0 ol .-| o0 1 fn2 fa2 f12
ol ---| o0 0 ol|l---|l 110 fns fos f13
B R R R R TS I T T

Fig. 2. Scheme of a state table for a deterministic automaton

4. ANALYSIS OF AUTONOMOUS LINEAR MODULAR SYSTEMS

The modeling power of the finite field framework shall be exaadl. To this end, we
consider a deterministic, linear system of the form

x[k+1] = Ax[k] +Bulk], xe€F5 ueF3, (23)

a so-calledinear modular systenfLMS).2 The matrixA € F;*" is the dynamics
of the system, the matriB € FJ*™ is the input matrix. At first, we examine linear

SUsually LMS are defined ovdfy for some prime numbeg. Here, we will loosely speak of an LMS when
we assume an LMS with characteristje= 2, unless it is specified differently.
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systems wittB = 0, according to the simplest automaton description in (2t is
x[k+1] = Ax[k], xeTF5. (24)

With regard to these linear systems the analysis for cypkei¢dic) states is carried
out, recalling some results from [6, 13]. The propertiesrifdifields and polynomials
over finite fields, which have been presented in Section 2,pndlvide the concepts
necessary for solving the analysis problem.

4.1. Periodic Nullspace Decomposition of a Companion Matxi

Since a graph of an automaton typically shows cyclic andlachehavior the state
space of the respective LMS decomposes into aperiodic amadpesubspaces. It is
clear that in the autonomous case any information must badad in the dynamics
A. Thus, we ought to investigate for information about periodic states which are
characterized by the following definition.

Definition 14 (Period of a State)
A statex; of an LMS is calledr-periodic if

Xt € Xy, Xpi= {EGFQHTGN,E:ATZ AVieN,i <T,Z7éAiE},
in which A% is denoting the set af-periodic states.

Regarding the linear system (24) we immediately obtain ¢etion
(AT+1)x; =0 (25)

for determining ther-periodic states; € F5. An obvious brute force procedure for
calculating tha-periodic states would be to solve the lineath order system (25) for
all x;,T=1,2,...,2". However, this quickly becomes numerically intractablesre
for small orders. Instead, we propose to benefit from a similarity transfofri\o
into its rational canonical form ;. This transform only renumbers the state vectors
and retains the elementary divisor polynomials uncharihed, periodicity properties
are preserved. As a consequence, it is possible to examenpettiodic subspaces
by the rational canonical form of the dynamics, introduaeéduation (5), which is
structurally simpler. Accordingly, by transformifg= Tx we rephrase (25) as per

(AT+1)x% =0 <= (diagCj,C5,...,C)+1)% =0, (26)
which equivalently can be expressed as
(Cll+1)%; =0, i=1,...,N  T=Icm(Ts,Tz,...,Tn), (27)

in which eacht; € N is minimal,XT = (%, %, ..., %y ) With & € 9% x ... x FN, d
is the dimension o€, n= S ; d and Icn{.) denotes the least common multiple of its
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arguments. Equation (26) indicates that the state spa@grrses intdN subspaces
which can be examined separately. Note that for nilpotempamion matrice€; the
matrixC{' +1 is non-singular. In this case (27) can hold for the zero weanty, and in
consequence it is sufficient to confine the examination oliccgompanion matrices
Ci. Moreover, asA4 is a rational canonical form it contains companion matrices
with respect to powers of individual irreducible polynofsianly, hence, it remains to
consider relation (27) in view of a companion maixvhose defining (characteristic,
minimal) polynomialpc(A) = cpe(A) = mpe(A) can be written as

pC()‘) = (pirr,C()\))e- (28)

The examination will be organized in four stepfirstly, it will be recalled that the
kernel of a matrixpc(C) can be decomposed in@nested linear subspaces the di-
mensions of which shall be determined in a second step. \Wétkmowledge about
these dimensions, the number of states in the respectigpaab is clear and the pe-
riod of its states can be be derived. Finally, the superjpositf the results for all
i =1,...,N subsystems leads to the main theorem of this section.

The following property follows from the fact that the rankfideency of singular
matrices strictly increases by its exponent.

