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Abstract

This contribution investigates the discrete control of contin-
uous or hybrid systems within the framework of behavioural
systems theory. We address a problem of modularity, extend-
ing our recent work on approximation-based supervisory con-
troller synthesis. More specifically, we identify conditions un-
der which two discrete supervisors, each enforcing a particular
specification, will have an admissible parallel composition that
enforces both specifications simultaneously. While the main
result corresponds to known facts from discrete event systems
(DES) theory, it is our specific notion of inputs and outputs that
enables the transfer of this result to a general class of hybrid
systems.

1 Introduction

In a recent paper [3], we discussed the synthesis of super-
visory control for hybrid systems with discrete external sig-
nals. The approach described in [3] is based on the notion
of l-complete approximation, and is entirely set within the
framework of Willems’ behavioural systems theory. We ex-
tend this approach by investigating the problem of modular
control. More specifically, we provide conditions that allow
two supervisors, each enforcing a particular specification, to be
combined to enforce both specifications simultaneously. The
motivation for attempting modular control is twofold: (i) the
synthesis of individual supervisors and their subsequent com-
bination might be computationally less expensive than the di-
rect synthesis of an overall controller; (ii) based on the concept
of modular control, one may set up a “library” of supervisors,
each geared towards a specific task for a given plant; depend-
ing on the particular application situation (corresponding to a
certain combination of tasks), the appropriate controllers can
then be simply retrieved from the library and run in parallel to
solve the problem at hand.

The paper is organised as follows. In Section 2, we collect
some basic facts from Willems’ behavioural systems theory

and from automata theory. In Section 3, we give a short
overview of approximation based supervisory control for hy-
brid systems. In Section 4, this is extended to modular control.
An illustrative example is given in Section 5.

2 Hybrid systems in a behavioural framework

The purpose of this section is to collect some basic definitions
from Willems’ behavioural systems theory and from automata
theory, and to provide a link to the class of hybrid systems that
we will consider subsequently.

Definition 1. (See [9], Def. II.1) A dynamical system 6 is a
triple (T, W, B), with T ⊆

�
the time axis, W the signal

space, and B ⊆ W T � { f | f : T → W } the behaviour. �

The behaviour is viewed as the set of all trajectories which are
compatible with the phenomena modelled by the system: tra-
jectories w 6∈ B cannot occur. An overview of the behavioural
framework is given in [9] and [8], including definitions of fun-
damental properties like time-invariance, linearity, controlla-
bility, completeness, inputs and outputs or the state axiom in
terms of behaviours. Within this paper, we consider systems
with discrete time axis T = � 0 and use a specific notion of
input and output signals1.

Definition 2. (see [9], Def. VIII.1 and VIII.4) The system 6 =

( � 0, W, B), W = U × Y , is said to be an I/- system if:

(i) the input is free, i.e.PU B = U
�

0 (wherePU denotes the
projection onto U

�
0);

(ii) the output does not anticipate the input, i.e. for all t ∈

� 0, (ũ, ỹ), (û, ŷ) ∈ B the following implication holds:

ũ
∣

∣

[0,t] = û
∣

∣

[0,t] H⇒

∃ y ∈ Y
�

0 : y
∣

∣

[0,t] = ỹ
∣

∣

[0,t], and (û, y) ∈ B . (1)

Here, w|[t1,t2], t1 ≤ t2, is the restriction of a map w : � 0 → W
to the domain [t1, t2] ∩ � 0. �

Discrete-time systems can be realized by state machines, as
formalised below.

Definition 3. Let the sets W , X , X0 ⊆ X , δ ⊆ X × W ×

1 � : natural numbers without 0; �
0: natural numbers including 0.



