
Reliable and Safe Operation of Distributed
Discrete-Event Controllers: A Networked

Implementation with Real-time Guarantees

Klaus Schmidt ∗ Ece G. Schmidt ∗∗ Jorgos Zaddach ∗∗∗

∗Lehrstuhl f̈ur Regelungstechnik, Universität Erlangen-N̈urnberg, Germany
(e-mail: klaus.schmidt@rt.eei.uni-erlangen.de).

∗∗Department of Electrical and Electronics Engineering, Middle East
Technical University Ankara, Turkey (e-mail: eguran@metu.edu.tr)
∗∗∗Siemens AG, Industrial Solutions and Services, Germany (e-mail:

jorgos-johannes.zaddach@siemens.com)

Abstract: Efficient controller synthesis approaches for discrete-event systems mostly provide a set
of interacting distributed controllers that are potentially implemented in networked controller devices.
Although the fulfillment of specified requirements and the absence of deadlocks is guaranteed by such
methods on a logical level, timing issues due to controller communication are not incorporated. Recently,
a formal communication model including real-time requirements for the reliable and safe operation
of distributed discrete-event controllers has been proposed by the authors. In this paper, the real-time
communication operation of such distributed controllers is discussed, and a sufficient condition for the
network bandwidth in order to meet the specified real-time requirements is derived. A simulation study
of a manufacturing system model with 50 distributed controllers supplements the theoretical result.

1. INTRODUCTION

The efficient controller synthesis for discrete event systems
(DES) has been an area of intensive study in recent years.
Approaches such as Barett and Lafortune (2000); de Queiroz
and Cury (2000); Leduc et al. (2005); Komenda et al. (2005);
Schmidt et al. (2007a); Hill and Tilbury (2006); Su and Thistle
(2006); Feng and Wonham (2006) result in interactingmodular
and decentralizedcontrollers, where controllers interact via
shared eventsthat have to be synchronized. However, since the
above approaches focus on controller synthesis, the realization
of this interaction remains an open question.

As long as the controllers are implemented on a single device
(PC, PLC, etc.), the interaction can take place internally,e.g.,
via shared memory. In contrast, if each controller is placedin
a different physical location, communication is required.This
issue is addressed in Schmidt et al. (2007b), where we propose
a communication modeland acommunication operationon a
shared-medium network for the control approach in Schmidt
et al. (2007a). In this context,communication messageshave to
be sent before a certain specifieddeadline.

Reliability (continuity of correct service) andsafety(avoidance
of catastrophic consequences) are components ofdependable
system operation as in Avizienis et al. (2004). In this paper,
the results in Schmidt et al. (2007b) are extended by deriving
a lower bound for thenetwork bandwidththat is required for
the reliable and safe operation of the distributed controllers.
Additionally, a large-scale manufacturing system model with
50 distributed controllers is simulated in order to validate the
formal results and to investigate the average performance.

The paper outline is as follows. In Section 2, we briefly discuss
our communication model. Reliable and safe communication
operation are investigated in Section 3. Section 4 providesa
simulation study, and we give conclusions in Section 5.

2. COMMUNICATION MODEL FOR DISTRIBUTED
DISCRETE EVENT CONTROLLERS

2.1 Distributed Discrete Event Controllers

In this paper we employ the hierarchical and decentralized
control approach in Schmidt et al. (2007a) for a distributedcon-
troller implementation. The approach is based on the assump-
tion that a large-scale DES is composed of several interacting
system components, and results in a setR = {R1, . . . ,Rk} of
k DES controllers for the different components in a hierar-
chical relationship as indicated in Fig. 1 (a). Each controller
is represented by a finite automatonRi = (Xi ,Σi ,δi ,x0,i ,Xm,i)
with a finite set ofstates Xi , a finite alphabet ofeventsΣi ,
a partial transition functionδi : Xi × Σi → Xi , an initial state
x0,i ∈ Xi , and a set ofmarked states Xm,i ⊆ Xi following the
notation in Cassandras and Lafortune (1999). We also introduce
Γi(x) := {σ ∈ Σi |δi(x,σ) exists} as the set offeasible eventsin
each statex∈ Xi . Interaction among the different controllers is
modeled byshared eventsthat have to occur synchronously in
all controllers that share the event. Formally, this interaction is
given by thesynchronous compositionof the controllers. Let
Ri ,Rj ∈ R be finite automata. Then, the synchronous composi-
tionRi ||Rj of Ri andRj is defined as the finite automatonRi|| j :=
(Xi|| j ,Σi|| j ,δi|| j ,x0,i|| j ,Xm,i|| j) with Xi|| j = Xi ×Xj , Σi|| j = Σi ∪Σ j ,
x0,i|| j = x0,i ×x0, j , Xm,i|| j = Xm,i ×Xm, j . For a state(xi ,x j)∈Xi|| j
and an eventσ ∈ Σi|| j , the transition function is

