
Hierarchical Control of Discrete Event Systems

with Inputs and Outputs

Der Technischen Fakultät der

Universität Erlangen-Nürnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Sebastian Perk

Erlangen 2010

Als Dissertation genehmigt von
der Technischen Fakultät der
Universität Erlangen-Nürnberg

Tag der Einreichung: 03. 07. 2009
Tag der Promotion: 05. 02. 2010
Dekan: Prof. Dr.-Ing. Reinhard German
Berichterstatter: Prof. Dr.-Ing. Th. Moor

Prof. Dr.-Ing. J. Raisch

Vorwort

Mein erster Dank gebührt dem Betreuer meiner Promotion Herrn Prof. Dr.-Ing. Thomas Moor.
Seine Ideen zu den wesentlichen Aspekten des Promotionthemas und die engagierte Betreuung
der Promotion von Beginn an legten ein festes Fundament für meine Arbeit. Viel zusätzlicher Frei-
raum und das somit entgegengebrachte Vertrauen schufen einoptimales Umfeld, um auf dieses
Fundament aufzubauen.
Herrn Prof. Dr.-Ing Jörg Raisch danke ich herzlich für die Übernahme des Korreferates und, zu-
sammen mit den Herren Prof. Dr.-Ing. Bernhard Schmauß und Prof. Dr. Volker Strehl, für die
bereitwillige Mitwirkung im Prüfungskollegium.
Ich danke außerdem Herrn Prof. Dr.-Ing. Günter Roppenecker, Vorstand des Lehrstuhls für Rege-
lungstechnik der Universität Erlangen-Nürnberg. Sein beständiges Interesse an meiner Arbeit und
der regelmäßige Zuspruch gaben mir das Selbstvertrauen, das für eine Promotion die notwendige
Vorraussetzung ist.
Allen Kollegen des Lehrstuhls möchte ich danken, denn auf ihren Rat wie auch Aufmunterung
konnte ich mich stets verlassen.
Ein ganz besonderer Dank gilt meinem Kollegen und Freund Dr.-Ing. Klaus Schmidt für die nie
versiegende Quelle an fachlichen Informationen und Ideen,den Rat in allen Lebenslagen und al-
lem voran für die Freundschaft.
Ich danke meiner Familie für den Rückhalt und für die Liebe und Unterstützung, die ich in sich
wunderbar ergänzenden Facetten erfahren durfte.
Der wichtigste Dank gilt von Herzen meiner Frau Claudia, denn ihre beständige Liebe, Unterstüt-
zung und Aufmunterung waren eine wesentliche Vorraussetzung, dass diese Arbeit zum erfolgrei-
chen Abschluss kam.

Nürnberg, Februar 2010 Sebastian Perk

Abstract

In the late 1980’s, the Supervisory Control Theory (SCT) wasproposed by P.J. Ramadge and W.M.
Wonham [RW87b], that provides a systematic method for automated synthesis of discrete event
controllers with guaranteed safety and liveness properties, but fails for systems of praxis-relevant
size due to extensive computational complexity. Since then, research has been aimed at design
methods that are based on the SCT, but scale better with the system size by structural exploitation
of the problem and thus introduce access to practical applications.

In this thesis, we propose an I/O-based framework for the design of hierarchical controllers for
discrete event systems that addresses both safety and liveness properties. Technically, we build
on J.C. Willems’ behavioural systems theory [Wil91], that describes fundamental properties of
dynamic systems like the characteristics of inputs and outputs based on their behaviours. The
generality of the behavioural approach allows us to transfer this notion of inputs and outputs to
discrete event systems. As a consequence, results from previous work on abstraction-based control
of hybrid systems in [MR99, MRD03] could be elaborated for discrete-event dynamics.

The I/O-based approach is applied to systems that consist ofa number of interacting components
(local subsystems) and builds a hierarchy of superposed controllers and subordinate environment
models on the component models. The I/O-based description of the component models is inde-
pendent of their surroundings (i.e. neighbour components or controller) to obtain reusability within
different configurations. Each model of the local subsystems provides two I/O ports, one to inter-
act with a controller and the other one to interact with the environment of the component. At first,
local controllers are designed for each component according to local specifications that are inde-
pendent from the component’s environment. While the designmethod is based on the Supervisory
Control Theory, safety and liveness of the closed loop are a consequence of the I/O properties of
component model and controller.
On the next layer of the hierarchy, groups of several components each are formed, and their in-
teraction is described by a dynamic environment model. The synthesis of a superposed controller
for each group is not performed on the detailed description of the locally controlled component
models, but on their abstractions in form of the local specifications, which effectively limits the
computational complexity. The abstraction-based controllers are proven to correctly control also
the original system. By alternation of the abstraction step, the grouping of components via en-

vironment models and the design of superposed controllers,an overall system is developed that
scales well with the number of system components. The expected reduction of complexity became
evident also by application to the conceptional example of atransport-unit chain that comes along
with this thesis.

Zusammenfassung

Hierarchische Steuerung von ereignisdiskreten Systemen
mit Ein- und Ausgängen

In den späten 1980’er Jahren wurde mit der Supervisory Control Theory (SCT) nach P.J. Ramadge
und W.M. Wonham [RW87b] ein systematisches Verfahren bereitgestellt, welches die automati-
sche Synthese sicherer und lebendiger Steuerungen für ereignisdiskrete Systeme ermöglicht, sich
aber aufgrund des erheblichen Rechenaufwands nicht für Systeme praxisrelevanter Größe eignet.
Seither wird nach Entwurfsverfahren geforscht, die auf derSCT aufbauen, jedoch durch Nutzung
der Prozessstruktur besser mit der Systemgröße skalieren und somit den Zugang zur praktischen
Anwendung ermöglichen, siehe [PMS07b] für einen deutschsprachigen Überblick.
In dieser Arbeit wird ein Ein-Ausgangs-(E/A-) basierter Ansatz zum Entwurf hierarchischer Steue-
rungen für ereignisdiskrete Systeme vorgestellt, der sowohl Sicherheits- als auch Lebendigkeitsei-
genschaften berücksichtigt. Dieser ist angelehnt an die sogenannte Behavioural Systems Theory
nach J.C. Willems [Wil91], welche grundlegende Eigenschaften dynamischer Systeme, wie die
Charakteristik von Ein- und Ausgängen, verhaltensorientiert und so allgemeingültig beschreibt,
dass sie auch zur E/A-basierten Beschreibung von ereignisdiskreten Systemen herangezogen wer-
den konnte. Auf dieser Grundlage lassen sich Ergebnisse zumabstraktionsbasierten Reglerentwurf
für hybride Systeme aus [MR99, MRD03] auf ereignisdiskreteSysteme übertragen.