X denote the external signal space, the state space, the set of
initial conditions and the next state relation, respectively. The
tuple P = (X, W, δ, X0) is called a state machine. If |W | ∈

� and |X | ∈ � (both sets are finite), P is said to be a finite
state machine. The behaviour

Bs
� {(w, x)|

∀ t ∈ � 0 : (x(t), w(t), x(t + 1)) ∈ δ and x(0) ∈ X0}

is referred to as the induced full behaviour, and 6s
�

( � 0, W × X, Bs) as the induced state space system. The
external behaviour Bex of 6s is defined to be the projec-
tion of Bs onto W

�
0 , i. e. Bex

� PW Bs
� {w| ∃ x :

(w, x) ∈ Bs}. Conversely, a state machine P ′ with induced
external behaviour B

′ is said to be a realization of the system
6′ = ( � 0, W, B

′). This is denoted by 6′ ∼= P ′. �

We now introduce some basic terminology related to state ma-
chines:

Definition 4. Consider state machines Pa = (A, W, α, A0)

and Pb = (B, W, β, B0). A state a1 ∈ A is said to be reach-
able if there exists a state a0 ∈ A0 and a sequence of transi-
tions (elements in the next state relation) from α connecting a0
with a1. The state machine Pa is said to be reachable if every
state a1 ∈ A is reachable. The state machine Pa is called non-
blocking if for every reachable state a ∈ A, there exists w ∈ W
and a′ ∈ A such that (a, w, a′) ∈ α. Referring to W = U ×Y ,
the state machine Pa is said to be an I/S/- machine, if for every
reachable a ∈ A, µ ∈ U , there exist ν ∈ Y , a ′ ∈ A such
that (a, (µ, ν), a′) ∈ α. The parallel composition of Pa and
Pb is defined by Pa ‖ Pb

� (A × B, W, λ, A0 × B0), where
((a, b), w, (a′, b′)) ∈ λ if and only if (a, w, a′) ∈ α and
(b, w, b′) ∈ β. �

A typical strategy within the behavioural approach is to work
out the relationship between properties defined in terms of be-
haviours and corresponding properties of realizations: e.g. if P
is an I/S/- machine, the induced system 6 is an I/- system; see
[3], Proposition 24.

Definition 5. (See [8], Section 2.2.1) Let Bs be the full be-
haviour induced by the state machine P = (X, W, δ, X0).
Then P is said to be past-induced if t ∈ � 0,
(w′, x ′), (w′′, x ′′) ∈ Bs and w′|[0,t) = w′′|[0,t) implies
x ′(t) = x ′′(t). �

A past-induced state machine is “instantaneously state observ-
able”: for every t ∈ � 0, we can figure out x(t) by only in-
vestigating the past w|[0,t) of the external signal. Thus past-
inducedness is a crucial property for control related tasks. In
fact, past-induced realizations of the plant model are the setting
for Ramadge and Wonham’s DES supervisory control theory.

We address a class of hybrid systems that are realizable by
I/S/− machines and that are further characterized by the fact
that their external signal space is finite (i.e. |W | ∈ � ), while
their state set X is a product of

� n and a finite set D. These
assumptions on the stucture of the plant are rather weak and

allow us to cover characteristic features of various more de-
tailed hybrid models; e.g. hybrid automata [1]. In Section 5
we give an example within the class of switched flow systems.
Here, the discrete time axis is interpreted as “logic time”, and
refers to the enumeration of the occurrence of events which in
turn are defined as certain continuous variables crossing certain
threshold values.

3 Approximation based supervisory control

The problem of supervisory controller synthesis as studied in
DES theory (e.g. [5, 10]) can be stated within the behavioural
framework: given a plant model 6p and a specification 6spec
of the acceptable closed-loop behaviour, construct a supervisor
6sup such that the interconnection of 6p and 6sup exhibits a
behaviour not exceeding the one specified by 6spec. Rather than
considering a disjoint union of controllable and uncontrollable
events (as in [5, 10]), we set up the external signal space by
a product composition W = U × Y and assume the plant to
be an I/- system. This turns out to be crucial for the synthesis
of supervisors based on a finite automaton approximation of
the plant. In the following, we collect the main results of our
approach. A detailed discussion can be found in [3].