Lemma 1 (Nesting Property of Nullspaces)

Let pc(A) = (pir,c(A))® € F2[A], e € N, be thed-th degree defining polynomial of a
companion matrixC € F?Xd. Assume the basis polynomigt irr (A) to be irreducible
overlF,. Then the strict inclusion property (nesting) applies

NoCNiCNoC...CNe=F$, (29)
where theVj are nullspacesy := {0} and\j := Ker((pirc(C))!), j =1,....e.
By virtue of the non-singularity of cyclic companion mag&c it follows

(Prc(C)!xj=0 <= C(prc(C)'xj=0 = (Prnc(C)) Cxj=0
for anyx; € Ker((pir,c(C))!), j = 1....,& which implies

Lemma 2 (Invariance of the Nullspaces)
Let (pir.c)® € F2[A] be the defining polynomial of the cyclic companion matrix

C € F$*4 with piyc irreducible. Then the = 1,...,e nullspaces of the matrices
(pir,c(C)) are invariant under the transformatiGron anyx; € Ker((pir,c(C))’).

In light of Lemma 2, forj = 1,...,edefine the maiC|y; : Nj — Nj such that
ClyyXj =Cxj, VXj €N (30)

4For brevity, only outlines of the proofs are presented.
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describes the action of the linear transfa@non the subspac#’; only. Consequently,

(Pirc(Clai ) %) = (Pir.c(C))xj,  ¥xj €] (31)
and asj lies in the kernel of\/; we have
(Pirc(Cly;)) X =0, Vxj €N]. (32)

Based on the nesting property, stated in Lemma 1, it can bersti@t(pir c(A)) is
not only an annihilating but the minimal polynomial of themivacwj, i.e.

Mpcy,, ) = (Pirc(\). (33)

Since to any minimal polynomial corresponds a companionirtite dimension of
which is the degree of its minimal polynomial, we conclude

Lemma 3 (Dimension of the Nullspaces)

Let (pir.c)® € F2[A] be the defining polynomial of the cyclic companion matrix
C € F§*9 with pirc irreducible ands = degpirc). Let the nullspacesV] :=
Ker((pir,c(C))!), j = 1,...,e Then the dimension of each nullspatgis

dim(Nj) = degq(pirc)') =0j. (34)

It remains to investigate the periods of the subspace statehis end, lets, kK € N,
denote the period of the polynomig c(A))*, hence

9N (Pirc(A) =A% —1 (35)
for some polynomiad(A) and therefore
9(Cla;) (Pir.c (Clag ) = (Clay ) — 1. (36)
Right-multiplication by an arbitrary statg € N yields
9(Clx;) (Pir.c(Cla; ) xj = ((Clay)™ = 1)xj. 37)
Thusx; is tx-periodic if
(Pir.c(Clw;))xj =0, (38)

which is the case ikj € Ni. DefiningDj := Nj\Nj_1, j = 1,...,e, the states irDg
turn out to be exactly those which arg periodic, and we obtain

Lemma 4 (Period of the States irDj)

Let the dynamics matrix of an LMS be given by a cyclic companiwtrixC € F$*¢
the defining polynomialpir c )€ € F2[A] of which is the power of an irreducible poly-
nomial pir c. Furthermore, leD; := Nj\Nj_1, j = 1,...,e Then any state vector in
the setD; is 1j-periodic, where| is the period of the polynomidbir c(A))!.
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Recalling 8 = ded pirc), all g% —qU~Y? states inD; have periodt; such that
vj = (g% — qU=Y9) /1; cycles oftj-periodic states lie in the spad®j. Adding up
the number of states i®; from j = 1,..., e plus the remaining zero state results in

e . .
1+Zq16_q(171)6:qe6:qd (39)
=1

which shows that the entire spa1E§ is composed of these cycles. Collecting all lem-
mas and referring to Theorem 3 for the period of powered pmtyials implies

Theorem 7 (Periodic Nullspace Decomposition of a Companiollatrix)

Given a cyclic companion matri@ € Fng with respect to thd-th degree polynomial
pc = (pir,c)®, Wherepir c € F2[A] is irreducible with degre& such thatl = ed. Then
the associated state spdigeis entirely composed of periodic states as per

vo=1 cycles of length To=1
v1:(25—1)/T1 " T1=T
vy = (22 -29) /15 " T, = 21
vj = (218 20-19) /1 ” 15 =2t
Ve = (22— 219 /1 ” Te = 2let

where eachj, j =1,...,e, is the least integer such thdt2 j.