δi|| j ((xi ,x j),σ) :=











(δi(xi ,σ),δ j (x j ,σ)) if σ ∈ Γi(xi)∩Γ j(x j)
(δi(xi ,σ),x j ) if σ ∈ Γi(xi)−Σ j
(xi ,δ j(x j ,σ)) if σ ∈ Γ j(x j)−Σi
undefined otherwise

Accordingly, the overall system representation of the hierarchi-
cal and decentralized controllers evaluates to a finite automaton
R := ||ki=1Ri , and the controller synthesis procedure in Schmidt



et al. (2007b) guarantees thatR is nonblocking, i.e., from each
of its states there is a sequence of transitions to a marked state.
However, note that the state space ofRneed not be enumerated
explicitly, but is implicitly given by the decentralized represen-
tation of the controllers and the rule of interaction via thesyn-
chronous composition, which avoids thestate space explosion
problemencountered by monolithic implementations.

Example 1 illustrates the controller interaction.
Example 1.Fig. 1 (b) shows a simple hierarchical architecture
with two levels andk= 3 automata. It describes the operation of
a manufacturing unit with a conveyor belt (R1) and a machine
(R2, see Fig. 1 (c)) that is controlled by a high-level controller
R3. The conveyor belt notices if a product has to be transported
(fl/tr – product from left/to right) and moves accordingly
(mvr – move to right). It stops (stp) when a sensor signals the
product arrival at the machine (son), which is indicated by the
shared eventam (product at machine). Afteram, the machine
R2 starts processing (s) and finishes processing (f) after some
time. The high-level controllerR3 ensures that theshared events
am, f andtr occur such that the product is not transported to
the right before the machine finished processing.

R1 Rn Rx

R Ry

Rk

R1 R2

R3

R1

R2

tr

tr

am

am

am s

f

f

fl

son

soff stp

stp

mvr

mvr

(a) (b) (c)

11

11 112

2

2

3

3

3

4

5678

9

Fig. 1. (a) Hierarchical and decentralized architecture (b) sim-
ple example hierarchy (c) machine and conveyor belt.

2.2 Logical Communication Model

The decentralized controller representation introduced in Sec-
tion 2.1 is profitable especially if the respective controller de-
vices (e.g., PLCs) are placed in distinct physical locations and
connected by a network, e.g., on a factory floor. Nevertheless,
in this case, the occurrence ofshared eventsΣ∩ with Σi ∩
Σ j ⊆ Σ∩ for all i, j = 1, . . . ,k, i 6= j, has to be communicated
and synchronized. Consequently, each controller that shares an
eventσ ∈ Σ∩ must know whenσ is possible in all of the other
controllers that shareσ. Using the hierarchical system structure,
a communication model automaton (CMA)CRi for each con-
troller Ri ∈ R has been constructed algorithmically in Schmidt
et al. (2007b). The communication is modeled by identifying
shared events with systemtasksthat have to be completed by
communicatingjobsamong the distributed controllers. Due to
the hierarchical system structure, high-level controllers know
about shared event occurrences in their lower-level controllers.
This is reflected in the sequential order of job transmissions
of the proposedcommunication modelby initiating commu-
nication in the highest level and propagating it to the lower-
level controllers along the hierarchy. The main features ofthis
communication model are briefly outlined in Example 2.
Example 2.Fig. 2 depicts the CMACRi , i = 1,2,3 for the
respective controllers in Fig. 1 (b). Every state inCRi corre-
sponds to a state in the controllerRi , and the state labels and
markings are chosen accordingly (e.g., 11, 1 2, 1 3, 1 4 inCR3
correspond to 1 inR3). Assuming that each controller in Fig. 1
is in its initial state, the communication is as follows.