Beim E/A-basierten Ansatz wird auf einen aus Komponenten bestehenden Prozess eine Hierarchie
überlagerter Steuerungen und unterlagerter Umgebungsmodelle aufgebaut. Die E/A-basierte Mo-
dellierung der einzelnen Prozesskomponenten erfolgt zunächst umgebungsunabhängig (d.h. unab-
hängig von Nachbarkomponenten oder der Steuerung). Dies bewirkt ihre Wiederverwendbarkeit
innerhalb unterschiedlicher Anordnungen. Jedes E/A-basierte Modell der lokalen Teilsysteme ver-
fügt über zwei E/A-Ports, einer zum Anschluss einer Steuerung, der andere zum Anschluss eines
dynamischen Umgebungsmodells, welches jeweils die Interaktion einer Gruppe von Teilsystemen
untereinander und mit der restlichen Umgebung beschreibt.Gemäß lokaler von der Umgebung un-
abhängiger Spezifikationen werden für die einzelnen Prozesskomponenten zunächst lokale Steue-
rungen entworfen. Die Entwurfsmethodik baut dabei auf die Supervisory Control Theory auf. Der

Nachweis von Sicherheit und Lebendigkeit des geschlossenen Regelkreises gelingt infolge der ein-
/ausgangsbasierten Systembeschreibung.
Auf der nächsthöheren Stufe der Hierarchie werden jeweils mehrere Prozesskomponenten zu-
sammengefasst und ihre Interaktion durch ein dynamisches Umgebungsmodell modelliert. Der
Entwurf überlagerter Steuerungen für Gruppen von Komponenten greift nicht auf die detaillierte
Beschreibung der lokal gesteuerten Prozessmodelle, sondern auf eine Abstraktion derselben auf
Grundlage der lokalen Spezifikationen zurück, was den Rechenaufwand wirkungsvoll begrenzt.
Die anhand der Abstraktion entworfene Steuerung steuert auch das tatsächliche System nachweis-
lich korrekt. Durch gezieltes Abwechseln der Abstraktionsschritte, der Beschreibung der Interakti-
on durch Umgebungsmodelle und der Überlagerung von Steuerungen lässt sich ein Gesamtsystem
entwickeln, welches mit der Anzahl der Prozesskomponentengut skaliert. Der erwartete geringe
Rechenaufwand ergab sich auch bei der Anwendung auf das konzeptionelle Beispiel einer Kette
von Transporteinheiten, welches diese Arbeit begleitet.

. . .after all, salesmen continue to travel. . .

W.M. Wonham

Table of Contents

1 Introduction 1

2 Formal Languages: Notation and Terminology 13

3 Discrete Event Systems with Inputs and Outputs 21

3.1 System Description 21

3.2 I/O Ports 22

3.3 I/O Plant 25

3.4 Constraints 29

3.5 Liveness 30

3.6 I/O Controller 35

4 Controller Synthesis 45

4.1 YC-Acyclic Sublanguage .. 45

4.2 SupremalYC-Acyclic Sublanguage: Graph-Based Computation 51

4.3 Complete, Controllable and Normal Sublanguage 56

4.4 I/O Controller Synthesis Procedure 59

5 Hierarchical Control System 69

5.1 Control of Composed Systems 70

5.1.1 I/O Shuffle .71

5.1.2 I/O Environment .. 74

II TABLE OF CONTENTS

5.2 Stepwise Hierarchical System Design 78

5.3 Complexity of the Transport Unit Example 79

6 Conclusions 81

Appendix 83

A Proofs 83

A.1 Languages and According Properties 83

A.2 Input/Output-Based Results 85

A.3 Chain of Transport Units: Monolithic Plant Model 97

Chapter 1

Introduction

When facing a complicated technical problem, a powerful instrument of successful engineering
practice is to exploit the structure of the problem until it can be cast to one or a number of simpler
problems whose solution applicably exists. Thecontrol of discrete event systems(DES) is a com-
plicated problem. Though it has been formally solved in the late 1980’s by the supervisory control
theory (SCT) of Ramadge and Wonham, which delivers controllers with guaranteed correctness
and performance, the model-based approach did get only limited access to industrial deployment,
which is mainly due to the affinity of DES to intractable complexity of the plant model.
In contrast, engineers manage to automatize even large-scale DES such as logistics, communica-
tion networks and manufacturing systems. By practical experience and technologies like divide
and conquer strategies, measurement aggregation and last but not least the hiding of apparently
less relevant plant behaviour , the original problem is turned into one with manageable complex-
ity. However, this inevitably limited view on the original problem has a number of unpleasant
consequences. As correctness of the controller software cannot be formally guaranteed, usually a
large number of trial and error runs is necessary for debugging. Depending on the existence and
accuracy of a simulation model, a considerable number of trials run after sales on the real plant
involving safety problems and high costs. Further issues are suboptimal capacity utilization as well
as low configurability and low scalability. Hence the question arises how to avoid such shortcom-
ings when organizing the problem in an applicable manner.
Since the proposal of the SCT, considerable research effortwas spent on incorporating the men-
tioned engineering skills in model-based discrete event controller design to reduce computational
complexity without the loss of the guarantees gained by the SCT. Let us introduce an example to
illustrate some of the challenges in control of DES.

Example 1.1
We consider a small manufacturing line as in Figure 1.1.

2 CHAPTER 1 — INTRODUCTION

r

machine inspection

a b c

p

f

Figure 1.1: Manufacturing line

From an always filled stack feeder, raw workpieces enter a machine via a conveyor belt and are
processed (a). When the process in the machine is finished, the workpiece proceeds to an inspec-
tion unit (b). The inspection results are “pass” (p) or “fail” (f). After inspection, workpieces can
exit the manufacturing line (c) or return to the machine (r). The discrete event behaviour of this
technical process can be represented by an automaton model of the machine and of the inspection
unit, see Figure 1.2 a) and b), respectively. The occurrenceof events is denoted by transitions,
which are visualized as arrows labeled with the triggering event that lead from the system state
(drawn as circle) before the transition to the state after the transition. The initial system state (here:
states with label1) is denoted by a sourceless arrow. The behaviour of the wholeline is given by
the synchronous composition of both automata, see Figure 1.2 c). The composition of all plant
components is denotedmonolithic plant model.

1

2

a rb

(a) machine

1

2

3

b

pf

r c

(b) inspection

1 2 3 4

5 6

a b p

f
r

c

a a

p

f

c

(c) composed behaviour

Figure 1.2: Manufacturing line: automata models

As can be seen, the number of states of the monolithic model isthe product (rather than the sum)
of the state counts of the machine and the inspection model; i.e. we face the general case, where

3

the complexity of the whole plant (counted in number of states) is exponential in the number of
plant components.
The control objective for this example shall be the reprocessing (r) of a workpiece in case it fails
inspection (f). The according specification forbids the release (c) of those workpieces from the
manufacturing line that failed inspection but requires reprocessing instead; it is easily formulated
as an automaton, see Figure 1.3 a). For the enforcement of thespecification on the plant, the un-
controllability of the eventsf andp has to be taken into account, as they cannot be directly disabled
by a controller.
If this specification is applied directly to the plant, then the resulting behaviour blocks: consider
state6 in Figure 1.2 c) and assume it was reached from state5 via the eventf , i.e. a workpiece just
failed inspection. Then, the specification forbids eventc, but at the same time the required repro-
cessing (r) is not possible, as the machine is occupied by another workpiece. Hence, no further
event is possible, and the system gets stuck in a deadlock.
Thesupervisory control theory(SCT, [RW87b]) provides an efficient algorithm to compute a min-
imally restrictive supervisor such that the closed-loop behaviour of the plant under supervisory
control meets the given specification (safety) and is nonblocking (liveness).1 The resulting closed-
loop behaviour of the manufacturing line is shown in Figure 1.3 b). As can be seen, the supervisor
avoids the aforementioned deadlock by allowing for only oneworkpiece in the line until the in-
spection result is positive: a second occurrence of the the eventa is disabled until the occurrence
of the eventp.

