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Abstract. We re-examine the basic hybrid control set-up of a continu-
ous plant in a closed feedback loop with a finite state control automaton
and an interface consisting of an A/D map and a D/A map. We address
the question of how dynamic specifications can be formulated indepen-
dently of a particular A/D map, and of the effect of refining an A/D
map. The main contribution of this paper is that it extends the frame-
work of supervisory controller synthesis for hybrid systems to include
more general dynamic specifications, and demonstrates how to employ
known results to solve these synthesis problems.

1 Introduction

The basic hybrid control configuration consists of a continuous plant in a closed
feedback loop with a finite state supervisory controller, linked by an interface
consisting of an A/D map and a D/A map, converting a continuous plant output
signal into a discrete controller input signal, and converting a discrete controller
output signal into an input to the continuous plant, respectively [16, 12, 7, 5]. Of
a particular interest here is the task of controller design; e.g. [7, 16, 9, 4] study
classes of control problems in which the continuous plant and D/A map are
given, and the task is to construct an A/D map and a supervisory controller so
that the closed-loop system fulfills various specifications. Once the A/D map has
been constructed, the overall plant exhibits discrete event inputs and outputs.
Language inclusion specifications can then be addressed by tools from DES the-
ory (e.g. [14, 15]) and/or within the framework of Willem’s behavioural systems
theory (e.g. [17]). Consequences for the hybrid control configuration are drawn
in [7] and [10], respectively.

In this paper, we re-examine the basic hybrid control configuration and ad-
dress how control objectives can be stated independently from a particular A/D
map, including a discussion on what effects one may expect from refining an
A/D map. This matter is of a specific interest whenever a controller synthesis
procedure involves A/D map refinement; this is the case in e.g. [7, 16, 4, 9].



On the technical side, we use behavioural systems theory as a framework
for our discussion as it cleanly accommodates both motion in continuous space
and time, and discrete execution sequences. In that theory, a dynamical sys-
tem is a triple (T, W, B), where T ⊆ R is the time axis, W is the signal space,
and B ⊆ W T := {f | f : T → W} is the behaviour. Functions f : T → W
are trajectories, and the behaviour B is viewed as the set of all trajectories
compatible with the phenomena modelled; trajectories not in B cannot occur.
Typically, a behaviour B is defined to be a solution set of a more detailed
model; e.g. an ODE for the continuous case. For our purposes, we also consider
a behaviour B to express dynamic specifications, where the trajectories in B

are those deemed acceptable or permissible for that specification, and those not
in B are unacceptable or prohibited. With respect to the plant dynamics, our
behavioural specifications are similar to the language specifications from DES
theory: we ask the closed-loop behaviour to be a subset of the dynamic specifi-
cation behaviour. However, in contrast to DES theory, we also need to address
the continuous aspects of our hybrid control configuration. Therefore, we inves-
tigate continuous-time, continuous-space dynamic specifications as behaviours
over T = R

+
0 := [0,∞) and X ⊆ R

n. The principal case is piecewise-continuous
functions x : R

+
0 → X , since this is what can be generated by a switched plant.

For an A/D map from X into Y , with Y finite, we then ask what it means for
continuous dynamic specification to be captured by a discrete behaviour, over
time axis T = N, with words/sequences y ∈ Y N, using the A/D map and a lan-
guage specification. This puts us into a position where we can discuss the effects
of A/D map refinement with respect to the task of capturing a given continuous
dynamic specification.

The body of the paper is organised as follows. Section 2 consists of mathe-
matical preliminaries. In Section 3, we give a transition system representation
of a switched plant coupled with an A/D map, which models the uncontrolled
plant when viewed through the lens of the A/D map. In Section 4, we assem-
ble the hybrid closed-loop and show the formal relationship between the hybrid
control configuration and hybrid automata models [1, 2]. In Section 5, we formu-
late the supervisory control problem, and give several illustrative examples of
continuous behavioural specifications. Section 6 introduces the notion of a con-
tinuous behavioural specification being captured by an A/D map together with
a discrete behaviour. A/D map refinement as it occurs within supervisory con-
troller synthesis procedures is discussed in Section 7. In Section 8, we show how
– in principle – we can solve the control problem for continuous dynamic spec-
ifications by using the notion of capturing and drawing from known results on
strategic A/D map-refinement and DES-style supervisory controller synthesis.

2 Preliminaries

We adopt the notation from set-valued analysis [3] in writing r : X  Y to mean
r : X → 2Y is a set-valued function, with set-values r(x) ⊆ Y for each x ∈ X ,
possibly r(x) = ∅, or equivalently, r ⊆ X × Y is a relation. The domain of a



set-valued map is dom(r) := {x ∈ X | r(x) 6= ∅}. The expressions y ∈ r(x) and
(x, y) ∈ r are synonymous. Every set-valued map r : X  Y has an inverse or
converse r−1 : Y  X given by: x ∈ r−1(y) iff y ∈ r(x).