• R3 can execute the task (shared event)am and needs
to know when this event is possible in the low-level
controllers that shaream. Thus,R3 issues aquestion job
?amR3 for am to R1 andR2. This is realized by the transition
?amR3 in state 11 of CR3. CR1 and CR2 receive ?amR3
(transition from 11 to 1 2 with ?amR3).

• In the initial state ofR2, am is feasible. Thus,R2 can
directly send theanswer job!amR2 andCR2 changes from
1 2 to 1 3.

• in R1, am only becomes feasible after the string of non-
shared eventsfl mvr son stp occurred, and the answer
job !amR1 is given in the corresponding state 52 in CR1.

• If all answers (!amR1 and !amR2) have been received byR3,
it can send thecommand jobamc in the corresponding state
1 4 ofCR3 to make all controllers execute the shared event
am. 1 All low-level controllers can process the command
in their communication model:CR1 changes from 53 to
6 1, andCR2 changes from 13 to 2 1.

• The question-answer-command procedure repeats withR3
initiating communication forf.
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Fig. 2. Communication model for the manufacturing unit.

Formally, the outcome of the communication model construc-
tion is a tree structureTC = (C ,Ck,cC , pC ) (see e.g., Hopcroft
and Ullman (1975)) that captures the hierarchical relationship
of the distributed controllers. In this paper, theset of verticesC
denotes the set of CMAsCRi = (Qi ,J i ,νi ,q0,i ,Qm,i) for the con-
trollersRi , i = 1, . . . ,k with theset of jobsJ i = Jout,i∪̇J in,i that
are communicated from (Jout,i) and to (J in,i) Ri as described in
Example 2. Furthermore,Ck is theroot vertexandcC : C → 2C

andpC : C → C are thechildren mapand theparent mapsuch
that cC (Ci) is the set of childrenand pC (Ci) is the parent of
Ci ∈ C , respectively. Every vertex without children is called a
leaf. We also distinguish the set of jobsJσ that are sent for each
σ ∈ Σ∩, and callσc the command job forσ.

Observing that again interaction between the CMAs via the
exchange of jobs is modeled by jobs shared between CMAs, the
overall communication modelC = (Q,J ,ν,q0,Qm) is obtained
as the synchronous composition of the CMAs:C := ||ki=1Ck.
In particular, each state of the overall communication model is
composed of the state values of its distributed components.The
following properties can be deduced from the communication
model construction in Schmidt et al. (2007b).

1 The communication operation in Section 3.1 ensures the synchronous arrival
of amc at all controllers.



Properties: Let q = (q1, . . . ,qk) ∈ Q and J ∈ Jσ − {σc} for
σ ∈ Σ∩ s.t.νi(qi,J) exists for some 1≤ i ≤ k. Then

(1) for all j s.t.J ∈ J j it follows thatν j(q j ,J) exists
(2) for all j s.t. J ∈ (J j − Jout, j) it holds that there is aJ′ ∈
Jout, j ∩ Jσ s.t.ν j (q j ,JJ′) exists.

Property (1) states that whenever a job is communicated, all
CMA that contain the job either send or receive the job, while
property (2) makes clear that every CMA that received a job for
an eventσ can send a follow-up job for this event. Additionally,
it holds thatC is nonblocking and exhibits the same behavior as
the original controllers.

2.3 Requirements and Issues for Reliable and Safe Operation

The communication model introduced above describes the log-
ical behavior of the communication, i.e., the sequential order
of job transmissions. However, the fact that the communication
model is designed for distributed systems on a network, where
possible communication delays affect the system operation,
also has to be addressed. Specifically, issues such assystem
reliability and safety(the occurrence of a shared event has to
be detected fast in order to prevent an undesired situation)and
system performance(the occurrence of a shared event has to be
detected fast such that the communication does not slow down
the system operation) have to be accounted for.