1 2

f

r

c

(a) specification

1 2 3 4

5

6

a b p

f
r

c

a

c

(b) closed-loop behaviour

Figure 1.3: Manufacturing line: supervisory control

Note that the closed loop-behaviour can indeed be achieved by a supervisor, as only controllable
events are be disabled. This fundamental condition for successful controller design is denoted

1The avoidance of blockings is achieved by the marking technology which, for simplicity, is not considered here.

4 CHAPTER 1 — INTRODUCTION

controllability. The model of the closed-loop behaviour serves as realization of the supervisor and
can be implemented e.g. in the form of PLC code. ◻

As the most appealing feature of a supervisor designed according to the SCT and as a consequence
of the model-based approach, the closed-loop behaviour isguaranteedto comply with the
specification, to be nonblocking and to be minimally restricted. On the downside of the SCT, the
supervisor has to be computed on the basis of the monolithic plant model, whose complexity is
prohibitive in most practical applications. Example calculation: the monolithic model of a plant
consisting of 10 components with 10 states each can embrace up to1010 states.
The reason why, aside from the shortcomings mentioned at theoutset, engineers successfully
design controller software for e.g. large scale automationsystems lies in the structural exploita-
tion of the design problem: usually, the software is modular, composed of subroutines for
different control tasks and different functional system components. For superposed control tasks,
the view on the system is aggregated adequately by respecting only the features relevant to the task.

Since the supervisory control theory was proposed in the late 1980’s, a major contingent of re-
search in the field of discrete event systems has aimed atstructured approachesbased on the SCT
that reduce the complexity of controller design and at the same time preserve properties such as
guaranteed enforcement of the specification and nonblocking.
Modular approachessuch as [RW87a, WR88, RW89, dQC00, QC00, GM04, MF08] are useful if
the overall control objective is given as a set of specifications for individual tasks. One supervisor
controlling the whole plant is designed for each specification, see Figure 1.4.

...

...

plant

supervisor 1 supervisor n

specification 1 specification n

Figure 1.4: modular control architecture

While still the composed plant has to be computed, complexity reduction results from the low com-
plexity of the individual specifications compared to their composition. The possibility of conflicts
(in case the interaction of the modular supervisors causes blocking) requires the test for nonblock-
ing closed-loop behaviour e.g. as in [FM06] or structural conditions that avoid conflicts.

In decentralized approaches, the overall control task is performed by a set of supervisors (Figure
1.5), each of which controls only one component of the plant (“local control”) and thus is expected

5

to feature low complexity.

...

...

module 1 module n

supervisor 1 supervisor n

specification

plant

Figure 1.5: decentralized control architecture

Without further measures, the plant-wide enforcement of the specification is not guaranteed, and
the behaviour of the local supervisors within each other or with other plant components may be
conflicting. We reconsider the manufacturing line example to illustrate such conflict situation.

Example 1.2
We apply the specification for the manufacturing line (Figure 1.3 a)) separately to the machine and
to the inspection unit. The resulting supervisor for the machine does not restrict its behaviour and
may be omitted. The locally controlled behaviour of the inspection unit is shown in Figure 1.6 a).

1

2

3 4

b

pf

r c

(a) locally controlled inspection

1 2 3 4a

4b

5

6a

6b

a b
p
f

r

c

a a a

p

f

c

(b) closed-loop behaviour

Figure 1.6: Manufacturing line: decentralized control

As can be seen, the locally controlled inspection unit is free of deadlocks. When composed with
the machine, the resulting behaviour of the overall plant (Figure 1.6 b)) meets the specification but,
however, is blocking - observe the deadlock in state 6b. ◻

6 CHAPTER 1 — INTRODUCTION

Approaches like [CDFV88, LW90, BGK+90] guarantee safety and liveness by requiring structural
conditions (see also [LW91]). However, computations stillrequire the detailed monolithic plant
model. In extended decentralized approaches ([WH91, LW97,LW02, KvS04]), the composition
of the plant components and hence the exponential growth of complexity is effectively avoided.
Additionally, [SMG06] provides a method to exhibit modularor decentralized supervisor design
on reduced system models.

The idea of information hiding has lead tohierarchical approaches(e.g. based on [ZW90, WW96,
dCCK02, HC02]), that map the original plant to one or more superposed layers of less complex
high-level-models, where the degree of abstraction is oriented towards the according specification.
The complexity is reduced by designing the supervisor for the high-level model. From this super-
visor, that virtually controls the abstracted model, an implementation for the original plant has to
be derived, see Figure 1.7.

plant

map

high-level plantsupervisor

specification

implementation

Figure 1.7: hierarchical control architecture

The monotonicity of the involved operators guarantees enforcement of the specification on the
original plant by the implementation. If, moreover, the abstraction of the closed loop of imple-
mentation and original plant exactly matches the closed loop of abstracted plant and supervisor,
the desirable property ofhierarchical consistencyis met. If not, then the implementation can be
conservative. Furthermore, measures have to be taken such that the resulting closed-loop behaviour
is nonblocking. In [Led02], low- and high-level are connected by a layer of particular interfaces,
and desired properties like nonblocking are achieved by a request and answer structure of the in-
volved components. As this structure can be met individually by the plant components, the detailed
monolithic plant model never needs to be computed. As one of the first approaches, applicability
has been proven by physical, industry-oriented examples, see [Led96, Wen06].

By combining the hierarchical and the decentralized method, thehierarchical-decentralizedap-
proach ([Sch05, SMP08]) allows for a multi-level hierarchyof supervisory control by alternation
of decentralized control, hierarchical abstraction and subsystem composition. The implementation
of each high-level supervisor restricts the behaviour of the subordinate supervisors, down to the
layer of plant components, in a way such that the whole architecture is hierarchically consistent.

7

Moreover, reasonable structural conditions and reasonable conditions for the abstraction map are
identified that guarantee nonblocking closed-loop behaviour. The applicability of the approach to
large-scale DES has been demonstrated with a laboratory case study, see also [Per04]. Extensions
cover the maximal permissiveness ([SB08]) and the distributed implementation of the supervisors
over communication networks ([SSZ07]).

A method that has been extensively studied in supervisory control of hybrid systems isabstraction
based control; see e.g. [CKN98, RO98, KASL00, MR99]. In such approaches, the original plant
is replaced by an approximation that relates to the originalby a simple subset relation: in the
abstraction, a less detailed likewise less complex description of the system behaviour allows for
more possible system trajectories compared to the originalplant model, see Figure 1.8.

plant

abstraction

supervisor

Figure 1.8: abstraction-based control

The supervisor is designed for the abstracted model and thenapplied to the original plant. Similar
to the hierarchical approach, safety is guaranteed by monotonicity, while liveness has to be dealt
with separately.

Example 1.3
We replace the original plant model of the manufacturing line by an abstraction to show how
computational savings can be made. For the machine that can hold not more than one workpiece,
we introduce a half as complex model that ignores the limitedcapacity, see Figure 1.9 a). Observe
that any sequence of events in the original model (Figure 1.2a)) is also possible in the abstraction,
i.e. the abstraction meets the required subset relation. Also the composition with the inspection unit
to an abstracted model of the plant (Figure 1.9 b)) is of lowercomplexity and a valid abstraction due
to monotonicity of the composition operator. The realization of the abstraction-based supervisor is
depicted in Figure 1.9 c).