The periodic decompaosition can be written in a more converigem by applying

Definition 15 (Cycle Sum)
The cycle sunk is the formal sum of cycle terms

X =vq[t1] Fvolto] + ... F k[T ], (40)

in which the cycle ternv;[t;] denotes; cycles of lengtht; and the binary operation
+ satisfiesy;[t] +v;j[t] = (vi +V;j)[t]. The number of cycles il is denoted byNs.

Using this definition the result of Theorem 7 can be rewritten

c20—1 2% 2% D1
Z=1[1+ [Ta] + L A LOF (41)
T T2 Te

inwhichtj, j =1,...,e marks the periods of the polynomi(ajirr,c()\))j which can
be computed via Theorem 3.
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4.2. The Cycle Sum of an Autonomous LMS

As we have developed the cycle set theory for one single coibpanatrix we just
have to superpose the results for ldlicompanion matrices iA 4. To this end, we
consider the followindgd; + d2) x (d1 + d) block-diagonal matrix

C= (%l C(:)Z) , Ce Fngdl,Cz IS ngXdz

for which we may assume the corresponding cycle sums
2i= 1[1] +Vi[Ti], i= 1,2 (42)

Therefore, we see that the subspadgsand X, associated t&€; andC, consist of

d1 = 1+4v111 andd, = 1+ V212 elements, respectively. In view of the Cartesian prod-

uctX = Xp x X, the numbed of elements in the spack associated t€ is
d=1+Vv1T1 + VT2 +V1V2T1T2

There are only 4 possible combinations between the persatispaceds andX>

1. Combination of the O-state iki; and the O-state i’
= the number of 1-periodic O-statesinis 1

2. Combination of the O-state it} and thev, cycles oft,-periodic states it
= the number of,-periodic states it is vo1,

3. Combination of the; cycles oft;-periodic states it; and the O-state iR>
= the number of1-periodic states it isv11;

4. Combination of they; cycles oft;-periodic states irt; and thev, cycles oft,-
periodic states irt>

= the number of Icr(t112)-periodic states itk is vivoT1T2

As a consequence of point 4, the number of cycles
V1V2oT1T2
Vip = ————— =V1V20cd(11,T2
ICm(Tl,TZ) g d Y ))

which comprise the Icift1,T2)-periodic states can be determined by calculating the
greatest common divisor af andt,. Hence, we may define a product of cycle terms.

Definition 16 (Product of Cycle Terms)
The product

v1[T1)v2[T2] = v1voged(ty, T2)[lem(Te, 12)] (43)

is called cycle term product. The expressions(ged2) and lcn(ty,T2) are greatest
common divisor and least common multipletaf T, respectively.
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By means of the denotation of sum and product of cycle terros) {42) we extend
the notion of product to the superpositiarof the cycle sum&; and,

=217 = (L1 +va[1])(L[1] +v2[2]) =
1[1]) 4 va[ta] + v2[t2] + viveged(Ti, T2)[lcm(T1, T2)]  (44)

The next theorem is an obvious generalization of the latter.

Theorem 8 (Superposition)
The cycle sunk superposingN cycle sum;,i =1,...,N can be calculated distribu-
tively by the product

S=513,3N. (45)

All together we finally have shown

Theorem 9 (Cycle Sum of an Autonomous LMS)
Let the dynamic# = diag(Cy,...,Cn) € F3*" of an autonomous LM$ be block
diagonally composed of=1,...,N cyclic companion matriceS;, each with respect
to one of thei = 1,...,N elementary divisor polynomialpc, € F2[A] of degreed;.
Let each elementary divisor polynomig¢, be given in fully factorized fornpc, =
(pirr,c;)® subject to its irreducible factor polynomigi; c; of degreed; such thatl =
& 9. Then each elementary divisor polynomgg contributes the cycle sum
S . 20 _ 9O . S —-1)9 .
5 =11+ 2] 4 2 .2[£ﬂ+m'§1—§il{£ﬁ, (46)
Tg') T(2I> Tg)

wheret! denotes the peridaf the polynomial Pirr.C; )j. The cycle sunk of the au-
tonomous LMS follows from Superposition of all cycle sukss pez =313 - - 2.