First, we need to examine system interconnection. As usual,
the intention is the synchronization of the external variable(s);
hence system interconnection —in principle— corresponds to
the intersection of the external behaviours. However, two con-
ditions apply to this scenario of interconnected systems, both
motivated from an application point of view.

(i) The synchronization shall be performed “locally on the
time axis”, i.e. at any instance of time and independent of
the past evolution, it shall be clear on which value the two
systems can agree without “getting stuck” in the future.
This demand corresponds to the notion of non-conflicting
languages in DES theory.

(ii) The supervisor shall take its effect on the plant via some
actuator and in turn read back measurements by some sen-
sor referring to the input and the output component of the
external signal respectively. Thus, the supervisor must not
directly affect the output component of the external signal
in order to be implementable.

These two conditions can both be stated in terms of behaviours:

Definition 6. Consider two systems 6a = ( � 0, W, Ba) and
6b = ( � 0, W, Bb) over the same signal-space W .

(i) 6a and 6b are said to be non-conflicting (w.r.t. each other)
if the following holds for all t ∈ � 0:

Ba
∣

∣

[0,t] ∩ Bb
∣

∣

[0,t] = (Ba ∩ Bb)
∣

∣

[0,t] . (2)

(ii) Given a decomposition W = U × Y into inputs and out-
puts of 6a, the system 6b is said to be implementable w.r.t
6a if for all t ∈ � 0, w̄|[0,t] ∈ Ba|[0,t] ∩ Bb|[0,t] and
ŵ|[0,t] ∈ Ba|[0,t] the following holds:



ŵ|[0,t) = w̄|[0,t) and PU ŵ(t) = PU w̄(t)

H⇒ ŵ|[0,t] ∈ Bb|[0,t] . (3)

A supervisor 6sup = ( � 0, W, Bsup) is said to be admissi-
ble w.r.t. a plant 6p = ( � 0, W, Bp) if 6p and 6sup are non-
conflicting and 6sup is implementable w.r.t. 6p. �

If an admissible supervisor 6sup is interconnected with the
plant 6p, the closed-loop is given by the system 6cl =

( � 0, W, Bcl), where Bcl = Bp ∩ Bsup. It can bee seen that
if 6sup is admissible w.r.t. 6p, then so is the closed-loop 6cl;
i.e. 6cl may also serve as a supervisor.

Given a plant 6p and a specification 6spec = ( � 0, W, Bspec)

of acceptable closed-loop trajectories, an admissible supervi-
sors 6sup which achieves Bcl ⊆ Bspec is said to be a so-
lution to the supervisory controller synthesis problem. Note
that formally there always exists the trivial solution 6∅ =

( � 0, W, ∅). The trivial solution leads to an empty closed-
loop behaviour and thus is not desirable. In analogy with the
scenario studied in DES theory, all the demands we put on
a solution 6sup are seen to be retained under arbitrary union
of supervisor behaviours; see [3], Proposition 17. Hence,
when 6p and 6spec are given, the union B

+
sup over all so-

lution behaviours Bsup itself determines a solution, namely
6+

sup = ( � 0, W, B
+
sup). As all solution behaviours are con-

tained in B
+
sup, the system 6+

sup is referred to as the least re-
strictive solution to the control problem. It is also observed that
the least restrictive supervisor, when connected to the plant,
gives rise to the least restrictive closed-loop behaviour. Obvi-
ously, a non-trivial closed-loop exists if and only if the least
restrictive closed-loop behaviour is non-empty. A synthesis
procedure may focus its search for admissible supervisors on
behaviours contained in Bp ∩ Bspec without risk of missing
non-trivial solutions.

The following definition intends to capture the notion of admis-
sibility on the realization level.