8 CHAPTER 1 — INTRODUCTION

1

a
r

b

(a) machine, abstracted

1

2

3

b

pf

rc

a

a

a

(b) plant, abstracted

1

2

3 4

b

pf

r c

a

a

a a

(c) closed-loop behaviour, abstracted

Figure 1.9: Manufacturing line: abstraction-based control

Observe that also the supervisor realization is less complex. Unfortunately, the closed loop of
the abstraction-based supervisor and the original plant matches with the blocking behaviour in
Figure 1.6 b) that has also been achieved by decentralized control. Hence, as noticed before, the
enforcement of the specification is preserved, while liveness, in general, is not. ◻

Usually, the liveness of the resulting closed loop is ensured by structural conditions on the original
plant and the supervisor only, such that the subset relationremains the only condition required for
the abstraction. Hence, its degree can be chosen freely between arbitrary and original behaviour
which can result in considerable computational savings. Naturally, too coarse abstractions lead to
excessively restricted closed-loop behaviour.

Contribution and Outline of the Thesis

For discrete event controller design, the preservation of both, controllability and liveness properties
are problems of primary concern in all approaches based on the SCT. Interestingly, these problems
seem to be a specialty of the class of discrete event systems.Example: in the control of systems
with continuous dynamics described according to linear systems theory, the violation of compa-
rable properties is not observed: in the closed loop of any controller and any plant, the controller
never directly changes measurement signals issued the plant, but does influence the plant output
only indirectly via the plant input (≅ controllability). Also, the trajectories in the closed loop never
break up, as any system accepts arbitrary input signals and always, there exists an according out-
put signal (≅ no deadlocks). Hence, basic properties are given a priori bythe input-/output-based
system description rather than by additional measures in controller design.
This difference between the two fields of control theory doesnot lie solely in the different nature
of the considered dynamics, but also in the different view onit:

9

In the SCT, the plant model is interpreted as a system that by itself spontaneously generates con-
trollable eventsΣc and uncontrollable eventsΣuc. The influence by a supervisor is passive, by
enabling or disabling the the occurrence of controllable events. An input-/output based system
description differs from this paradigm in that systems perform interaction by actively generating
output signals and passively accepting output signals, seeFigure 1.10 b). In [BHP+93, Wen06],
the former and the latter model interpretations are denotedasymmetricandsymmetricfeedback,
respectively.

plant

supervisor

Σc ∪Σuc

event
enabling/
disabling

(a) asymmetric feedback in the SCT

plant

controller

input

input output

output

(b) symmetric feedback with I/O structure

Figure 1.10: Comparison of SCT- and I/O-feedback types [BHP+93]

Our approach develops an input-/output-based (I/O-based)description for DES aiming at a notion
of inputs and outputs for DES that

(i) legitimates a direction of cause and effect as in Figure 1.10 b).

(ii) achieves controllability and basic liveness properties for the closed loop ofany controller
andanyplant as a consequence of the I/O structure.

(iii) allows for abstraction-based controller synthesis.

(iv) enables hierarchical design of the plant model and the control system.

(v) exploits the structure of composed systems similarly todecentralized approaches.

(vi) facilitates the description of a discrete event model in separation from its surroundings via
its input and output such that the model is reusable within various configurations.

In references such as [LT89, BHP+93, Bal94, KGM95, JMRT08], discrete event models are pro-
vided with different notions of inputs and outputs, each adequate to the considered problem. In our
approach and in contrast to the references, the notion of inputs and outputs and relevant fundamen-
tal properties like the novel event-based notion ofYP-liveness are derived from J.C. Willems’ be-
havioural systems theory [Wil91], which, due to its generality, can in principle be directly adopted

10 CHAPTER 1 — INTRODUCTION

to DES to meet the above items (i) and (ii). This allows us to build on the core ideas of [MR99] on
abstraction-based control of hybrid systems and the hierarchical extension [MRD03] (for items (iii)
and (iv)), as both are stated within the behavioural systemstheory. To meet items (iv) and (v), we
introduce further extensions required for subsystem composition and a two-sided controller- and
environment hierarchy. Here, we refer to approaches like [GM05, Led02, Ma04, Sch05] where the
vertical (de)-composition introduced by a hierarchical architecture is complemented by a horizon-
tal (de)-composition of modular or decentralized supervision.

In this contribution, we propose to alternate subsystem composition and controller synthesis re-
sulting in a hierarchical control system that complements ahierarchical plant model; see Figure
1.11.

Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6

Contr. 1 Contr. 2 Contr. 3 Contr. 4 Contr. 5 Contr. 6

Controller 1-2 Controller 3-4 Controller 5-6

Controller 1-4

Controller 1-6

Environment 1-2 Environment 3-4 Environment 5-6

Environment 1-4

Environment 1-6

Figure 1.11: Hierarchical control system for a plant with 6 interactive components

On the innermost level of the hierarchy, all subsystems are modeled independently from their en-
vironment aiming at reusability within various configurations. For each subsystem model, local

11

controllers are designed to enforce local specifications that model the desired external behaviour
of the closed loop. In the design step, additional assumptions on the external configuration can be
taken into account by well-defined constraints. Their enforcement is passed on to the next level of
superposed control.
On the next level of the hierarchy, we use the specifications of the preceding level as an abstraction
of the controlled subsystems. The admissibility of this abstraction follows directly from the I/O-
based system structure. We then synthesize controllers forgroups of abstracted low-level control
systems. The latter have been designed independently, so constraints in interconnection of groups
of subsystems (e.g. shared resources) have not yet been considered. Our framework accounts for
such constraints by a hierarchy of environment models that complements the hierarchy of con-
trollers: each dynamic environment model describes the interaction within one group of locally
controlled subsystems.
The complexity of the compound group models is effectively reduced by the preceding abstraction
step. As a benefit of our framework, the controllability and liveness of each hierarchical layer di-
rectly result from the I/O-based system structure. Superposed controllers designed for each group
based on the abstractions solve the control problem provably also for the original groups of sub-
systems.
The alternation of system composition, controller synthesis, abstraction and environment inter-
connection is continued in a bottom-up fashion until a single top-level controller is synthesized to
control an abstract overall model.

The outline of the thesis is as follows. In the following chapter, we introduce the notation and ter-
minology of the formal language framework which is used in this thesis to elaborate and to express
theoretical results. The notion of an automaton is introduced to serve as graphical representation
of languages.
Chapter 3 proposes and explains the I/O-based description of DES and presents the definition of
the I/O plant that interacts with an operator and an environment. The desired liveness properties
are presented in an I/O-based formulation and in the presence of constraints on the plant’s external
configuration. The conceptional example of a transport unitis introduced that goes along with the
whole thesis to illustrate the formal statements.
Then, the notion of an I/O controller is defined as an operatorof the plant. As the first main result,
an admissibility condition for the I/O controller is identified that guarantees liveness for the closed
loop. Moreover, the external view on the closed loop features I/O plant properties and thus is ready
for further superposed control.
Next, the controller synthesis problem is formally defined introducing the specification as a model
of the external view on the desired closed loop behaviour. Finally, an important theorem is pro-
posed stating that the original synthesis problem is readily solved based on an abstraction of the
I/O plant.
In Chapter 4, the synthesis of an admissible I/O controller is considered. The notion ofYC-acyclic
sublanguages is introduced featuring a unique supremal element to achieve the desiredYC-liveness

12 CHAPTER 1 — INTRODUCTION

property for the closed loop. As the controller has to meet the I/O-structure and cannot directly
observe the plant’s interaction with the environment, controller synthesis involves the computation
of a complete, controllable and normal sublanguage. A controller synthesis procedure is presented
and proven to deliver a solution to the synthesis problem, i.e. an admissible I/O controller.
Chapter 5 studies the design of a hierarchical control system as in Figure 1.11. The first part con-
siders the description of a group of subsystems in a compoundmodel that is ready for controller
design. First a technical shuffle compound of the componentsis computed by the I/O shuffle oper-
ator. Then, the I/O environment model is formally defined that captures the concurrent behaviour
of the components and their interaction with the remaining environment. As the main results of
this chapter, I/O plant properties are proven for the external view on the compound of I/O shuffle
and I/O environment. Moreover, constraints for the external configuration of the compound are
identified that preserve the liveness of the involved subsystems, such that an admissible controller
can be computed according to the previous chapters.
The second part of the chapter gives guidance to step by step develop a hierarchical control sys-
tem based on the presented results. The applicability to multi-component DES is shown by the
application to a chain of transport units and by evaluation of the complexity that results for this
example.