A set-valued map α : X  Y is total if dom(α) = X . A total map α defines a
cover of the set X as follows: for each y ∈ Y , define the set Ay := α−1(y) ⊆ X .
Then by the totalness condition, we have X =

⋃

y∈Y Ay, so the family of sets
{Ay}y∈Y gives a cover of X . We call the sets Ay the cells of the cover α. The
cover is finite if the range, ran(α) := dom(α−1), is a finite set. A cover α defines
an equivalence relation on X of indistinguishability by cover cells: x 'α x′ iff
α(x) = α(x′). A special case of a cover map is when α : X → Y is a (single-
valued) total function, in which case the cells Ay for y ∈ Y are partition blocks
of the equivalence relation 'α.

Given a space X ⊆ R
n, we shall use the term continuous behaviour to refer

to continuous-time, continuous-space behaviours C ⊆ XR
+

0 . Note that functions
x : R

+
0 → X in C need not be continuous as maps. Given any set W , we shall

use the term discrete behaviour to refer to discrete-time behaviours B ⊆ W N.

A transition system is a structure S = (S, W, δ, S0) where S is a non-empty
set of states; W is the external alphabet; δ : S × W  S is the (possibly not
deterministic) transition relation; and S0 ⊆ S is a set of initial states. If |S| ∈ N

and |W | ∈ N, then S is called a finite state automaton. Recall that W ∗ is the
set of all finite words over the alphabet W , including the empty word ε.

A state execution sequence of a transition system S is a pair of sequences
(s,w) ∈ SN × W N or (s,w) ∈ S∗ × W ∗ such that s(0) ∈ S0 and s(k + 1) ∈
δ(s(k),w(k)) for all k < len(s). A state s ∈ S is S-reachable if there exists a
state execution sequence (s,w) and a k ≤ len(s) such that s = s(k). A transition
system S has the non-blocking property if for every S-reachable state s ∈ S, there
exists w ∈ W such that δ(s, w) 6= ∅.

Define the discrete full state behaviour of S to be the set Bst(S) ⊆ (SN×W N)
of all infinite state execution sequences of S, and the discrete external behaviour
of S to be the set Bex(S) := PW Bst(S), where PW : S×W → W is the natural
projection map. Given a discrete behaviour B ⊆ W N, we say that a transition
system S = (S, W, δ, S0) is a state machine realization of B, written S ∼= B, if
Bex(S) = B. In order to ensure that the restriction to only infinite sequences
in the full state behaviour and external behaviour does not result in any loss in
the representation of S, care must be taken to ensure that S is non-blocking.

Let S = (S, W, δ, S0) and Q = (Q, W, γ, Q0) be two transition systems over
a common external alphabet W . Their synchronous parallel composition is the
system S ‖ Q := (S ×Q, W, λ, S0×Q0), where (s′, q′) ∈ λ((s, q), w) if and only
if s′ ∈ δ(s, w) and q′ ∈ γ(q, w).

3 Switched plants and A/D maps

A switched plant is a control system which consists of a finite number of vector
fields, with the system switching between one vector field and another. The



control input to a switched plant is via discrete input events which select which
vector field is to be active.

Definition 1. A switched plant is a system SP = (U, X, F ), where U is a finite
control (input) alphabet, X ⊆ R

n is the plant state space (equipped with standard
Euclidean topology), and F : U ×X → R

n is a function defining a finite family
of (time-invariant) differential equations ẋ = Fu(x), where for each u ∈ U , the
u vector field is Fu := F (u,−) : X → R

n.

For example, a switched plant may arise from a continuous control system
ẋ = f(x, v) and finitely many state feedback control laws gu : X → V . More
generally, one can also consider controllers with their own dynamics, and form
a switched plant from finitely many continuous closed-loop systems.

In order to ensure that the state trajectories of a switched plant are well-
defined, we assume that the vector fields Fu are locally Lipschitz continuous, and
that the state space X is open. Then from each initial condition x0 ∈ X , each
differential equation ẋ = Fu(x) has a unique maximal integral curve in X on
a well defined maximal interval of time [0, Tu(x0)), where Tu(x0) ∈ R

+
0 ∪ {∞}.

We denote this maximal curve by Φu(x0, − ) : [0, Tu(x0)) → X . In the case of
Tu(x0) < ∞, it is well known that Φu(x0, − ) escapes from any bounded subset
of X at some time less than or equal to Tu(x0).

Definition 2. An A/D map on a space X is a total set-valued map α : X  Y
where Y is a finite set, with cover cells Ay ⊆ X for y ∈ Y .

For any A/D map α : X  Y , we can assume without loss of generality
that Y contains a distinguished element ‡ /∈ ran(α) with the property that
A‡ = α−1(‡) = ∅. In what follows, we use the “dummy” symbol ‡ as an output
symbol indicating that a trajectory will make no more switches.