Definition 7. Let P = (X, W, δ, X0) and Pspec =

(Xspec, W, δspec, Xspec0
) be state machines. Let P‖

�
(Q, W, λ, Q0)

� P ‖ Pspec. The transitions (ξ, ω, ξ ′) ∈ δ

and (ξ̃ , ω̃, ξ̃ ′) ∈ δ are called partners, if ξ = ξ̃ and PU ω =

PU ω̃. Let P̃‖ = (Q, W, λ̃, Q̃0) be a state machine such that

(i) λ̃ ⊆ λ, Q̃0 ⊆ Q0, and

(ii) a transition ((ξ, ξspec), ω, (ξ ′, ξ ′
spec)) ∈ λ can only be an

element in λ̃ if for every partner (ξ, ω̃, ξ̃ ′) of (ξ, ω, ξ ′)

there exists a ξ̃ ′
spec ∈ Xspec such that the transition

((ξ, ξspec), ω̃, (ξ̃ ′, ξ̃ ′
spec)) is in λ̃.

Then, P̃‖ is called a substructure of P ‖ Pspec w.r.t. P. �

Indeed, any system 6sup realized by a non-blocking substruc-
ture of P ‖ Pspec w.r.t. P is an admissible supervisor w.r.t.
6p ∼= P enforcing the specifications 6spec ∼= Pspec; see [3],
Proposition 17. Moreover, if P and Pspec are non-blocking and
past-induced, the least restrictive closed-loop system can be re-

alized by a non-blocking substructure; see [3], Theorem 21.
Thus, for finite past-induced realizations P and Pspec, one may
first remove transitions leading into blocking states, then form
the parallel composition and finally, in the parallel composi-
tion, remove all partners of transitions leading into blocking
states. The outcome of this procedure is a state machine realiz-
ing the least restrictive closed-loop system 6+

cl and thus solving
the synthesis problem on realization level.

If the plant is hybrid, however, a finite realization will not in
general exist. On the other hand, if the external signal space
is a finite set, the property of l-completeness, l ∈ � , (see
[9]) serves as a sufficient condition for the existence of a fi-
nite past-induced realization. Hence it is tempting to conserva-
tively approximate the plant behaviour Bp by some l-complete
behaviour Bl and then to consider the synthesis problem for
6l = ( � 0, W, Bl). The crucial question is then whether a so-
lution of the control problem for the approximation also solves
the problem for the plant 6p (i.e. whether the resulting supervi-
sor is admissable w.r.t. the plant and enforces the specifications
for 6p). The following theorem (see [3], Theorem 25) gives an
affirmative answer:

Theorem 8. Let 6ca = ( � 0, W, Bca) be a conservative
approximation of 6p = ( � 0, W, Bp), i.e. B ⊆ Bca; let
6sup = ( � 0, W, Bsup) be a complete admissible supervisor
w.r.t. 6ca. If 6p is a complete I/- system, then 6sup is an
admissible supervisor w.r.t. 6p. If the closed-loop behaviour
Bca ∩ Bsup is nonempty, so is Bp ∩ Bsup. �

Note that both the specifications we consider and the supervi-
sor our procedure comes up with are finite state-machines and
thus are known to induce a complete external behaviour. The
completeness requirement for 6p can also be dropped if the
plant is realized by an I/S/- machine.

In [3], we provide a general method for the construction of
a past-induced non-blocking finite state machine Pl that re-
alizes the strongest l-complete approximation 6l of 6p. For
the case of linear time-invariant continuous-time systems with
discrete external variables, a detailed computational procedure
introducing a second approximation step has been derived in
[2]. This —in principle— allows approximation based syn-
thesis of discrete supervisory control for a rich class of hybrid
plant models. It is obvious, however, that on the (DES) approx-
imation level we encounter the “curse of dimensionality”. This
is one of the reasons for our exploration of modular extensions
of our approach.