Chapter 2

Formal Languages: Notation and
Terminology

The concept of formal languages originates from computer sciences and has been adopted to a
control theoretic context by the Supervisory Control Theory in order to mathematically describe
the dynamical behaviour and the properties of discrete-event systems. Also in this framework,
formal languages are used as the standard tool to express andprove formal statements, while
finite automata serve as a graphical representation of languages. In the following, we provide an
overview on the notation used in this text to describe discrete event systems in a language-based
framework. For an elaborate introduction to discrete eventsystems, we refer to [Won08, CL08].

Alphabet, Kleene-closure and strings.Let Σ be a finite set of distinct symbols, called finite alpha-
bet. The Kleene-closureΣ∗ is the set of finitestringsoverΣ; i.e.

Σ∗ = {s∣∃n ∈ N, ∀ i ≤ n ∶ σi ∈ Σ, s = σ1σ2⋯σn} ∪ {ǫ}

with theempty stringǫ ∈ Σ∗. The lengthof a strings = σ1⋯σn is denoted∣s∣ = n, with ∣s∣ = 0 if
s = ǫ and ∣s∣ = k if s = σ1⋯σk with σi ∈ Σ for i = 1..k. A string r = st with s, t ∈ Σ∗ is called
concatenation ofs andt. If for two stringss, r ∈ Σ∗ there existst ∈ Σ∗ such thats = rt, we sayr
is aprefixof s and writer ≤ s; moreover,r is calledstrict prefix of s if s ≠ r and writer < s. A
prefix ofs of lengthn ∈ N0 is denotedsn.

Language.A language overΣ is a subsetL ⊆ Σ∗. Note thatΣ itself and any of its subsets are
languages. A language potentially can contain an infinite number of strings.

Operations on languages.Besides the ordinary set operations union, intersection, set differ-
ence and complement w.r.t.Σ∗, the following language operations are common practice, see e.g.
[CL08]:

• Concatenation ofL1,L2 ⊆ Σ∗: L1L2 ∶= {st ∈ Σ∗∣s ∈ L1 ∧ t ∈ L2}

14 CHAPTER 2 — FORMAL LANGUAGES: NOTATION AND TERMINOLOGY

• Kleene-closure ofL ⊆ Σ∗: L∗ ∶= {ǫ} ∪ L ∪LL ∪LLL ∪⋯

• Prefix closure ofL ⊆ Σ∗: L = {r∣ ∃s ∈ L ∶ r ≤ s} ⊆ Σ∗

A languageL is prefix closedif L = L. The prefix closure distributes over unions, i.e.

L1 ∪L2 = L1 ∪L2

Completeness.[KGM92]1 The languageL is completeif

(∀s ∈ L ∶ ∃ σ ∈ Σ) [sσ ∈ L] (2.1)

Technically,L = {∅} is complete. A languageL is complete if and only ifL is complete
([KGM92]).

Regular expressions and regular language.A way to represent languages over an alphabetΣ in a
compact fashion is to use regular expressions, defined recursively as follows ([CL08]):

1. The empty language{∅} is denoted by the regular expression∅, the empty string language
{ǫ} is denoted by the regular expressionǫ, andσ is a regular expression denoting the set{σ},
for all σ ∈ Σ.

2. If r ands are regular expressions, then so arers, (r + s), r∗, s∗, representing the concatena-
tion, union and Kleene-closure of the sets represented byr ands, respectively.

3. An expression is not regular unless it is built by the finite-wise application of the above rules
1 and 2.

A language that can be represented by a regular expression iscalledregular language.

Automaton.Automata serve as a compact graph-based representation of languages that is useful
for visualization, storage and algorithmic processing. Inthis text, we consider only deterministic
finite automata.

Definition 2.1 (Automaton [HU79])
A deterministic finite automatonis a 5-TupleG ∶= (Q,Σ, δ, q0,Qm) consisting of

• Q: the finite set of states

• Σ: the finite alphabet

• δ ∶ Q ×Σ → Q the unique partial transition function

1This notion should not be confused with the notion of complete behaviours in [Wil91].

15

• q0: the initial state

• Qm ⊆ Q: the set of marked states
◻

Chapter 1 provides several examples of automata graphs.We write δ(q, σ)! if δ is defined atq ∈ Q

andσ ∈ Σ. We can extendδ to a partial function onQ ×Σ∗ by defining recursively:

1. δ(q, ǫ) ∶= q, ∀q ∈ Q

2. δ(q, sσ) = δ(δ(q, s), σ) whenever bothδ(q, s) = q′ ∈ Q andδ(q′, σ)!.

Theactive event setof a stateq ∈ Q is defined asΛ(q) ∶= {σ∣δ(q, σ)!}. A stateq with Λ(q) = ∅ is
calleddeadlock. Moreover, a state is calledreachableor accessibleif there exists a path from the
initial state to this state. An automaton is reachable/accessible if all states are reachable/accessible.
An automaton isnonblockingif from every reachable state there exists a path to a marked state.
A nonblocking and reachable automaton is denotedtrim. An automatongeneratesa prefix-closed
languageL(G) andmarks2 a languageLm(G) ⊆ L(G) as described in the subsequent definition.

Definition 2.2 (Generated and Marked Language, e.g. [CL08, Won08])
For an automatonG = (Q,Σ, δ, q0,Qm) the generated language is defined as

L(G) ∶= {s ∈ Σ∗ ∣ δ(q0, s)!}

and the marked language is

Lm(G) ∶= {s ∈ Σ∗ ∣ δ(q0, s) ∈ Qm}.

◻

Hence, an automaton is nonblocking iffL(G) = Lm(G).

Minimal automaton and Nerode Equivalence.A deterministic automaton defines a partition of
L(G) andLm(G) into classes of strings leading to the same state. Accordingto [HU79], for
each regular languageL, there exists a (substantially) unique deterministic finite automaton, called
minimal automaton, that marksL with a minimal number of states.3 A minimal automatonG
provides a partition ofΣ∗ into strings leading to the same state that equals the partition of Σ∗ into
strings that arenerode-equivalentw.r.t.Lm(G):

2In the DES literature, also the terms “accepts” and “recognizes” are used adequately to the context.
3“substantially” means that the minimal automaton is uniqueexcept for isomorphisms like renaming of states.