Definition 3. Given SP = (U, X, F ) and an A/D map α : X  Y , we define
the transition system model SSP.α := (S, W, δ, S0) as follows:
• S := X × R

+
0 × U × Y

• W := U × Y

• for (µ, ν) ∈ U × Y , define: (x′, τ ′, u′, y′) ∈ δ((x, τ, u, y), (µ, ν)) iff
either (i): y 6= ‡ and ν 6= ‡ and u′ = µ and y′ = ν and y′ 6= y and
x′ = Φµ(x, τ ′ − τ) ∈ Aν and Φµ(x, t) ∈ Ay for all t ∈ [0, τ ′ − τ ],
or (ii): y 6= ‡ and ν = ‡ and u′ = µ and y′ = ν and Φµ(x, t) ∈ Ay for all
t ∈ [0,∞),
or else (iii): y = ‡ and ν = ‡ and u′ = µ and y′ = ν.

• S0 = S
For an infinite state execution sequence (s,w) ∈ Bst(SSP.α), we identify the
sequence elements by writing s(i) = (xi, τi, ui, yi), and w(i) = (µi, νi), for each
i ∈ N. Let BSP.α := Bex(SSP.α).

The discrete behaviour BSP.α ⊆ (U × Y )N is the uncontrolled external be-
haviour of the plant SP with discrete inputs U , when viewed through the lens



of the A/D map α to give discrete outputs Y . The piecewise-continuous state
trajectories of the uncontrolled system (SP.α) can be recovered from the infinite
state execution sequences in Bst(SSP.α), as follows.

Define a map ρ : Bst(SSP.α) → XR
+

0 such that for each (s,w) ∈ Bst(SSP.α),
the function ρ(s,w) : R

+
0 → X is given by:

ρ(s,w)(t) = Φµi
(xi, t− τi) (1)

for all i ∈ N, for all t ∈ [τi, τi+1) if νi 6= ‡, and for all t ∈ [τi,∞) if νi = ‡. Then
define:

Cρ(SSP.α) := {ρ(s,w) ∈ XR
+

0 | (s,w) ∈ Bst(SSP.α)} (2)

Observe that for a state trajectory ρ(s,w) of (SP . α), the i-th segment during
the interval [τi, τi+1) consists of the flow according to input µi ∈ U starting from
state xi, with the whole segment lying within the cell Ayi

, up to and including
the starting point xi+1 of the next segment, reached at time τi+1, and that point
xi+1 lies in the overlap of cells Ayi

∩ Ayi+1
, where yi+1 = νi ∈ Y is the output

for stage i.

4 The hybrid closed-loop and hybrid automata models

Given a switched plant SP = (U, X, F ) and an A/D map α : X  Y , the tran-
sition system SSP.α over W = U × Y is able to accept any input events from U
without blocking. This property is referred to as I/S/- plant form, and techni-
cally requires that for all reachable states s ∈ S and all inputs u ∈ U , there exists
an output y ∈ Y and an s′ ∈ S such that (s, (u, y), s′) ∈ δ. Similarly, a potential
controller that is modeled by a transition system Q = (Q, U×Y, γ, Q0) is said to
be in I/S/- controller form if it at any time accepts any output event from Y as
generated by the plant. Here the technical requirement is that Q is non-blocking
and that for all reachable states q ∈ Q, for all transitions (q, (u, y), q′) ∈ γ and
for all controller inputs (plant outputs) y′ ∈ Y , there exists q′′ ∈ Q such that
(q, (u, y′), q′′) ∈ γ. Obviously, the parallel composition of a system in I/S/- plant
from with one in I/S/- controller form is non-blocking, and this motivates the
following definition of admissible supervisory controllers for switched plants:

Definition 4. Given a switched plant SP = (U, X, F ) and A/D map α : X  Y ,
an admissible supervisory controller for the uncontrolled system (SP . α) is a
transition system Q = (Q, W, γ, Q0) over W = U × Y that is in I/S/- controller
form. The closed-loop hybrid system is the transition system SSP.α ‖ Q. Let
Bsup := Bex(Q). The discrete external behaviour of the closed-loop system is

Bex(SSP.α ‖ Q) = BSP.α ∩Bsup

From a state execution sequence (s,q,w) ∈ Bst(SSP.α ‖ Q) of the closed-
loop, we can recover a piecewise-continuous state trajectory ρ(s,q,w) : R

+
0 → X

in the same way as for execution sequences of SSP.α. Let Cρ(SSP.α ‖ Q) denote



the set of all piecewise-continuous trajectories recovered from the state execution
sequences of the closed-loop hybrid system.

The closed-loop system can be readily shown to be an instance of the standard
hybrid automaton model [1, 2].