4 Modular control

Setting up an overall supervisor by combining a number of in-
dividual supervisors is referred to as modular supervisory con-
trol. There are two potential benefits from modular supervisors.
First, it may turn out that the synthesis of individual super-
visors and their combination is computationally cheaper than
the direct synthesis of an overall supervisor. Second, given a
plant, one may set up a library of supervisors which can be



combined in order to suit various applications for that plant. In
the field of DES theory, this topic has been studied extensively,
e.g. [6, 7, 10]. As with our “non-modular” version of supervi-
sory control, it is expected that basic principles carry over to the
behavioural framework and thus can be employed to establish
modular controller synthesis for hybrid systems.

Given a plant 6p, we condider the situation in which the prob-
lem of supervisory control has been solved for two specifica-
tions 6spec,a and 6spec,b individually. That is, two supervisors
6sup,a and 6sup,b have been established, both admissible w.r.t.
the plant and —when connected individually— enforcing the
desired specifications 6spec,a and 6spec,b, respectively. Here,
the sensible question to ask is under which circumstances and
how these two supervisors can be combined into an overall su-
pervisor 6sup such that both specifications are enforced simul-
taneously, i.e. the closed-loop behaviour Bcl = Bp ∩ Bsup
must be a subset of the intersection Bspec

� Bspec,a ∩ Bspec,b.
A natural starting point here is to run both supervisors 6sup,a
and 6sup,b in parallel. Thus Bsup = Bsup,a ∩Bsup,b is our can-
didate for the behaviour of the overall supervisor. Trivially, this
approach leads to Bcl ⊆ Bspec. However, while the property
of admissibility for supervisors is preserved under union, the
corresponding statement does not hold true for intersections.
Thus, we ask for a criterion which guarantees our candidate
6sup to be admissible w.r.t. the plant 6p. Furthermore, as on
the realization level we intend to run 6sup,a and 6sup,b in paral-
lel, we require that they do not conflict as long as the trajectory
evolves within the plant behaviour. Formally, we require

Bp
∣

∣

[0,t] ∩ Bsup,a
∣

∣

[0,t] ∩ Bsup,b
∣

∣

[0,t]

= Bp
∣

∣

[0,t] ∩ (Bsup,a ∩ Bsup,b)
∣

∣

[0,t]

for all t ∈ � 0 and refer to this property as 6sup,a and 6sup,b
being non-conflicting relative to 6p.

Proposition 9. Let both supervisors 6sup,i =

( � 0, W, Bsup,i ) be non-conflicting w.r.t. the plant
6p = ( � 0, W, Bp), and denote the individual closed-loop
systems by 6cl,i = ( � 0, W, Bcl,i ), Bcl,i = Bp ∩ Bsup,i ,
where i ∈ {a, b}. Then for the combined supervisor
6sup = ( � 0, W, Bsup), Bsup = Bsup,a ∩ Bsup,b, the
following are equivalent

(i) 6sup,a and 6sup,b are non-conflicting relative to 6p, and
6sup and 6p are non-conflicting;

(ii) 6cl,a and 6cl,b are non-conflicting.

Proof. First, we assume (i) to hold true and establish (ii) by
the following observation:

(Bcl,a ∩ Bcl,b)
∣

∣

[0,t]

= (Bp ∩ Bsup)
∣

∣

[0,t] = Bp
∣

∣

[0,t] ∩ Bsup
∣

∣

[0,t]

= Bp
∣

∣

[0,t] ∩ Bsup,a
∣

∣

[0,t] ∩ Bsup,b
∣

∣

[0,t]

= Bcl,a
∣

∣

[0,t] ∩ Bcl,b
∣

∣

[0,t] .