16 CHAPTER 2 — FORMAL LANGUAGES: NOTATION AND TERMINOLOGY

Definition 2.3 (Nerode Equivalence, e.g. [Won08], orig. [Ner58])
TheNerode equivalencerelation onΣ∗ with respect toL ⊆ Σ∗ is defined as follows. Fors, t ∈ Σ∗,

s ≡L t ⇔ (∀u ∈ Σ∗ ∶ su ∈ L ⇔ tu ∈ L). (2.2)

◻

For L ⊆ Σ∗, two stringss, t ∈ Σ∗ with s ≡L t are callednerode-equivalent w.r.t.L. Note that all
strings from the setΣ∗ − L are nerode-equivalent w.r.t.L, as they have no extension to a string of
L. In the minimal automaton, these strings are represented bya single state state, usually denoted
“dump-state”, from which there exists no path to a marked state. The dump-state usually is omitted,
as only the strings belonging toL are of interest.

Natural projection and inverse projection.The natural projection allows to erase those events from
strings whose observation is either impossible or undesirable.

Definition 2.4 (Natural Projection, e.g. [CL08, Won08])
Thenatural projectionpo∶Σ∗ → Σ∗o , Σo ⊆ Σ, is defined iteratively:

1. letpo(ǫ) ∶= ǫ;

2. for s ∈ Σ∗, σ ∈ Σ, let po(sσ) ∶= po(s)σ if σ ∈ Σo, or po(sσ) ∶= po(s) otherwise.

The set valued inverse ofpo is denotedp−1o ∶Σ
∗
o → 2Σ∗ and defined

p−1o (s) ∶= {t ∈ Σ∗∣po(t) = s} for s ∈ Σ∗o

◻

As the above definition indicates, the projection distributes over concatenation, i.e.

po(st) = po(s)po(t), s, t ∈ Σ∗.

The projection and its inverse are defined for languages by

po(L) ∶= {po(s)∣s ∈ L}

and

p−1o (Lo) ∶= {s∣po(s) ∈ Lo}

for L ⊆ Σ∗ andLo ⊆ Σ∗o , respectively.

17

When extended to languages, the projection distributes over unions but, in general, not over inter-
section, i.e.

po(L1 ∪ L2) = po(L1) ∪ po(L2), (2.3)

po(L1 ∩ L2) ⊆ po(L1) ∩ po(L2) (Appendix, Lemma A.2)

for Li ⊆ Σ∗, Σo ⊆ Σ, andpo as defined above. The inverse projection distributes over unions and
intersection, i.e.

p−1o (L1 ∪ L2) = p−1o (L1) ∪ p−1o (L2),

p−1o (L1 ∩ L2) = p−1o (L1) ∩ p−1o (L2).

Prefix closure commutes with projection and inverse projection:

po(L) = po(L),

p−1o (L) = p−1o (L)

for L ⊆ Σ∗, Σo ⊆ Σ, andpo as defined above.

Synchronous composition.An important operation on languages and automata is the synchronous
composition, which is used to describe the interconnectionof two DES.

Definition 2.5 (Synchronous Composition, e.g. [CL08, Won08])
The synchronous composition4 of two languagesLi ⊆ Σ∗i , i ∈ {1,2}, is defined

L1 ∥ L2 ∶= p−11 (L1) ∩ p−12 (L2)

where the projectionspi are defined with domain(Σ1 ∪Σ2)∗ and rangeΣ∗i .

The synchronous product of two deterministic automataG1 = (Q1,Σ1, δ1, q0,1,Qm,1) andG2 =

(Q2,Σ2, δ2, q0,2,Qm,2) is

G1∣∣G2 ∶= (Q1 ×Q2,Σ1 ∪Σ2, δ1∣∣2, (q0,1, q0,2),Qm,1 ×Qm,2)

with

δ1∣∣2((q1, q2), σ) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(δ1(q1, σ), δ2(q2, σ)) if σ ∈ Λ1(q1) ∩Λ2(q2)

(δ1(q1, σ), q2) if σ ∈ Λ1(q1) −Σ2

(q1, δ2(q2, σ)) if σ ∈ Λ2(q2) −Σ1

undefined else

◻

4Also denoted parallel composition or synchronous product

18 CHAPTER 2 — FORMAL LANGUAGES: NOTATION AND TERMINOLOGY

The synchronous composition of two automata represents thesynchronous composition of the cor-
responding languages:L(G1 ∥ G2) = L(G1) ∥ L(G2) andLm(G1 ∥ G2) = Lm(G1) ∥ Lm(G2).

Sequential behaviours andω-languages.[KGM92, TW94b, TW94a] In order to describe and ana-
lyze the sequential (also called infinite) behaviour of DES,the notion of infinite-length, so-called
ω-strings is useful. The set ofω-stringsoverΣ ⊆ Σ is denoted

Σω = {s∣∀ i ∈ N0∶σi ∈ Σ, s = σ0σ1σ2⋯}.

If for two stringsw ∈ Σω, r ∈ Σ∗, there existsv ∈ Σω such thatw = rv, we sayr is astrict prefixof
w and writer < w. The strict prefix ofw with lengthn ∈ N0 is denotedwn. An ω-languageover
Σω is a subsetL ⊆ Σω. Theprefixof anω-languageL ⊆ Σω is defined

pr(L) = {r∣∃s ∈ L ∶ r < s} ⊆ Σ∗.

For convenience, forpr(L)we adopt the notationL from the domainΣ∗, i.e. forL ⊆ Σω we denote
L ∶= pr(L). For a languageL ⊆ Σ∗ the limit is defined

L∞ = {w ∈ Σω ∣∃ (ni)i∈N0
, ni+1 > ni ∶ w

ni ∈ L}.5

We define theω-languages represented by an automatonG ∶= (Q,Σ, δ, q0,Qm) as (cf. [KGM92])

L∞(G) ∶= (L(G))∞ = {s∣∃ (ni)i∈N0
, ni+1 > ni ∶ δ(q0, s

ni)!} and

L∞m(G) ∶= (Lm(G))∞ = {s∣∃ (ni)i∈N0
, ni+1 > ni ∶ δ(q0, s

ni) ∈ Qm}.

It is easily verified that the limit operator is monotonic:

Lemma 2.1
LetL1, L2 be regular languages overΣ∗. Then:

L1 ⊆ L2⇒ L1
∞ ⊆ L2

∞ (2.4)

◻

Proof Pick an arbitrary stringw ∈ L1
∞. Hence∃ (ni)i∈N0

, ni+1 > ni ∶ wni ∈ L1. As L1 ⊆ L2,
∀ni ∶ wni ∈ L2 and thusw ∈ L2

∞. ◻

In general, the reverse direction is false: considerL1 = a∗∪{b}, L2 = a∗∪c∗, both over the alphabet
Σ = {a, b, c}, whereL1

∞ ⊆ L2
∞ butL1 /⊆ L2.

The completeness property has a strong impact on the relation between a language and its limit.
The following lemma states that a string that is prefix of a string in a complete language at the
same time is a prefix of an infinite string in the limit of this language, i.e. contributes to this limit.

5Observe that(ni)i∈N0
denotes aninfinitesequence definingni for all i ∈ N0.

19

Lemma 2.2
For a languageL ⊆ Σ∗, the following equivalence holds:

L is complete⇔ L = L∞

◻

Proof

“⇐”: Pick anys ∈ L ⊆ L. Thus,s ∈ L∞, i.e. there existsw ∈ Σω such thatsw ∈ L∞. Note thatw is
an infinite sequence. Hence, there existsσ ∈ Σ such thatsσ < sw and consequentlysσ ∈ L∞.
Thus,sσ ∈ L, i.e.L is complete.