Considering the controller representation, a shared eventσ∈Σ∩

theoreticallyoccurs if each controllerRi that sharesσ is in a
statexi ∈ Xi whereδi(xi ,σ) exists. According to the distributed
implementation with the communication model,σ physically
happens when the command jobσc is transmitted. Depending
on the physical interpretation ofσ, it has to be ensured that
the time between its theoretical and its physical occurrence
remains below an appropriate bound in order to fulfill safety
and performance requirements.

In our work, we incorporate such real-time requirements in
the communication model be introducing a mapr : Σ∩ → R∪
{∞} for the shared events, wherer(σ) represents the maximal
allowable time between the theoretical and physical occurrence
of an eventσ ∈ Σ∩ (e.g., the reaction time to a sensor event).
The execution of an eventσ ∈ Σ∩ in the worst case requires
the communication of all jobs related toσ, while the actual
event can happen any time between the transmission of the
first and the last job forσ. DenotingNσ the number of jobs
for a taskσ, a deadline dJ := r(σ)

Nσ is associated with each job
J ∈ Jσ. In this framework,dJ indicates that ifJ is ready to be
transmitted by its corresponding controller at timet0, then it has
to be sent att0 +dJ latest. A communication model with a map
r : Σ∩ → R∪{∞} as defined above is denoted acommunication
model with deadlines.

To sum up; the case where controllers synthesized according
to Schmidt et al. (2007a) are implemented in a distributed
manner and communicate via a network has been considered.
The communication modelwith deadlines for each controller
defines rules for job communication such that the behavior of
the communicating controllers and the original controllers is
equivalent. It is constructed such that jobs that are transmitted
by Ri , are received by all controllers that contain the respective
job. In doing so, it has to be ensured that whenever a controller
needs to transmit a job, it has access to the network before the
job deadline. This issue is addressed in the next section.

3. NETWORKED IMPLEMENTATION

3.1 Shared-Medium Operation

According to Schmidt et al. (2007b), the CMAs in Section
2.3 can be represented by a set of corresponding network
nodesN = {N1, . . . ,Nk} that are situated in different physical
locations (e.g., on PLCs, PCs) and can communicate via a
shared-medium network as in Fig. 3 (a).

Shared-medium networks have a simple and low-cost architec-
ture. However,collisions occur if more than one node send
messages at the same time. We provide acollision avoidance
policy for messages to be sent on the network. In the first
step, we proposetime-slottedoperation with fixed size time
slots ts such that the time instants for message transmissions
are synchronized among all nodes (see Fig. 3 (b)). Note that
such synchronization with an accuracy up to 100ns is for ex-
ample provided by the IEEE 1588 standard for Ethernet in
IEEE (2002) which is already implemented in the Intel IXP465
network processor and integrated in PLCs. Secondly, we exploit
the deterministic structure of the controller automata andthe
hierarchical relationship between controllers as follows. Each
node that sends a job knows which nodes will have to send a job
next, and attaches this information to the job in the form of a
communication request(CR). All of the nodes process this CR
and deterministically compute which node will transmit next.
To this end, thetime-slottedoperation together with the de-
scribed scheduling policy ensure that in each time instant,each
node uniquely knows the next node to send a message. Further-
more, due to the inherent broadcast on the shared medium, all
of the nodes can receive all messages synchronously.

0 ts 2ts 3ts

N1 Ni Nk

t

(a)

(b)

Fig. 3. (a) shared-medium network; (b) time-slotted operation.

3.2 Network Node

A network nodeNi ∈ N implements the following entities.

N1 a CMACRi ,
N2 anoutput bufferthat storesmessagesto be sent,
N3 aninput bufferthat stores received messages,
N4 a set ofactive tasks(shared event communications) cur-

rently initiated by the node,
N5 apriority queue(PQ) that storescommunication requests

as a tuple(N,e,d,T), whereN is a node to transmit,e∈R

is aneligibility time, d∈R∪{∞} is a deadline andT is the
active task that issued the request. The PQ is ordered such
that the CR with the smallest deadline is granted first.