Remark 4
As already pointed out in Remark 1, a simple consequence&dBim 9 is that nilpo-
tent elementary divisor polynomials are not related toqaid subspaces.

Subsumingly, the whole cycle sum of a linear modular systeer B, can be calcu-
lated along the following algorithm:

1. Calculate the Smith normal for®&A) of A by unimodular left and right trans-
forms onAl + A via polynomial matricedJ(A) andV () (alternatively calculate
the rational canonical form 4 of A).

5At least here we are justified to have introduced the same elynfbr the period of a state although firstly
T was introduced for the period of polynomials in Definition 7.
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2. Determine theN elementary divisor polynomialgi(A),i = 1,...,N of A by fac-
torizing the system invariants B(A).

3. Assign the period$§'> to each polynomiapi{irr A), j=1,...,8 with pi(A) =
po, (N) andpi irr (0) # 0 (due to Remark 4 we omit polynomigdgA) = A k € N).

4. Compute the cycle suixy for each elementary divisor polynomigl(A).

5. The cycle sunk of the entire automaton then follows by distributively sigesing
all cycle setg;,i=1,...,N.

4.3. Example

Consider the dynamics matr € F3*° of an LMS with its respective Smith form

S(A) =U(A)(Al + A)V(A) according to

1001 (A2+A+1)(A+1)2 0 00
11001 0 A+1000
A=|00101|, SA) = 0 0 100
00001 0 0 010
1000 0 0 00

Then the only invariant polynomials of the matAxwhich are different from 1 are
(M) = AN4+A+1DA+1)? (M) =A+1.
Hence A has the elementary divisor polynomials
PN =A24A+1 p(N)=(A+1)2%  ps(A)=A+1,

the irreducible basis polynomial degrees of which@re- 2, 5, = 1 andds; = 1, re-
spectively. In view of Definition 7 and Theorem 3 we calcultie associated periods:

prir(\) = pLA) A+ 1 — V=3
P2ir(A) =A+1 — T(lz):l
(P2ir V)2 = A +12 =241 —  1P=2
P3ir(A) =A+1 — P21
Theorem 9 yields
1 =11]+1[3], Z=21]+1[2, Z3=2[1]

and by superposition according to Theorem 8 and using (1bj43), we get

5 = 51555 = (1] 1 13))(211] + 1(2))(2[1))
(2[1) 4+ 1[2] + 2[3] + 1[6])(2[1]) = 4[1] + 2[2] + 4[3] + 2[6] .
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Therefore, the considered linear automaton given by theyecs A comprises 4
cycles of length 1, 2 cycles of length 2, 4 cycles of length @ 2cycles of length 6.

5. PROPERTIES OF LINEAR MODULAR SYSTEMS WITH INPUTS

As the main goal of this paper involves the synthesis of arobfdr linear discrete
systems oveF, the notion of controllability of an LMS has to be taken intcaant.
For this purpose the well-known solution

x[k] = A¥x[0] + zAkli Buli]. (47)

of the state equation (23) of an LMS is recalled from [2]. Ogvin this result, con-
trollability can be defined for an LMS and a controllabilityterion can be specified.

Definition 17 (Controllability)

An n-th order LMS id -controllable iff for all ordered pairs of statés;, x2) the system
can be driven from state; to statex, in exactlyl steps. An LMS is controllable iff it
is [-controllable for somé.

Theorem 10 (Controllability Criterion)
An n-th order LMS isl-controllable iff the matrixB AB ... AI=1B) has full rankn.

This theorem will be used for establishing the controli&itompanion form, which
can be determined by applying linear transforms on the statation.

Using Theorem 10 the reduced controllability mattix FJ*" of an LMS can be
determined by choosinglinearly independent columns fro(®8 AB ... A'~1B) with
regard to minimal multiples oA, see [17]. This procedure yields the matrix

L= (b1...A% by bp...A% My ... by ... A% hy) (48)

where the vector;, i = 1,...,m, are the respective column vectors of the input matrix
B and the numbers € N are the controllability indices with the properties:

¢ the set ofg is unique,

¢ the set ofg is invariant with respect to similarity transformations,

e yMici=n,

e thelisto; := lelej, i=1,...,m, implies a structural system decomposition.
Given a controllable LMS, a characteristic companion fofrthe state equations (23)

can be found using a similarity transformation which empl@¥8) and the set of
controllability indicesc; [17]. It is called the controllability companion form (CCGF)
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marked by the superscriptin the subsequent sections. The system representation in
F