Definition 5. A hybrid automaton is a system H = (Q, E, X, F, D, R) where:
• Q is a finite set of discrete control modes;

• E : Q Q is the discrete transition relation;

• X ⊆ R
n is the continuous state space;

• F : Q×X → R
n defines a finite family of vector fields Fq : X → R

n, where
Fq := F (q,−) for each q ∈ Q;

• D : Q X defines the mode domain Dq := D(q) ⊆ X for each q ∈ Q;

• R : X ×E  X is the set-valued reset map.
A function x : R

+
0 → X is a state trajectory of H if there exists a discrete

index set I = N or I = {0, 1, . . . , m}, a non-decreasing time-point sequence
(τi)i∈I , with τ0 = 0, a sequence of discrete modes (qi)i∈I , and two sequences of
continuous states (xi)i∈I and (x̃i)i∈I , the first starting from x0 := x(0), such
that for all i ∈ I and for all t ∈ [τi, τi+1), the following conditions hold:

(1.) x(t) = Φqi
(xi, t− τi) and x(t) ∈ Dqi

(2.) if i < sup(I) then x̃i := limt→τ
−

i+1

Φqi
(xi, t− τi) and x̃i ∈ Dqi

(3.) if i < sup(I) then (qi, qi+1) ∈ E

(4.) if i < sup(I) then xi+1 ∈ R(x̃i, (qi, qi+1))

(5.) if i = sup(I) then τi+1 = ∞

Let C(H) ⊆ XR
+

0 denote the set of all state trajectories of H.

For each discrete transition (q, q′) ∈ E, the component reset map is Rq,q′ :=
R(−, q, q′) : X  X , and the so-called guard region is Gq,q′ := dom(Rq,q′ ) ⊆ X .

Proposition 1. Given a closed-loop system formed from SP, α and Q, define
the hybrid automaton H (SP, α,Q) = (Q̂, E, X, F̂ , D, R) as follows:
• Q̂ := {(q, u, y) ∈ Q× U × Y | (∃q′ ∈ Q) (q, (u, y), q′) ∈ γ }

• F̂ : Q̂ × X → R
n given by F̂ ((q, u, y), x) = F (u, x) for all (q, u, y) ∈ Q̂ and

x ∈ X

• for each (q, u, y) ∈ Q̂, the mode domain D(q,u,y) = Ay

• E : Q̂ Q̂ given by:

((q, u, y), (q′, u′, y′)) ∈ E iff (q, (u, y), q′) ∈ γ andAy ∩Ay′ 6= ∅ (3)

• for each ((q, u, y), (q′, u′, y′)) ∈ E, the reset relation is

R(q,u,y),(q′,u′,y′) := {(x, x′) ∈ X ×X | x ∈ Ay ∩ Ay′ and x′ = x} (4)

Then
C(H(SP, α,Q)) = Cρ(SSP.α ‖ Q)

This result shows that every hybrid closed-loop can be represented as a hybrid
automaton with simple membership-testing resets.



5 Continuous behaviours as dynamic specifications for
supervisory controller synthesis

We address the following class of supervisory controller synthesis problems.

Synthesis Problem: Given a switched plant SP and a continuous behavioural
specification Cspec, construct an A/D map α and a discrete supervisor Q such
that the closed-loop behaviour fulfills the following behavioural inclusion:

Cρ(SSP.α ‖ Q) ⊆ Cspec . (5)

This quite general notion of a continuous dynamic specification gives us a
means to place conditions on the evolution of a dynamical system without refer-
ring to a model of the system itself; trajectories x ∈ Cspec are deemed acceptable,
while trajectories x /∈ Cspec are deemed unacceptable. To indicate the broad
scope of this notion of a specification, we give several illustrative examples.

Example 1: notions of stability. Convergence of trajectories to an equilibrium
point x? ∈ X is a necessary condition for asymptotic stability. Consider the
continuous behavioual specification:

Cconv := {x : R
+
0 → X | lim

t→∞
x(t) = x?} (6)

Note that the specification Cconv does not require x? to actually be an equilib-
rium. This further condition can be expressed by:

Cequi := {x : R
+
0 → X | x(0) = x? ⇒ (∀t ∈ R

+
0 ) x(t) = x?} . (7)

Obviously, we can combine the two specifications by taking their intersection:
the specification Cequi ∩ Cconv requires x? to be an equilibrium to which all
trajectories converge.

Example 2: circular motion. An elementary example of hybrid controller
synthesis is given in [16], where the control objective is to enforce a clockwise
circular motion in the plane R

2. While [16] refers to a particular A/D map
in order to formalise this objective, we give an alternative characterisation as
a continuous dynamic specification independent of any A/D map. Let TL :=
{l : R

+
0 → R

+
0 | l is monotone, unbounded, continuous} be the set of time-lag

functions, and consider the clockwise circular reference trajectory r : R
+
0 → R

2

given by r(t) = (cos(t), − sin(t)). Then define:

Ccirc := {x : R
+
0 → X | (∃l ∈ TL)(∀t ∈ R

+
0 ) r(l(t))>x(t) > 0 } (8)

Visually, think of the reference r(t) as the orthogonal to the separator in a revolv-
ing door, rotating clockwise. The “lag” function l allows the revolver to rotate
at arbitrary angular velocities, while the inequality ensures that a trajectory x

must stay on the same side of the separator at all times. Intuitively, any person
within such a revolving door will be forced to make “steady progress” in a clock-
wise circular motion, since the separator will only allow “a quarter lap forth and
back” relative to the reference trajectory.