This proves “(i)⇒(ii)”. Conversely, we now assume (ii) to

hold. Note that

Ba
∣

∣

[0,t] ∩ Bb
∣

∣

[0,t] ⊇ (Ba ∩ Bb)
∣

∣

[0,t] (4)

holds true for any two behaviours Ba and Bb over the same
signal-space, and thus observe

Bsup
∣

∣

[0,t] ∩ Bp
∣

∣

[0,t]

⊆ Bp
∣

∣

[0,t] ∩ Bsup,a
∣

∣

[0,t] ∩ Bsup,b
∣

∣

[0,t]

= (Bp ∩ Bsup,a)
∣

∣

[0,t] ∩ (Bp ∩ Bsup,b)
∣

∣

[0,t]

= (Bcl,a ∩ Bcl,b)
∣

∣

[0,t] = (Bp ∩ Bsup)
∣

∣

[0,t] .

Again by Eq. (4), this implies

(Bsup ∩ Bp)
∣

∣

[0,t] = Bsup
∣

∣

[0,t] ∩ Bp
∣

∣

[0,t] , (5)

and 6sup is non-conflicting w.r.t. 6p. In particular, the “⊆”
relation in the preceeding consideration can only hold true by
equality. Hence, we conclude

Bsup
∣

∣

[0,t] ∩ Bp
∣

∣

[0,t] = Bp
∣

∣

[0,t] ∩ Bsup,a
∣

∣

[0,t] ∩ Bsup,b
∣

∣

[0,t] ,

and 6sup,a and 6sup,b are non-conflicting relative to 6p. This
completes the proof of “(ii)⇒(i)”. �

By the above proposition, a necessary and sufficient criterion
for the desired non-conflicting properties is given in terms of
the individual closed-loop behaviours. In order to guarantee
that the combined supervisor is admissible w.r.t. the plant, we
must further examine the issue of implementability. It turns
out that the non-conflicting property of individual closed-loop
behaviours can again be used as a criterion:

Theorem 10. Let the plant 6p = ( � 0, W, Bp), W =

U × Y , be an I/- system. Let both supervisors 6sup,i =

( � 0, W, Bsup,i) be admissible w.r.t. the plant 6p =

( � 0, W, Bp), and denote the individual closed-loop systems
by 6cl,i = ( � 0, W, Bcl,i), Bcl,i = Bp ∩ Bsup,i , where
i ∈ {a, b}. If 6cl,a and 6cl,b are non-conflicting, then the
supervisor 6sup = ( � 0, W, Bsup), Bsup = Bsup,a ∩ Bsup,b,
is admissible w.r.t. the plant 6p.

Proof. From Proposition 9 it is known that 6sup is non-
conflicting w.r.t. 6p. In order to show that it is also imple-
mentable, pick any t ∈ � 0, w̄|[0,t] ∈ Bp|[0,t] ∩ Bsup|[0,t] and
ŵ|[0,t] ∈ Bp|[0,t] such that ŵ|[0,t) = w̄|[0,t) and PU ŵ(t) =

PU w̄(t). We need to establish ŵ|[0,t] ∈ Bsup|[0,t]. Since
Bsup = Bsup,a ∩ Bsup,b and both 6sup,a and 6sup,b are imple-
mentable w.r.t. 6p, it is observed that ŵ|[0,t] ∈ Bsup,a|[0,t] and
ŵ|[0,t] ∈ Bsup,b|[0,t]. Hence, ŵ|[0,t] ∈ Bcl,a|[0,t] ∩ Bcl,b|[0,t].
As 6cl,a and 6cl,b are non-conflicting, this implies ŵ|[0,t] ∈

(Bcl,a ∩ Bcl,b)|[0,t] and thus ŵ|[0,t] ∈ Bsup|[0,t]. �

From the behavioural point of view, we may run the individ-
ual supervisors 6sup,a and 6sup,b in parallel on the plant 6p
and by this achieve both specifications 6spec,a and 6spec,b si-
multaneously if and only if the individual closed-loops 6cl,a
and 6cl,b are non-conflicting. Furthermore, any admissable su-
pervisor 6sup which enforces both specifications 6spec,a and
6spec,b simultaneuosly must exhibit a behaviour Bsup not ex-
ceeding the induvidual least restrictive supervisor behaviours



B
+
sup,a and B

+
sup,b. Thus, if the combined supervisor 6+

sup =

( � 0, W, B
+
sup), B

+
sup = B

+
sup,a ∩ B

+
sup,b is admissible at all,

6+
sup is seen to be the least restrictive admissible supervisor en-

forcing both specifications simultaneously.