CCF reads 00000
Ixx- N X X
000--00

ASa - A% Odx:xx
0 (49)

xXOo
xXOo .
-

with Ai"j € ngxcj. For separating structural and informal properties of tystesm in
CCF the rows with undetermined entrieare collected in the matrices

row o; of A row o, of B® I1Xx X ---X

AC row g, of A° BC — row o, of B¢ 01 x ---X (50)
o . ’ o . - . ", .
row om of A°¢ row o, of B¢ 000---1

These matrices will be needed in Section 6.3. In light of theve-stated definitions
we can now describe the objectives of our approach and cite@amental theorem
which will provide a solution to the synthesis problem.

6. CONTROL SYNTHESIS FOR LINEAR MODULAR SYSTEMS

In the previous sections characteristic structural prigeof subspaces of the state
space associated to an LMS have been exposed. It was pointguhaticularly, that
the analysis is based on the properties of elementary dé/idfcthe system dynamics
A. In the sequel we propose a synthesis procedure which abbfiing the given
system with desired elementary divisor polynomials and tnposing a specific cycle
sum on an LMS. To this end we will pursue the idea of state faekib

6.1. State Feedback

Changing the elementary divisor polynomials, which is eglent to changing the
system invariants of an LMS, is closely related to changhey¢igenvalues of the
system dynamic#&. From the theory of linear discrete time systems over the fiel
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of real number®R it is well-known that changing the eigenvaluesfftan be done
by introducing a (static) linear state feedback of the forfll) = —Kx [K] +w[k] with
the constant feedback matrik € F)™" and the reference input vectark] € FJ".

Referring to this concept it is intuitive to introduce a lanestate feedback
ulk] = Kx[K] +w[K] (51)
for the control of an LMS as well. This leeds to the closedplstate representation
X[k+1] = (A +BK)x[k] + Bw[K]. (52)
The invariants of the dynami@s+ BK can be specified by the state feedb&ck

6.2. Structural Constraints

The closed-loop system (52) complies with the structureris, recalled from [9].

Theorem 11 (Rosenbrock Structure Theorem)

Given ann-th order controllable LMS with controllability indices > ... > ¢y, and
desired monic invariant polynomiatsk € Fo[A] with degcik) > ... > dedCmk ),
CitiklCik,i=1,...,m—1,andy",degcik) = n. Then a constant matrix such
thatA 4+ BK has the invariant polynomiatsk exists iff fork=1,2,...,m

gdegci’K) > gci ) (53)

Rosenbrock’s structure theorem entails a limit when stgvior maximal liberality
in specifying invariant polynomials. There are many methfut computing a linear
state feedback, mainly by specifying desired eigenvalussine “time domain”.
Intuitively, pole placing methods seem to be applicablet 8pecifying invari-

ant polynomials is a stronger requirement than specifyiggrezalues. Consequently,
standard pole placing methods can be ruled out. An approhithwenables the mod-
ification of the eigenstructure of a system is the paramapjwroach [15]. However,
this approach is not capable of serving the requirementhésubsequent reasons.

Remark 5
Synthesis of state feedback via the parametric approactamesderable drawbacks:

e An assumption in this approach is that the open-loop andltsed-loop eigenval-
ues are distinct, which is a very restrictive assumptiomeftamework of LMS.

e Assigning multiple eigenvalues, which is indispensabtdlie realization of rather
standard cycle sums (e. g. cycles of even length), turnsodug ery cumbersome
as the computation of generalized eigenvectors is required
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* As eigenvalues of matrices over a finite fiéig are roots of a polynomial over a
finite field the notion of zeroes is important. These zeropiglly lie in some ex-
tension fieldFq that deeply depends on the factors and the degree of thequolgh
itself. Moreover, these extension fields have no unique iiefielement [12]. This
is a severe difference to the field of real numbers in whicholynomial inR[A]
can be factorized into quadratic irreducible polynomialer® (see Definition 6).
Hence, any zero of a polynomial R[A] lies in the corresponding extension field,
which is the field of complex numbe@with unique defining element= /—1. In
general, such a factorization is not possible for polyndsiialy[A]. Consequently,
the computation of eigenvalues in the extension fieltl-péntails enormous sym-
bolical computation effort.