Example 3: static safety. The classic form of a safety property consists of
specifying a set Bad ⊆ X , and requiring that no trajectory ever enters Bad.
Consider:

Csafe := {x : R
+
0 → X | (∀t ∈ R

+
0 ) x(t) /∈ Bad } (9)

This type of specification is static rather than dynamic in the sense that it does
not change over time. We will return to these examples after introducing the
notion of capturing in the following section.

6 A/D maps and discrete behaviours

Our task here is to formulate the notion of using an A/D map α : X  Y to-
gether with a discrete behaviour B ⊆ Y N to “capture” or “enforce” a continuous

dynamic specification Cspec ⊆ XR
+

0 . Recall that ‡ ∈ Y is a distinguished symbol
which we use to indicate that no more switches will occur.

Definition 6. Let TP := {τ : N → R
+
0 | τ(0) = 0∧ (∀i ∈ N) τ(i) < τ(i + 1) } be

the set of (strictly increasing) time-point sequences. Given an A/D map α : X  
Y and a discrete behaviour B ⊆ Y N, define:

C(α, B) := {x : R
+
0 → X | (∃y ∈ B)(∃τ ∈ TP )(∀i ∈ N)

[

if y(i) 6= ‡ then (∀t ∈ [τ(i), τ(i + 1)) ) x(t) ∈ Ay(i)

and if y(i) 6= ‡ and also y(i + 1) = ‡
then (∀t ∈ [τ(i),∞) ) x(t) ∈ Ay(i)

]

}

(10)

Given a continuous behaviour C ⊆ XR
+

0 , we say that the pair (α, B) captures C,
if C(α, B) ⊆ C.

The idea is that the continuous behaviour C(α, B) includes all and only
the trajectories x : R

+
0 → X that respect the sequence order of some y ∈ B

considered as a sequence of regions on X via α. To illustrate how an A/D map
and a discrete behaviour together capture a continuous behaviour, we continue
with our examples.

Ad Example 1: notions of stability. The requirement expressed by Cconv

depends on the actual topology on X referred to in the expression limt→∞ x(t) =
x?. Generalising the notion of a limit to cover arbitrary topological spaces (e.g.
Moore-Smith convergence, [8], §20.IX), the condition is fulfilled if for any open
set V containing x?, there exists a τ such that x(t) ∈ V for all t > τ . In the
case of the Euclidean topology on X , this cannot be captured by any pair (α, B)
where the signal space Y is finite. However, we can look more broadly at other
topologies on X . Fix an A/D map α : X  Y and consider the finite topology
Tα ⊆ 2X generated by taking all finite unions and intersections of the α-cells Ay

for y ∈ Y . For the most basic case where α defines a finite partition, the open
sets in the topology Tα are just the cells closed under unions. Let Ay? be the
cell such that x? ∈ Ay? , and let:

B
α
conv := {y ∈ Y N | (∃i ∈ N)[ y(i) = y? ∧ (∀j > i) y(j) = ‡ } (11)



Then (α, Bα
conv) captures Cconv. For the more general case where α is a finite

cover with overlaps, we can also capture Cconv, but have to replace α with a
refinement β such that Tβ = Tα, where the cells of β are the join-irreducibles in
Tα as a lattice of sets (see also [12]). For the equilibrium specification Cequi, it
is also clear that it cannot be captured via any finite range A/D map. However,
what can be captured is a weaker version of Cequi already relativised to α by
replacing true equality = with 'α in Equation (7).

Ad Example 2: circular motion. Consider an A/D map α based on the
four quadrants of R

2, similar to [16]. More precisely, let A1 = {(x1, x2)| x1 >
0, x2 ≥ 0}, A2 = {(x1, x2)| x1 ≤ 0, x2 > 0}, A3 = {(x1, x2)| x1 < 0, x2 ≤ 0},
A4 = {(x1, x2)| x1 ≥ 0, x2 < 0}, and, in order to partition the entire R

2, let
A0 = {(0, 0)}. Denote the corresponding single-valued A/D map by α : Y → R

2,
where Y = {0, 1, 2, 3, 4}. Let

B
α
circ := (1432)ω ∪ (4321)ω ∪ (3214)ω ∪ (2143)ω (12)

Then (α, Bα
circ) captures Ccirc.

Ad Example 3: static safety. Consider any A/D map α : X  Y such that
for some YBad ⊆ Y , we have Bad ⊆

⋃

y∈YBad
Ay. Then define:

B
α
safe := {y : N → Y | (∀i ∈ N) y(i) /∈ YBad } (13)

Then (α, Bα
safe) captures Csafe.