In this setting, a CR(N,e,d,T) states that the nodeN has to
access the shared medium before the deadlined. The fact that
each node needs a certain amount of time to react to incoming
messages is captured by theeligibility time e. It determines the
earliest time instant when a node is ready to transmit a message.
Hence, the eligibility time and the deadline define the time
interval, where the message has to be sent, and can be derived
from the process parameters (e.g., the cycle time of a PLC) and
the communication model with deadlines, respectively.



3.3 Message

According to Section 2.2, communication between nodes re-
quires the exchange of jobs. In our approach, jobs are sent via
messagesthat are constructed offline for each nodeNi and each
stateq∈ Qi of its associated CMACRi .

A messageM of a sender nodeNi ∈ N in stateq∈ Qi contains:

M1 A set of jobs to be sentby Ni . To this end, the longest se-
quence of outgoing jobss= J1J2 · · ·Jm∈ Jout,i is computed
s.t. q′ := νi(q,s) exists.2 The set of jobs of the message
contains all jobs inJ1J2 · · ·Jm.

M2 A set of receiver nodes. If s is not empty, then all nodes
that share jobs in the set of jobs constructed above are
receiver nodes. Otherwise, there is no receiver node.

M3 A minischedulewith CRs. If s is not empty, then for
each job, a request(Nr ,e,d,σ) with the receiver nodeNr ,
an eligibility time e, a deadlined and the taskσ of the
job is generated. Otherwise, aself request(Ni ,e,d,σ) is
generated, wheree is the next time whenNi can send a
message, andd is the deadline of the valid taskσ in q. 3

M4 A set of tasks that have been terminated inNi . If in a set
of competing tasks, one task finishes first, the requests for
the other tasks become invalid, and have to be erased from
the PQ. LetT be the set of tasks initiated by nodeNi in
stateq and letT ′ be the set of tasks in stateνi(q,s) (s is
derived as in M1). Then the set ofterminated tasksis set
to T − T ′ as these tasks are no longer active and valid.

Altogether, messages constructed by a nodeNi in its stateq∈Qi
contain information about the current jobs to be sent, the times
when receiving nodes have to transmit their next messages and
tasks that are valid at the moment. Note that the collision avoid-
ance policy demands that at most one message is sent per time
slot. Hence,ts has to accommodate the longest message frame
with a frame lengthFmax which can be computed during the
offline message construction process of the individual nodes.

3.4 Communication Operation

The nodes transmit the messages prepared as defined above,
where the transmission times are determined by the respective
PQ. At system startup, the nodes are initialized as follows:

O1 Only the highest-level nodeNk constructs the output mes-
sage for its initial stateq0,k.

O2 All nodes put the CR(Nk,0,1,−) in their PQ.

After initialization, in each time slot

O3 Each node takes out the first eligible CR from its PQ.
O4 The node in this CR sends the message in its output buffer.
O5 All nodes insert the CRs in the minischedule in their PQ,

while adding the current time to both eligibility time and
deadline. CRs with terminated tasks are removed from the
PQ s.t. all nodes have the same PQ by exchanging CRs.

O6 The receiver nodes put the incoming jobs in their input
buffer and compute their according state update (evalua-
tion of the transition function for incoming jobs) and the
message in the output buffer (according to Section 3.3).

Example 3 illustrates the communication operation.
Example 3.Assume that at timet = 0ms, all nodes are in the
initial states of their respective communication model in Fig. 2;
2 It can be shown that such a sequence exists in each state ofCRi .
3 Such task exists because the communication model is nonblocking.

the time slot ists = 1ms; the eligibility times ofN1, N2 and
N3 are 1ms, 0.5ms and 1ms, respectively, anddam = 50ms.
Then the high-level nodeN3 has a message in its output buffer
with thereceiver nodes N1,N2, thejob to be sent?amR3, and the
minischedule(N1,1ms,50ms,am)(N2,0.5ms,50ms,am). Note
that 1ms and 0.5ms are the eligibility times ofN1 andN2, re-
spectively. Initially, each PQ contains the CR(N3,0ms,1ms,−)
(O1). At t = 1ms, N3 sends the content of its output buffer
(O3,O4). The operation of nodeN1 is as follows:

(1) PQ: the CRs (N1,2ms,51ms,am) and
(N2,1.5ms,51ms,am) are added (O5).