¢ The structural theorem imposes constraints on realizabkeriant polynomials in
the closed-loop system. Thus, if the task is to assign iamapolynomials this is
much more straight-forward in the frequency domain evemrémtinuous systems.

In view of these issues we will define an image domain for LM&mnext section.

6.3. An Image Domain for LMS

Similar to discrete continuous time systems an image dogwirbe defined [14].

TheA-Transform

Definition 18 (A-Transform)
The A-transform for a causal, discrete functibnN — 5 is

F(a) := A(f[K]) ::kif[k]a‘k. (54)

Some relevant relations are shown in Figure 3. Applying (Bé)state equation (23)

original domain (function ok) | image domain (function od)
Svay fy[K] SvayFy(a)
flk+1] aF(a)+af[0]

Fig. 3. A-transform for causal functions f[K]

can be transformed into thé-domain and as a first outcome the solution of the state
equation can be verified.
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Solution of the State Equation

Referring to Figure 3 thel-transform of (23) is
aX(a)=AX(a)+BU(a)+ax[0]. (55)

Parameters in capital letters with argument denote funstio the. A-Domain. This
representation directly leads to thetransform of the system state

X(a) = (al +A)"1(BU(a) +ax[0]), (56)

which can readily be used to determine the well-known sotutf the difference
equation. Therefore, we need the inverse transform aftheansform.

Definition 19 (Inverse of theA-Transform)
The inverse transform of thd-transform is given by

A~Y(F(a)) := f[0], f[1], f[2], ... (57)
flk] == [a“F(@)]ina. (58)

where the operatciakF(a)]md provides the addend of the rational funct'mhh‘-(a) that
is independent cé.

Using this definition, the state vectgfk] in the original domain can be computed.
For this purpose, we apply the formula for the geometriceeseon the expression
(@l +A)t=1(1+4)"t=13y* (%) and obtain

x|k = [aKX(a)} "
15 (4) (o3 uia t-avo)]
= [(g a0l e [(g e ) e ( gua)],,

- {iAi dix(o)] + _iA‘ Bulk—i—1]

= A¥X[0] + Bulk— 1] + ABulk— 2] +...+ A*"1Bu[0],

- [ak (al +A)-1(BU(a)+ax[O])]md

finally having used causality. The last expression equal¥. (4owever, the system
representation in thgl-domain cannot only be used to solve the state equation. Its
most important feature is reflected in the context of aseigtte cyclic properties of
the system.
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Transfer Matrix
In view of (56) we can definE(a) in
X (a) 00" F(a)U(a) = (al +A)"1BU(a). (59)
X|0|=

as the system transfer matrix. It is obvious that the cydlwpprties of the system
are contained ifr(a) as the properties of a periodic system state are describtteby
expressiorfal +A), or by (al +A)~1, alternatively. In the next sections we will com-
pute a linear state feedback using (59) by employing therfmotyal matrix approach.

Polynomial Matrix Fraction of the Transfer Matrix

For a better understanding, the most important notions andapts which evolve in
the polynomial matrix approach have to be recalled [17, 11].

Definition 20 (Polynomial Matrix Fraction)
A right (left) polynomial matrix fraction RPMF (LPMF) of a tanal matrixR(a) is
an expression of the following form

R(@a)=N(a)D*(a) (R(a)=D *(a)N(a)) (60)
with the polynomial matrices denominator matiixa) and numerator matriX(a).

By means of this definition the following theorem can be state

Theorem 12 (Conservation)
The product of an arbitrary polynomial matf(a) and an arbitrary unimodular poly-
nomial matrixU(a) has the same invariant polynomialsR&).

Due to the fact that the transfer matrix in (59) is a rationaknix, known results on
rational matrices can be utilized.

Theorem 13 (Existence)
For any rational matrix therR(a) exists a right (left)-prime polynomial matrix frac-
tion representation.