To resume our study of the notion of capturing, fix an A/D-map α : X  
Y and a discrete behaviour B ⊆ Y N. It is clear that the set of all dynamic
specifications C that are captured by the pair (α, B) forms a complete lattice,
with the usual set-theoretic operations. Moreover, (α, B) captures C1 ∩ C2 iff
(α, B) captures C1 and (α, B) captures C2.

Also observe directly from Definition 6 that the operator C(α, · ) distributes
over arbitrary unions in the second argument; i.e. if Bi ⊆ Y N for i ∈ I , then:
C(α,

⋃

i∈I Bi) =
⋃

i∈I C(α, Bi). Consequently, for a fixed A/D-map and a fixed

behaviour C ⊆ XR
+

0 , the set of all discrete behaviours B ⊆ Y N such that the
pair (α, B) captures C forms a complete upper semi-lattice w.r.t. the usual set-
theoretic operations. In particular, there uniquely exists a largest or least re-
strictive discrete behaviour B ⊆ Y N such that (α, B) captures C.

Some immediate consequences of the observed lattice structure are summa-
rized as follows:

Proposition 2. For any A/D map α : X  Y and continuous behaviour C ⊆

XR
+

0 , define:

B(α, C) :=
⋃

{B ⊆ Y N | C(α, B) ⊆ C } (14)

Then, for all B′ ⊆ Y N, we have: C(α, B′) ⊆ C if and only if B′ ⊆ B(α, C).
Furthermore, the following inclusions hold for all C and B:

C(α,B(α, C)) ⊆ C , B ⊆ B(α, C(α, B)) . (15)



7 Refining A/D maps

If the supervisory controller synthesis fails for a given A/D map one may consider
a finer A/D-map.

Definition 7. Let α : X  Y and β : X  Z be two A/D maps, with cover cells
Ay = α−1(y) ⊆ X for y ∈ Y and Bz = β−1(z) ⊆ X for z ∈ Z. We say β is a
refinement of α, written α b β, if for each y ∈ Y , there exists z1, z2, . . . , zm ∈ Z
such that

Ay = Bz1
∪ Bz2

∪ · · · ∪Bzm
(16)

and for each z ∈ Z, there exists y ∈ Y such that

Bz ⊆ Ay (17)

When α b β, define a set-valued map θαβ : Y  Z by: z ∈ θαβ(y) iff
Bz ⊆ Ay or y = z = ‡. Then Ay =

⋃

{Bz | z ∈ θαβ(y)} for all y ∈ Y .

Proposition 3. Fix a continuous behaviour C ⊆ XR
+

0 , an A/D map α : X  
Y , and a discrete behaviour B ⊆ Y N such that (α, B) captures C. Let DS :=
{ κ : N → N | κ(0) = 0 ∧ (∀i ∈ N) κ(i) < κ(i + 1) } be the set of strictly
increasing discrete-time stretch maps. Now for any A/D map β : X  Z such
that α b β, define:

Bβ(α, B) := {z ∈ ZN | (∃y ∈ B)(∃κ ∈ DS)(∀j ∈ N)
z|[κ(j),κ(j+1)) ⊆ (θαβ(y(j)))∗ } .

(18)

Then (β, Bβ(α, B)) captures C.

In defining the candidate Bβ(α, B) ⊆ ZN, we collect all infinite sequences z

that can be decomposed in a sequence of finite words z|[κ(i),κ(i+1)) such that:
(a) each finite word corresponds to a single cover cell y(i) of α; and that (b) this
labelling generates an infinite sequence y which lies inside the original discrete
specification B ⊆ Y N.

Proof. To show (β,Bβ(α, B)) captures C, fix an arbitrary x ∈ C(β,Bβ(α, B))).
Then there exists a sequence z ∈ Bβ(α, B) and a τ ∈ TP such that for all i ∈ N, if
z(i) 6= ‡ then x(t) ∈ Bz(i) for all t ∈ [τ(i), τ(i+1)), and if z(i) 6= ‡ but z(i+1) = ‡

then x(t) ∈ Bz(i) for all t ∈ [τ(i),∞). Now by Equation (18), z ∈ Bβ(α, B) means
there is a witness y ∈ B and a function κ ∈ DS such that z|[κ(j),κ(j+1)) ⊆
(θαβ(y(j)))∗ for all j ∈ N. And from the definition of θαβ , we know that Bz(k) ⊆
Ay(j) for all k ∈ [κ(j), κ(j+1)) = {κ(j), κ(j)+1, . . . , κ(j+1)−1}. We now define

a new function τ̂ : N → R
+
0 by τ̂ (j) := τ(κ(j)). Since τ and κ are both strictly

increasing, then so is τ̂ , and also τ̂ (0) = τ(κ(0)) = τ(0) = 0. Hence τ̂ ∈ TP .
We want to show that x ∈ C(α, B) with witnesses y ∈ B and τ̂ ∈ TP ; then
since (α, B) captures C, we would have x ∈ C, as required. So now fix any j ∈ N