(2) input buffer computation: state update ofCR1 to state 12
with received job ?amR3 (O6).

(3) output buffer computation fors empty (M1-M4): re-
ceiver nodes: {}; set of jobs to be sent: {}, minisched-
ule: (N1,1ms,50ms,am); set of terminated tasks: {}. By
sending this message,N1 gives itself the opportunity to
transmit again until the answer job !amR1 can be sent.

(4) if the local stringfl mvr son stp occurs, then the new
state ofCR1 is 4 2. Output message fors=!amR1: receiver
node: N3; set of jobs to be sent: !amR1; minischedule:
(N3,1ms,50ms,am); set ofterminated tasks: {}.

(5) suppose the first eligible CR in the PQ is(N1,2ms,51ms,
am) at timet = 4ms (it is eligible as 2ms< 4ms).N1 sends
the answer in (4) toN3 if it is in state 42. Otherwise it
transmits the CR in (3) to itself.

3.5 Reliability and Safety Guarantees

Reliable and safe system operation is achieved if all jobs that
are ready to be sent by the nodes inN meet their deadlines
and are transmitted in the order specified by the communication
model. In this section, we first recall a result from Schmidt et al.
(2007b). It states that the communication operation in Section
3.4 guarantees that all jobs are sent in the order specified bythe
communication model and that a CR for each corresponding
message is put into the PQ of each node before its deadline.
Proposition 3.1.(Job order). LetJ1J2 · · ·Js be a job sequence
according to the defined communication operation with a set of
nodesN , and assume thatJl has to be sent byNi l ∈ N between
time el andtl , l = 1, . . . ,s. ThenJ1J2 · · ·Js is a job sequence in
C and there exists a CR forNi l betweenel andtl in the PQ.

Additionally, in order to guarantee reliable and safe system
operation, thenetwork bandwidth Bhas to be high enough
to send the message associated to each CR in the PQ before
its deadline. By intuition, the requiredB increases with the
maximum priority queue length Qmax, the frame lengthof the
maximum size messageFmax, the reaction time of the slowest
controller (maximum eligibility time)emax, and theminimum
job deadline dmin. We first establish a result forQmax, and then
provide a sufficient condition forB to guarantee reliable and
safe system operation based on the above parameters.
Proposition 3.2.(Maximum Queue Length). LetN be a set
of nodes with the communication model tree structureTC
and the communication operation as defined above. Then, the
maximum numberQmax of communication requests in the PQ
is finite and can be computed algorithmically.

Lemma 3.1 supports the proof of Proposition 3.2.
Lemma 3.1.(Requests per State and Event). Given the prereq-
uisites in Proposition 3.2, assume thatq = (q1, . . . ,qk) ∈ Q and
σ ∈ Σ∩. Let Cj be the highest-level node such thatJ j ∩ Jσ 6= /0
and define the subtreeTσ

q of TC as follows:



• Tσ
q is empty ifν j(q j ,J) does not exist for anyJ ∈ J j ∩ Jσ.

• otherwise,Tσ
q = (C σ,Cj ,cσ

C , pσ
C ), where eachCi ∈ C

σ has
the property thatcC (Ci) = {Cl ∈ C

σ|νl (ql ,J′) exists for
someJ′ ∈ J l ∩ Jσ}, i.e., C σ contains all nodes inC such
that each node that lies on a branch is in a state where
someJ′ ∈ J i ∩ Jσ is possible.

Then, the maximum numberCRσ
q of CRs in the PQ associated

with σ in stateq equals the number of leaves ofTσ
q and is finite.

Proof (Sketch) IfTσ
q is not empty, thenCj can send a message

with a jobJ ∈ J j ∩ Jσ. By Property (1) in Section 2.2,νi(qi ,J)
exists for allCi ∈ cσ

C (Cj), i.e.,Cj sends|cσ
C (Cj )| CRs. Each of

theseCi has a follow-up jobJi ∈ J i ∩Jσ such thatνi(qi ,Ji) exists
because of Property (2). Hence, sending jobs with associated
CRs to the children nodes inTσ

q can be repeated until the leafs
of Tσ

q are reached. The maximum numberCRσ
q of CRs forσ

occurs if each leaf has a CR. �

Now, Proposition 3.2 can be proved.