“⇒”: L ⊇ L∞ is obvious. We showL ⊆ L∞. Pick an arbitrary strings1 ∈ L and proceed with the
following algorithm:

(i) i = 1

(ii) As si ∈ L there existsri ∈ Σ∗ such thatsiri ∈ L.

(iii) As L is complete, there existsσi such thatsiriσi ∈ L.

(iv) Savesi+1 ∶= siriσi, seti = i + 1 and proceed with step (ii).

By n-wise iteration of the above algorithm, a sequences1r1 < s2r2 < ... < snrn can be
constructed, wheren ∈ N is arbitrary. Thus, there exists an infinite stringw ∈ Σω with
wn = snrn ∈ L for infinitely manyn ∈ N. Hence,w ∈ L∞. As s1 < s1r1 < w, it holds that
s1 ∈ L∞ and thusL ⊆ L∞.

◻

By the above lemma, the prefix-closure of a complete languageequals the prefix of its limit. Hence,
we receive the following statement, if the language is additionally prefix-closed.

Lemma 2.3 ([KGM92])
For a languageL ⊆ Σ∗, the following equivalence holds:

L is complete and prefix-closed⇔ L = L∞

◻

The natural projection forω-strings carries over from finite strings in a straightforward way, see
Definition 2.6. The range, however, is the union of finite andω-strings. In contrast, the set valued
inverse projection mapsω-strings toω-languages.

20 CHAPTER 2 — FORMAL LANGUAGES: NOTATION AND TERMINOLOGY

Definition 2.6
Thenatural projection of infinite stringspo∶Σω → Σ∗o ∪Σω

o , Σo ⊆ Σ, is defined:

for s = σ1σ2σ3⋯ ∈ Σω ∶ po(s) ∶= po(σ1)po(σ2)po(σ3)⋯.

The set valued inversep−1o ∶Σ
∗
o ∪Σω

o → 2Σ∗∪Σω

is defined

p−1o (s) ∶= {t ∈ Σ∗ ∪Σω ∣po(t) = s} for s ∈ Σ∗o ∪Σω
o

◻

The projection and its inverse are defined forω-languages by

po(L) ∶= {po(s) ∈ Σ∗o ∪Σω
o ∣s ∈ L}

and
p−1o (Lo) ∶= {s ∈ Σ∗ ∪Σω ∣po(s) ∈ Lo}

for L ⊆ Σ∗∪Σω andLo ⊆ Σ∗o ∪Σω
o , respectively. Accordingly, the Definition 2.5 of the synchronous

product is extended toω-languages. For prefix-closed languagesL1 andL2 we have

L1
∞ ∥ L2

∞ ⊆ (L1 ∥ L2)
∞,

see Appendix, Lemma A.3, where equality does not hold, in general (see Appendix, Lemma A.4).

This chapter introduced the notation, terminology, representation and properties of formal lan-
guages to an amount that provides a technical basis for the input-output based description of dis-
crete event systems in the following chapter.

Chapter 3

Discrete Event Systems with Inputs and
Outputs

In systems theory and especially in control theory, a major interest lies in how a system is influ-
enced by its surroundings and how, in return, the system influences its surroundings. The input-
output-based (I/O-based) representation of systems as it is widely used in control theory evolved
from that perception. In this chapter, an I/O-based view is introduced for discrete event systems.
First, we extend the language-based description of discrete event systems (Section 3.1) by the no-
tion of I/O ports in Section 3.2 to describe the interaction of a system with its surroundings via
inputs and outputs. The I/O based representation of a plant model and its liveness properties under
external influence in Sections 3.3 to 3.5 is followed by an I/O-based view of a controller (Section
3.6). The main ideas of this chapter have been published in [PMS06] and [PMS07a].

3.1 System Description

We use formal languages to describe the dynamical behaviourof a discrete-event process as a math-
ematical system model. In our framework, asystemconsists of an alphabet that carries the totality
of all possible events and a language over that alphabet describing all possible event sequences.

Definition 3.1 (System)
A systemis a tupleS = (Σ,L) with the alphabetΣ and the languageL ⊆ Σ∗. ◻

This definition strongly corresponds to Willems’ definitionof a mathematical modelof a phe-
nomenon.1 Moreover, Definition 3.1 leaves room for a separate definition of the terms input and

1For discrete-event processes, the mathematical model according to Willems’ definition could be chosen as
(Σ∗,L), with the universeΣ∗.

22 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

output.

We say the system complete ifL is complete, the system is regular ifL is regular, the system is
prefix-closed ifL is prefix-closed etc.

Remark 3.1
Our notion of liveness is not expressed by marked strings, and in this thesis, we consider prefix-
closed systems only. Ongoing research includes the consideration of non-prefix-closed systemsS =
(Σ,L) with the instantaneous behaviourL and the infinite (i.e. long-term) behaviourL∞ (rather
than (L)∞). An according automaton representation generatesL and marksL. Such system,
if complete, additionally features the property of “eventuality” in that it provides a persistent
guarantee(rather than a chance) for strings ofL to be extended to a marked string ofL. This
extended system description (including the prefix-closed case) augments the expressiveness of the
system models and allows to specify a wider range of control tasks. ◻

We introduce inputs and outputs for discrete event systems by the notion of I/O ports, via which
systems perform interaction.

3.2 I/O Ports

The interaction of a plant model with its surroundings via input and output is described by the
following notion of a plant-I/O port.

System

Y U W

Figure 3.1: Plant-I/O port

Definition 3.2 (Plant-I/O Port)
A pair (U,Y) is aplant-I/O portof the system(Σ,L) if

(i) Σ =W ∪̇U ∪̇Y , U ≠ ∅ ≠ Y ;

(ii) L ⊆ (Y U +W)∗; and

(iii) (∀s ∈ Σ∗Y, µ ∈ U) [s ∈ L ⇒ sµ ∈ L] .
◻

By item (i), we separate input eventsµ ∈ U from output eventsν ∈ Y . Note that the partition into
input and output alphabet does not coincide with the controllability of events: e.g. a sensor event

SECTION 3.2 — I/O PORTS 23

may at the same time be an output of one system and an input of another system. By item (ii), we
require alternation of output and input events aiming at a dependence between cause and effect.
Remaining dynamics (e.g. dynamics performed on another I/Oport) is captured byW ∗. When
the systemgeneratessome output eventν ∈ Y on the plant-I/O port it willacceptany input event
µ ∈ U as an immediate successor (item (iii)) respecting that the input can be imposed freely by the
systems surroundings. Consistent with the definition, the incoming arrow in Figure 3.1 denotes
thatU is accepted, while the emanating arrow denotes thatY is generated.

The following definition of a controller-I/O port is complementary in the sense that it requires the
system to accept any eventν ∈ Y as input and to reply by some eventµ ∈ U as output, after an
optional negotiation with some other system via the alphabet W ; see Figure 3.2. A controller-I/O
port can be connected with a plant-I/O port, see Proposition3.1 below.

System

Y U W

Figure 3.2: Controller-I/O port

Definition 3.3 (Controller-I/O Port)
A pair (U,Y) is acontroller-I/O portof the system(Σ,L) if

(i) Σ =W ∪̇U ∪̇Y , U ≠ ∅ ≠ Y ;

(ii) L ⊆ (Y W ∗U)∗; and

(iii) (∀s ∈ Σ∗U ∪ {ǫ}, ν ∈ Y) [s ∈ L ⇒ sν ∈ L] .
◻

The above notion of a I/O ports relates to Willems’ description of I/O behaviours with free input
and an output that does not anticipate the input. In contrastto e.g. [Wil91], we do not require the
output to process the input and thereby account for non-deterministic external behaviour.