and suppose that y(j) 6= ‡. Then z(k) 6= ‡ for all k ∈ [κ(j), κ(j + 1)). Fix any
t ∈ [τ̂ (j), τ̂ (j+1)) = [τ(κ(j)), τ(κ(j+1))). Then for some k ∈ [κ(j), κ(j+1)), we



must have x(t) ∈ Bz(k), and thus also x(t) ∈ Ay(j). For the other case, suppose
that y(j) 6= ‡ but y(j + 1) = ‡. Then z(k) 6= ‡ and z(κ(j + 1)) = ‡. Fix any
t ∈ [τ̂ (j),∞) = [τ(κ(j)),∞). Then we must have x(t) ∈ Bz(κ(j)), and hence

x(t) ∈ Ay(j), as required. Since x was arbitrary, we conclude that (β,Bβ(α, B))
captures C.

8 Applying DES and discrete behavioural approaches to
controller synthesis

In tackling the general synthesis problem formulated in Section 5, we can build
on previous work in [7, 16, 5], first starting by seeking to find an A/D map α and
a discrete dynamic specification Bα

spec such that (α, Bα
spec) captures Cspec. The

synthesis problem can then be restated purely in terms of the discrete behaviours,
BSP.α and Bα

spec: find an admissible discrete supervisor with induced behaviour
Bsup such that the discrete-time closed-loop behaviour Bcl = BSP.α ∩Bsup lies
within Bα

spec. The admissibility requirement for Bsup is that it have a transition
system realisation in I/S/− controller form. Up to minor notational variations,
this restated control problem has been extensively studied in [10, 11, 13]. We
provide a terse summary of the main results, in order to show how the broader
scope of this contribution relates to the literature.

Fix a switched plant SP = (U, X, F ) and an A/D map α : X  Y , so the
induced external behaviour BSP.α ⊆ (U ×Y )N. Let Bα

spec be a discrete dynamic
specification. We refer to the pair (BSP.α, Bα

spec) as a discrete-time supervisory
control problem and ask for an admissible supervisor that enforces Bα

spec when
interconnected with BSP.α. We give a formal definition of this problem and its
solutions.

Definition 8. Let Bsup ⊆ (U × Y )N.
• Bsup ⊆ W N to said to be generically implementable if for all k ∈ N,

(u,y)|[0,k] ∈ Bsup|[0,k], (ũ, ỹ)|[0,k] ∈ W k+1, ũ|[0,k] = u|[0,k], ỹ|[0,k) = y|[0,k)

implies (ũ, ỹ)|[0,k] ∈ Bsup|[0,k].

• The two behaviours BSP.α and Bsup ⊆ W N are said to be nonconflicting if
BSP.α|[0,k] ∩Bsup|[0,k] = (BSP.α ∩Bsup)|[0,k] for all k ∈ N.

• The behaviour Bsup is said to enforce the discrete dynamic specification Bα
spec ⊆

Y N if (u,y) ∈ BSP.α ∩Bsup implies y ∈ Bα
spec.

The behaviour Bsup solves the control problem (BSP.α, Bα
spec) if it satisfies each

of these three conditions. 1

Note that formally, the trivial behaviour Bsup = ∅ solves (BSP.α, Bα
spec),

leading to an empty closed-loop behaviour; obviously, this is undesirable. In re-
sponse, we ask for the prospective supervisor to be as least restrictive as possible.

1 The notion here of generic implementability corresponds to implementability w.r.t.
a particular plant as defined in [10], and it can been seen that the alternative formu-
lation leads to precisely the same closed-loop behaviours. The specification

�
spec in

the notation of [10, 11] is related to the
�

α

spec above by
�

spec = {(u,y)| y ∈
�

α

spec}



This line of thought is similar to that of DES supervisory control theory [14, 15].
In fact, [10, 11] show that a key result of [14, 15] naturally carries over to the hy-
brid case: a least restrictive supervisor B

↑
sup that solves (BSP.α, B

α
spec) always

exists uniquely.

Proposition 4. The behaviour

B
↑
sup :=

⋃

{Bsup ⊆ (U × Y )N| Bsup solves (BSP.α, B
α
spec)} (19)

is a itself a solution of (BSP.α, Bα
spec). We denote the closed-loop behaviour of

BSP.α under least restrictive supervisory control by B
↑
cl := BSP.α ∩B↑

sup.

In particular, there exists a solution to (BSP.α, Bα
spec) with non-empty

closed-loop behaviour if and only if B
↑
cl 6= ∅.