We now work out the consequences of the above result on
the realization level. First, it is assumed that 6p, 6spec,a and
6spec,b are realized by past-induced non-blocking finite state
machines P, Pspec,a and Pspec,b respectively. Our synthesis
procedure then establishes non-blocking past-induced finite re-
alizations P+

cl,a and P+
cl,b of the supremal closed-loop systems

6+
cl,a and 6+

cl,b which serve as individual supervisors. In the
particular case of non-blocking past-induced realizations, the
induced external behaviours are non-conflicting if and only if
the parallel composition is non-blocking. This can be checked
by examining all reachable states in P+

cl,a ‖ P+
cl,b.

For the case the plant 6p is a hybrid system, we apply the
results of [3] to synthesise individual supervisors for each of
the specifications based on a conservative approximation of the
plant, as discussed in Section 3. One then ends up in a situation
similar to the finite state case, but with the fundamental differ-
ence that the established realizations Pcl,a and Pcl,b —which
can be employed as supervisors— are based on a finite approx-
imation rather than on the actual hybrid plant. Still, Proposi-
tion 9 and Theorem 10 hold true and in principle one could
develop a procedure to check for non-conflictingness of the ac-
tual closed-loop behaviours. However, as our candidate overall
supervisor is realized by Pcl,a ‖ Pcl,b , the parallel composition
is required to be non-blocking anyway. If this is indeed the
case, Theorem 10 guarantees Pcl,a ‖ Pcl,b to realize a supervi-
sor which is admissible w.r.t. the approximation. Then Theo-
rem 8 in turn guarantees that our candidate overall supervisor
is admissible w.r.t. the actual plant.

In terms of realizations —whether they be finite or hybrid—
the results sum up to the simple formula: if the parallel com-
position Pcl,a ‖ Pcl,b is non-blocking, it can be employed as a
supervisor enforcing both specifications simultaneuosly.

5 Example

We consider a thermal switched-server system consisting of
two plates and a radiator, similar to the one described in [2].
The radiator can either be switched off or on, heating a single
plate depending on its position. A switching strategy has to be
implemented by a supervisor in order to (a) keep the tempera-
tures of all plates in a specified range while (b) maintaining an
upper bound on the switching frequency. In [2] we solve this
control problem by directly applying the methods developed
in [3], and we also give a detailed account of computational
aspects. Here, we first treat both specifications (a) and (b) sep-
arately and then combine the resulting supervisors such that
both specifications are enforced simultaneously.

In setting up a plant model, we refer to the following parame-
ters: the radiator and the environment temperatures βr ∈

�
and

βe ∈
�

, respectively; the corresponding normalized heat trans-

fer coefficients αr , αe ∈
� +; the specified range of allowed

temperatures [β−, β+] ⊂
�

; it is assumed that the initial tem-
peratures lie within (β0, β+) ⊂

�
. The temperature xi( · ) of

plate i ∈ {1, 2} is modelled either by equation (6) when it is
heated or by equation (7) when it is not heated:

ẋi(t) = αr (βr − xi(t)) + αe (βe − xi(t)) , (6)

ẋi(t) = 2 αe (βe − xi(t)) . (7)

Observe that xi(t) ≡ βm
� (αr βr + αe βe)/(αr + αe) is

a stable equilibrium for a heated plate, and xi(t) ≡ βe for a
non-heated plate. We assume parameter values such that βe <

β− < β0 < β+ < βm < βr holds.