Theorem 14 (Invariant Polynomials)
LetR(a) be a rational matrix. Then

¢ the numerator matrices of arbitrary right- or left-primdypmmial matrix fractions
of R(a) have the same invariant polynomials and

¢ the denominator matrices of arbitrary right- or left-prip@ynomial matrix frac-
tions ofR(a) have the same invariant polynomials.
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As the transfer matrix representation in (59) is a left-rpolynomial matrix fraction,
Theorem 14 reveals that the invariant polynomials of theod@nator matrix of each
polynomial matrix fraction oF(a) are equal to the invariant polynomials of the system
dynamicsA. For a system in CCF (see equations (49) and (50)) an anakjtiession
for a right-prime polynomial matrix fraction can be detenex as [17]

F(a) = Q(a) ((BS) (@) +A5Q(@)) (61)
where the matrice®(a) andy(a) show the structure
a 0 .- 0
acl.—l O O
0 1.0 I
Q(a) = 0 S O Y@= ] (62)
ST 0 0--am
0 0 1
o 0 ..:acn;—l

This means that if the LMS is given in CCF, it is straight-fand to find an expression
for the polynomial matrix fraction of the system transfertrixg59). Similarly, for the
closed-system (52) we have the RPMF

c
AU,K

F(a) = Q(a) ( (B5) v(a) + (A +B5KY) Q@) ) (63)
Dk (a)

with the following properties:

e The numerator matriQ(a) of the RPMF is left unchanged by linear state feedback.

e The denominator matrilk (a) and the corresponding closed-loop system dynam-
ics A + BK have the same invariant polynomials.

e The controllability indices equal the column degfeekthe denominator matrix.

Since the feedback matrk can be uniquely determined @ik (a) in (63) is known,
finding an adequate state feedback for fitting a closed-1dd§ with desired invariant
polynomials amounts to determine a denominator m&ixixa) with the properties:

1. The invariant polynomials ddx (a) coincide with the desired polynomiatsk (a).

8This is the highest polynomial degree in the correspondaigron.
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2. The column degrees 0fx (a) equal the controllability indices of the LMSY

With Dk (a) = (BS) 1D (a) it suffices to consideDy, (a) as(BS) ! is unimodular
and, thus by Theorem 1By (a) has the same invariant polynomialsixs(a).

6.4. Main Theorem

With the results from the previous sections the main thedi@nthe synthesis of a
linear state feedback can be stated.

Theorem 15 (Synthesis Algorithm)

Let a controllable LMS be given in CCF, let, i = 1,...,m be its controllability in-
dices, letcik € Fo[a), i = 1,...,m, be desired invariant polynomials and &t(a) =
diagicik (a)), i = 1,...,m with degcik) > ... > degcmk) and 3", degcik) =
$™, ¢ = n. The following algorithm is giver:

1. Check the structural theorem fgrandc; k (a). If (53) is fulfilled go to step 2, else
such a state feedback matkixdoes not exist.

2. ExamineD*(a).
— if the column degrees &@*(a) equal the ordered list of controllability indices

gotostep 5.
— else detect the first column ob*(a) which differs from the ordered list

of controllability indices, starting with column 1. Denatlis columncol.
(degcoly) > cy).

— Do the same beginning with columm. Denote the specified columeoly.
(degcoly) < cqg).

3. Adapt the column degrees bf (a) by unimodular transformations.

— Multiply rowy with a and add the result tww, = D*(a) — D" (a).

— if degcol})=degcol,)—1
— D*(a) —» D""(a) andgo tostep 4.

— else
— definexr := degcol,) — degcoly) — 1
— multiply colj with a" and subtract the result froool] . = D* (a) — D**(a)

“Controllability indicesc; do not change by linear state feedback.
8For abbreviation, theth matrix columns and rows are denoteddmy androw;, i = 1,...,m, respectively.
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4. Generate the column pointer ma#ik*+ of D**(a) = D*(a) = (F**)*.
D**(a) andgo tostep 2

5. Dg (a) ;== D*(a) andreturn D (a)

If the conditions from above are fulfilled, aixf (a) is returned by the algorithm, then
Dy (a) can be generated by linear state feedick

In Section 6.3 we stated thatlifc (a) is known then it is straightforward to compute
the state feedback matrik. To illustrate this, consider

Dk (a) = (B§) "Dk (a)
= (BG) (¥(a) +AZkQ(a)
which leads to
AgkQ(a) =Y(a) +B5Dk (a) (64)
and by comparison of coefficients the matrix
ASx =AG+BgK® (65)
can be determined, which directly providé$= (BS) 1(AS « +A$S) and thus a feed-
back matrixK ¢ has been derived which fits the given LMS with the desiredetes

loop invariant polynomialgi k, i = 1,...,m. Note that, in general, the solution for
Dj (a) is not unique.