Unfortunately, very stringent conditions apply to the underlying continuous
dynamics Φ when the synthesis is to be carried out directly, based on BSP.α, or,
for that matter, on SSP.α and α. Prospective candidates here are cases in which
Φ is linear in both state and time; i.e. straight line evolution, and α a polyhedral
partition. On the other hand, if both BSP.α and Bα

spec were realized by finite
automata, the least restrictive supervisor could readily be computed drawing
from slightly modified methods from DES theory; e.g. [14, 15, 11]. These pro-
cedures typically compute a finite automaton realisation of the least restrictive
closed-loop B

↑
cl. The latter automaton can also be employed as a supervisor; we

give detailed account to this interpretation in [11] from a technical application
perspective. A formal conversion to a finite state transition system Q in I/S/-
controller form is straight-forward.

However, while in our framework we may assume Bα
spec to be realised as a

finite automaton, this assumption in general will not hold up for BSP.α. Conse-
quently, [7, 6, 10, 13] suggest to approximately realize BSP.α by a suitable finite
automata and then to carry out the synthesis for the problem (Bca, Bα

spec),

where Bca ⊆ (U × Y )N denotes the external behaviour induced by the approx-
imate automata realisation. In this approximation-based approach, two main
issues present themselves. First, the approximation needs to be sufficiently ac-
curate in order to allow for a successful controller synthesis; we come back to
this issue below. Second, assuming that a supervisor could be synthesised for the
approximation, one needs to guarantee that desired closed-loop properties are
retained when the supervisor is connected to the actual hybrid plant. The sec-
ond issue is commonly dealt with by requiring that the approximation must be
conservative in the sense that it predicts at least all those trajectories on which
the actual hybrid plant can evolve. Within our framework this requirement can
be stated as the behavioural inclusion BSP.α ⊆ Bca and, indeed, this forms a
sufficient condition for resolving the second issue:

Proposition 5. Assume that Bα
spec, Bca and Bsup can all be realised by finite

automata. Suppose Bsup solves the problem (Bca, Bα
spec) and suppose BSP.α ⊆

Bca. Then Bsup is also a solution of (BSP.α, Bα
spec). Furthermore, Bca∩Bsup =

∅ if and only if BSP.α ∩Bsup = ∅.



Recall that on the approximation level, the least restrictive closed-loop be-
haviour – and hence a realisation Q in I/S/- controller form – can be computed
by methods from DES theory. If Bsup

∼= Q is found to enforce a nontrivial
closed-loop behaviour Bca ∩ Bsup 6= ∅, then by the result above, this realises
a solution of our discrete-time supervisory control problem (BSP.α, Bα

spec). We
can conclude from Bcl ⊆ Bα

spec that the hybrid closed loop consisting of SP,
α and Q fulfills the continuous dynamic specification Cspec in the sense of Eq.
(5), and thus the original control problem given by SP and Cspec has also been
solved.

If Bsup
∼= Q enforces the trivial closed-loop behaviour Bca ∩ Bsup = ∅,

we distinguish two subcases. First, there may exist no solution for the original
problem, in which case we can’t complain about failure in finding one. Second, it
could be that the chosen A/D map was too coarse and therefore gives a prospec-
tive supervisor too little measurement information for it to be able to drive the
system according to the continuous dynamic specification. In the latter case, we
want to have another attempt with a refined A/D map β, with α b β. Various
methods of A/D map refinement have been discussed in the literature, mostly
based on a backward reachability analysis, and the reader is kindly referred to
[7, 16, 5, 4]. As worked out in Section 6, discrete dynamic representations of spec-
ifications depend on the A/D map. More precisely, when moving from α on to β,
we also replace Bα

spec by Bβ(α, Bα
spec), as in Eq. 18. In particular, the refinement

procedure suggested in [7] for partitions lends itself to the proposed setting.

9 Discussion and conclusion

The framework developed here has two main advantages from the perspective
of controller synthesis. First, after a cover refinement, we still refer to the same
continuous dynamic specification Cspec, the latter serving as a formal platform
to express the relation between the two control problems stated for α and β,
respectively. Thus we make clear that if it is a cover refinement that finally leads
to the successful synthesis of a supervisor, then it is in fact the original control
objective that we fulfil with our closed-loop design. Second, for any fixed A/D
map α, our restated control problem still refers to the “full” hybrid dynamics:
although BSP.α is defined on a discrete-time axis, it refers to the transition
system SSP.α over the full hybrid state space, and continuous evolution is recov-
ered by Eq. 1, Section 3. Contrast this with [7], where once the A/D partition
is fixed, the treatment of the restated control problem exclusively refers to the
so-called DES Plant, which is realized as a finite automaton and can be seen
to be a rather coarse abstraction. In fact, [13, 10, 11] suggest an ordered family
of l-complete approximations Bl, l ∈ N, where BSP.α ⊆ Bl+1 ⊆ Bl, and the
DES Plant according to [7] corresponds to the coarsest case l = 0. On the other
hand, [13, 10, 11] do not discuss the potential gain of accuracy that lies in the
refinement of the A/D map. Our current contribution is seen to strategically
combine the strengths of both views: the A/D map refinement suggested by [7,



16] as well as the option to increase accuracy for a fixed A/D map suggested by
[13, 10, 11].
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