Whenever the temperature of plate νplt ∈ {1, 2} reaches the
threshold νval ∈ {β−, β0, β+}, the output signal (νplt , νval) ∈

Y = {1, 2} × {β−, β0, β+} is generated. In response, the su-
pervisor may disable certain discrete input signals from µ ∈

U = {1, 2, 3}, where µ = 3 is interpreted as “radiator off”,
while µ < 3 is interpreted as “radiator positioned at plate µ”.
If more than one input signal is enabled, selection is instan-
taneous — either at random or by some higher level control
device.

The external plant behaviour Bp ⊆ (U × Y )
�

0 is then defined
to be the set all those sequences of input and output events that
can occur according to our model; for a formal definition of
the external behaviour of switched continuous systems see e.g.
[2, 4]. Note that while the external behaviour is discrete in both
time-axis and signal space, the plant behaviour Bp is deter-
mined by the continuous dynamics in continuous time as given
by the differential equations (6) and (7). In general, hybrid sys-
tems are known to exhibit complex dynamics, and the analysis
of a hybrid system can turn to out to be highly non-trivial.

In order to formalise our control problem, we state both speci-
fications in terms of the external events:

(a) If plate νplt triggers the threshold νval = β+, the next
input must not heat that plate. If plate νplt triggers the
threshold νval = β−, the next input must heat that plate.

(b) No reheating process must be started for a plate at a tem-
perature above β0. Once the reheating process of a plate
has been started, it has to be continued until the plate tem-
perature reaches β+.

Clearly, a consequence of enforcing specification (a) is that the
temperatures of the plates are kept within [β−, β+]. Specifica-
tion (b) requires that any reheating process goes at least from
[β0, β+]. By Eq. (6), such a reheating process is seen to have a
minimal duration of

T =
1

αr + αe
ln

βm − β0

βm − β+
. (8)

Hence, in fulfilling (b) a supervisor enforces an upper bound
on the frequency of radiator re-allocation.

Treating both specifications (a) and (b) separately, we use the
method proposed in [2] to construct two past-induced finite re-
alizations Pcl,a and Pcl,b that enforce (a) and (b), respectively.
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Figure 1: hybrid plant under supervision Pcl,a
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Figure 2: hybrid plant under supervision Pcl,b

Fig. 1 and 2 show closed-loop simulations, where the parame-
ter values are chosen as βe = 0, βr = 1, αe = 0.1, αr = 1.0,
β+ = 0.8, β0 = 0.6, β− = 0.2, and the synthesis is based on
an l-complete approximation with l = 4. The simulation il-
lustrates the capability of the individual supervisors to enforce
their respective specifications. The figures also give evidence
that Pcl,a does not enforce specification (b) and that Pcl,b does
not enforce specification (a). However, the parallel composi-
tion Pcl,a ‖ Pcl,b turns out to be non-blocking, and, as both
supervisors are past-induced, this implies that the induced be-
haviours are non-conflicting. Thus Pcl,a ‖ Pcl,b realises an ad-
missible supervisor that enforces both (a) and (b) simultane-
ously, as illustrated by the closed-loop simulation in Fig. 3.
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Figure 3: hybrid plant under supervision Pcl,a ‖ Pcl,b

6 Conclusions

A problem of modular supervisory control is considered within
the framework of behavioural systems theory. We propose a
condition under which two supervisors, each enforcing a par-
ticular specification, will have an admissible parallel compo-
sition that enforces both specifications simultaneously. While
similar results have been known from DES theory, our notion
of admissible supervisors refers to the definition of inputs and
outputs in the behavioural style and in particular suits a general
class of hybrid plant models. Thus the investigated principles
of modular supervisory control can be seen as an extension to
recent work on supervisory control of hybrid systems. Poten-
tial benefits gained by modularity are seen to be applicable to
the synthesis of discrete controllers for hybrid systems: (i) the
synthesis of individual supervisors and their combination may
turn out to be computationally cheaper than the direct synthe-
sis of an overall supervisor; (ii) one may set up a library of
supervisors which can be combined in order to suit various ap-
plications for a specific plant.
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