6.5. Example

In this section we want to illustrate the latter notions bg tbllowing state equations

0100 00
00100 00
Xk+1]=]100000| x[kj+ [ 10| ulk].
00001 00
10010 01

9The column pointer matrix is a matrix with elementslip consisting of the coefficients of the greatest
degree monomials in each columnf *(a).
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Obviously, this LMS ovelf; is already represented in controllability companion form
and we can determine the characteristic matrke$8°, A5 andB§, which are

0100 00 0000
c __
00100 00 Ao—(loolg)
A= |o0o0o000|,B°=|10| —
00001 00 Bg<10>
10010 01 01

The controllability indices of the system from above ere= 3 andc, = 2. For syn-
thesis we want the controlled system to have the invarialynponials which have
been determined in the example of Section 4.3, beinga) = (a® +a+1)(a+ 1)?
andcyk (a) = a+ 1. So the controlled system will have 4 cycles of length 1, ey
of length 2, 4 cycles of length 3 and 2 cycles of length 6.

For computing an appropriate state feedback we now use gjogithim proposed
in Theorem 15:

1 1 1

— ydedcik(a)=4>3yc=3
i=1 i=1
5 dego(a) =5> 3 =5
i=1 i=1

4 3
2 vy (& +@+a+1l 0
— D(a)_( 0 a+1)

4 3 2 2
2, Di(a) = (a +a’+a+la +a) . Dt (a) = ( a+1 a +a)

0 a+1 a+a? a+1
4 iy 01 . a+a% a+1l
— M@=(,,) ~D@= at+tl a+a
3, 42
2,5 s [+ a+l
- DK(a)<a+1 a2—|—a)

Now K¢ can be computed. With (64) we have

10
ao 3 3, .2 2
AC 20|~ (2 0 + 10\ fa’+a”a+1l)_( a° a+l
oK 01 0 a? 01/ \ a+1 a?+a at+1l a
—_—— —

0a (@) Bs Dk (a)
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and with (65) the feedback matrk®, which fits the given system with the desired
invariant polynomials reads

ke (10) 00111 (00000 ) (00111
“\o1 11001 "\10010/ ) “\01011) "
——

Bs Agke AS

a

7. CONCLUSIONS

An algebraic model over the Galois-Fiéld has been derived for finite state automata.
Starting from an exemplary prospect by referring to a gregdhiepresentation of a
non-deterministic example automaton we have presentediagecheme for com-
puting a transition relation, similar to a state space miondile continuous world. Two
ways for constructing this model have been pointed out: tiserfiethod invokes the
calculation of the disjunctive normal form, eliminationtbe negations and using the
law of DeMorgan. The second method is based on Reed-Mulleergéor matrices,
which proof to be tailored for the problem, implying muchdedaborate computa-
tions for determining the coefficients of the transitiondtian in view. In the general
prospect, both methods yield a scalar implicit polynormahsition relation over the
finite field . In order to examine the power of the model, linear modulatesys
have been concerned. For these systems we have deducedsaamgeand sufficient
criterion for determining all automaton cycles in lengtidamumber. For the applica-
tion of this criterion, periods of particular invariant gobmials, i. e. the elementary
divisor polynomials of the system dynamics, have to be daled. The latter is, using
computer algebra systems like Maple or Mathematica, a raihsy task to perform.
Since these invariant polynomials of the system dynamiltg éietermine the cyclic
properties of an LMS we have referred to the notion of feelpahich is known to be
an adequate means for specifying the invariants in the dtusep system. To this end,
we have obtained a structured representation of the giv&@emsyby first introducing
the controllability companion form and then deriving thdypomial matrix fraction
of the system transfer function after defining an image darf@ifinite fields. Based
on the Rosenbrock structure theorem we have presented aitlatg which decides
if a linear feedback exists that fits the system with desingdriant polynomials and,
if the decision is positive, computes an appropriate feeklbaatrix. Further research
will keep track of the computation of the cyclic state vestand of the nonlinear case,
since almost all practically important cases are multdinéor these systems, exact
methods for solving nonlinear systems of equations, faaimse employing Grobner-
bases [5], have to be taken into account.
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