Proof Applying Lemma 3.1, the maximum numberCRq of
requests in the PQ for a certain stateq evaluates toCRq =
∑σ∈Σ∩

CRσ
q. Then, taking the maximum over all statesq ∈ Q

gives the desired resultQmax = maxq∈QCRq. �

The computation ofQmax suggests the enumeration of the over-
all state space ofC that was deemed computationally infeasible
for the controller synthesis. However, the above result only
shows the existence ofQmax. Practically, the hierarchical sys-
tem structure can be exploited to efficiently computeQmax.

We now deduce an upper boundts,max for the time slot such
that each CR leaves the PQ before its respective deadline, and
then conclude reliable and safe system operation for network
bandwidth higher thanBmin = Fmax

ts,max
.

Lemma 3.2.(Meeting Deadlines). Letrq = (N,e,d,T) be a
communication request that enters the PQ at timet0. Then,rq
can be scheduled before its absolute deadlinet0 +d if

ts ≤ ts,max := dmin−emax
Qmax+1 .

Proof First assume thatrq has the minimum deadlined =
dmin. For notational purposes, the entries in the PQ are num-
bered from 1 toQmax, the set of all CRsR Q is defined, and
the mapq : R × R Q → {0, . . . ,Qmax} is introduced, where
q(t, rq) denotes the entry of the CRrq in the PQ at timet and
q(rq, t) = 0 if rq is not in the queue att. It has to be shown that
rq leaves the PQ beforet0 +dmin, i.e.,q(t0 +dmin) = 0.

Because of Proposition 3.2, it holds thatq(t0, rq) ≤ Qmax.
Observing that no CR can enter the PQ in front ofrq for t > t0,
and that all CRs in the PQ become eligible afteremax latest, the
position ofrq in the PQ at timest > t0 evaluates to

q(t, rq) ≤ q(t0, rq)+ ⌈
emax

ts
⌉−⌊

t− t0
ts

⌋ ≤

≤ Qmax+1−⌈
−emax+(t− t0)

ts
⌉ ≤

≤ Qmax+1−⌈
t − t0−emax

(dmin−emax)
(Qmax+1)⌉.

That is,q(t0+dmin, rq)≤Qmax+1−⌊dmin−emax
dmin−emax

(Qmax+1)⌉= 0.

Let d > dmin. Then there ist ′ > t0 s.t. t0 + d = t ′ + dmin and
q(t ′, rq)≤Qmax. With rq as a CR with deadlinedmin that arrives
at t ′, the same argument shows thatq(t ′ +dmin, rq) ≤ 0. �

Theorem 3.1.(Bound on Network Bandwidth). LetN be a set
of nodes with the communication model tree structureTC and
the communication operation as defined above. Then a network
bandwidthB ≥ Bmin := Fmax

ts,max
is sufficient for reliable and safe

operation of the distributed controllers.

Proof Because of Proposition 3.1 and Lemma 3.2, each
message to be sent has a CR in the PQ before its deadline, and
this CR is served before its deadline.C ≥ Fmax/ts,max ensures
that the message can be sent until the next transmission starts.
Conversely, ifC < Fmax/ts,max this requirement is violated.�

Theorem 3.1 implies that a lower bound on the network band-
width for reliable and safe operation can be computed offline
usingdmin, Qmax, emax andFmax for a given distributed system.

4. SIMULATION

4.1 Laboratory Setup

In Section 2 and 3, the communication model and the opera-
tion are formally described, and statements for the worst case
network usage are employed to derive real-time guarantees.In
this section, an extensive simulation study of the large-scale
manufacturing system model in Fig. 4 with 50 distributed con-
trollers on 5 hierarchical levels is carried out. The distributed
controller design for this system which comprises manufactur-
ing components such as the machine and the conveyor belt in
Example 1 has been elaborated in Schmidt et al. (2007a). The
communication models with deadlines and the corresponding
message sets for each node are constructed algorithmically.
Considering the measured system characteristics, jobs with a
minimum deadlineof dmin = 20 ms ensure reliable and safe sys-
tem operation. Additionally, this study assumes that all nodes
implement PLCs with a cycle timeemax/2 such that theeligibil-
ity time emax is chosen. Furthermore, the simulator implements
all network components as described in Section 3.2 - 3.4. In
order to achieve a realistic simulation, the timed behaviorof
all manufacturing components that interact with the distributed
controllers has been modeled in the form of timed automata,
where the timing characteristics of transitions are in the order
of 1 s. The entire simulator that incorporates the component
models as well as the communication operation and network
model is developed in C++ based on thelibfaudes software
library for DES inlibfaudes (2007). All of the results in the
following sections are obtained after simulating the manufac-
turing system for 10 minutes of operation.

The goal of the study in this paper is the validation of the
theoretical resultsin Section 3.5. In addition to that, we conduct
an investigation of theaverage performanceof our real-time
communication operation.

Fig. 4. Manufacturing system example.



4.2 Experiments and Results

According to the result in Proposition 3.2, the maximum length
of the PQ in each node could be determined asQmax = 32.
Noting that the longest message frame isFmax = 708 bits,
this results in a required network bandwidth of up toBmin =
1800 Mbit/s. Foremax between 0.2 ms and 7 ms, a maximum
time slot ofts,max = (20ms−emax)

32+1 between 0.6 ms and 0.4 ms is
required according to Theorem 3.1.

In the following experiments, we first investigate how the
variation of ts/ts,max and emax affects the number of missed
deadlines (NMD) which is a metric to indicate reliability and
safety of the system operation. The deadline misses in Figure
5 (a) could only be observed for combinations of largeemax
(≥ 3ms) and/or very largets/ts,max (≥ 6), which clearly violates
Theorem 3.1. The maximum observed queue size is 15 and thus
significantly smaller than the theoretical valueQmax = 32.

Furthermore we study theaverage used bandwidth(AUB in
Mbit/s) and thenumber of completed tasks(NCT) as metrics
for the average system performance. In particular, we want to
find out how to spare network resources (bandwidth) without
slowing down the communicating controllers.

As can be seen in Fig. 5 (b), it is favorable to choose a
large value ofemax while keeping a large value ofts/ts,max to
achieve a small AUB. This is expected as on the one hand
messages cannot be sent frequently (largeemax) and on the
other hand, messages are only sent as frequently as necessary.
Furthermore, the variation of NCT for different values ofemax
andts/ts,max is below 2% (see Fig. 5 (c)). This is the case as the
occurrence of tasks (shared events) rather depends on the timing
characteristics of the system evolution which are in the order of
seconds. Note that the slight decrease of NCT with largeremax
is due to the increased average CR delay (ARD) (see Fig. 5 (d)).

Together, it has been observed from the simulation that there is
a trade-off between AUB and NTC. The operating pointts =
0.54 ms (this corresponds toB= 1.3 Mbit/s) andemax = 2.1 ms
is a good choice, as it yields a good system performance (1010
tasks) and at the same time results in a small value for NTS. The
PLC cycle time ofemax/2≈ 1 ms is standard in current PLCs.
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Fig. 5. Simulation results: (a) missed deadlines (b) bandwidth
usage (c) completed tasks (d) request delay.

5. CONCLUSION

In this paper, thedistributed implementation of hierarchical
and decentralized DES controllers on ashared-medium network
has been investigated. Based on the deterministic hierarchical
system structure, acommunication modelhas been developed,
and a communication operation has been proposed such that
communication messages are transmitted according to the com-
munication model. Using this operation, it has been formally
proved that a lower bound for the network bandwidth that
guarantees reliable and safe system operation can be computed
depending on the dynamic system properties and the real-time
requirements in form of message deadlines. A simulation study
of a large-scale distributed DES with 50 controllers has been
performed to validate the formal results and to characterize the
average behavior of our communication architecture. Future
work aims at the incorporation of timing information of the
discrete event system models in the communication model, and
the hardware implementation of the proposed approach.
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