A controller-I/O port of one system can be connected with a plant-I/O of another system port to
achieve a simple feedback structure as in Figure 1.10 b) thatpreserves completeness:

Proposition 3.1
Let (U,Y) be a plant-I/O port of the complete systemS1 = (Σ,L1), and let(U,Y) be a controller-
I/O port of the complete systemS2 = (Σ,L2) with Σ = U ∪ Y .

Then the feedback structureS1,2 = (Σ,L1 ∥ L2) is a complete system. ◻

Proof Note thatL1 andL2 are languages over the same alphabetΣ, and the compositionL1,2 ∶=

L1 ∥ L2 evaluates toL1 ∩ L2. Hence,S1,2 is complete wheneverL1 = ∅ or L2 = ∅. Now consider

24 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

L1 ≠ ∅ ≠ L2 and pick an arbitrary strings ∈ L1,2. Observe thats ∈ L1, s ∈ L2 and that the language

format(Y U)∗ is met by both,L1 andL2. We distinguish the following possible cases:

(i) s = ǫ or s = s′µ, µ ∈ U : asS1 is complete and due to its language structure,sσ ∈ L1 for some
σ ∈ Y . Also, sν ∈ L2 ∀ν ∈ Y , as(U,Y) is a controller-I/O port ofS2. In particular,sσ ∈ L2.
Hencesσ ∈ L1,2.

(ii) s = s′ν, ν ∈ Y : then, asS2 is complete and due to its language structure,sσ ∈ L2 for some
σ ∈ U . Also, sµ ∈ L1 ∀µ ∈ U , as(U,Y) is a plant-I/O port ofS1. In particular,sσ ∈ L1.
Hencesσ ∈ L1,2.

Together, for alls ∈ L1,2 it holds that there existsσ ∈ Σ such thatsσ ∈ L1,2, i.e.L1,2 is complete
and thusS1,2 is complete. ◻

The setting of Proposition 3.1 already enables the restriction of some physical plant behaviour
given as a plant I/O port using a controller I/O port that exhibits actuating events in reaction to
measurement events, see Figure 3.3 a). However, a standard control loop is usually equipped with
an interface to some operator (e.g. by the reference variable) and a variable describing the effect of
control to the environment of the plant (e.g. the control variable that is usually a system output).
Based on this consideration, we aim at a control loop that extends the simple feedback structure
by an interface of the controller to the operator (indexC) and an interface of the plant to the
environment (indexE), see Figure 3.3 b).

controller-I/O port

plant-I/O port

UY

(a) simple feedback structure

operator

controller

plant

environment

UPYP

UCYC

UEYE

(b) additional interface to operator and environment

Figure 3.3: from simple feedback to control loop

SECTION 3.3 — I/O PLANT 25

3.3 I/O Plant

In order to achieve a high degree of modularity in our approach, we aim for a plant model de-
scription that is reusable within various configurations. To this end, we explicitly separate the
plant model from its surroundings, which we identify as an operator and an environment. From
the perspective of the operator, the plant models the mechanism by which the environment can be
manipulated. Hence, an I/O plant is defined as a system equipped with two distinguished plant-I/O
ports, see Figure 3.42. One port models the interaction of the plant with an operator (or controller)
via eventsΣP, the other port models the interaction of the plant with the environment via the events
ΣE that are not directly observable to the operator (or controller).

operator

plantSPE

environment

UPYP

UEYE

Figure 3.4: I/O plant

Definition 3.4 (I/O Plant)
An I/O plant is a tupleSPE = (UP, YP,UE, YE,LPE), where

(i) (ΣPE,LPE) is a system withΣPE ∶= ΣP∪̇ΣE, ΣP ∶= UP∪̇YP, ΣE ∶= UE∪̇YE; and

(ii) (UP, YP) and(UE, YE) are plant-I/O ports of(ΣPE,LPE).
◻

Note that an I/O plant always possesses the language formatLPE ⊆ (YPUP + YEUE)∗. To illustrate
the above definition we introduce the following conceptional example.

2In this thesis the relationship between systems, alphabetsand languages is consequently indicated by matching
subscripts; e.g. the systemSABC always refers to the languageLABC over the alphabetΣABC. Furthermore,ΣABC

denotes the disjoint union ofΣA, ΣB andΣC, and when inputs and outputs are relevant we use e.g.ΣA = UA∪̇YA.
Similarly, the natural projection toΣ∗

AB
is denotedpAB; the natural projection toY ∗

A
is denotedpYA.

26 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

Example 3.1
Transport Unit. Consider a simple transport unit (TU) as depicted in Figure 3.5 a). Its behaviour
can be modeled as an I/O plantSPE ∶= (UP, YP,UE, YE,LPE) with LPE marked by the correspond-
ing automaton model depicted in Figure 3.5 b).SPE is a prefix-closed system and hence, all states
are marked, which is denoted by double-lined circles.

(a) physical layout

2 6

53

4

7

8

Err

1

empty

no_op

take_fl

req_fl

nack

pack

full

no_op

del_tr

req_tr

nack

pack

del_tr take_fl

UP ↓↑ YP

UE ↓↑ YE

(b) I/O plant model

Figure 3.5: Conceptional example: Transport Unit

The TU consists of a conveyor belt carrying a box that can holdthe workpiece to be transported.
A spring sensor inside the box detects the absence or presence of a workpiece (empty, full).
The initial state (state 1 in Fig. 3.5 b)) is defined such that the sensor reportsempty. The op-
erator can choose between three different commands (state 2). After the no_op (no operation)
command, the TU does not move, and the system remains in the initial state. The command
del_tr (deliver to right) leads to an error state as there is currently no workpiece present to de-
liver. Choosing the commandtake_fl (take from left) prompts the TU to move the box to its
left border (state 3). Now it depends on the environment if a workpiece is provided from the
left, which is modeled by the eventreq_fl unobservable to the operator. For a plant description
that is independent from the environment, we introduce the environment-eventspack andnack

(positive/negative acknowledge) respecting that the environment may or may not comply with the
requests of the plant. If the environment is not in the condition to provide a workpiece (nack),
the request is repeated. When a workpiece is provided from the environment, the sensor reports
full. Now (state 6), the commandtake_fl leads to an error behaviour (the box can carry only
one workpiece), and afterno_op the plant still reportsfull. By the commanddel_tr, the belt

SECTION 3.3 — I/O PLANT 27

moves the box to the right border. The eventreq_tr models the need for the workpiece to be with-
drawn to the right by the environment. In case ofpack, the system returns to its initial state. By
(UP, YP) ∶= ({no_op, take_fl, del_tr},{empty, full}), we identify the interaction with the op-
erator,(UE, YE) ∶= ({pack,nack},{req_fl, req_tr}) describes interaction with the environment.
Note that(UP, YP,UE, YE,LPE) features all I/O-plant properties of Definition 3.4. ◻

Clearly, an automatonG = (Σ,Q, δ, q0,Qm) that represents an I/O plant must itself have a certain
structure such as an I/O plant has, see e.g. Figure 3.5 b). Theknowledge of this structure is helpful
e.g. for the graph-based design of an I/O plant model, the graph-based test for I/O plant properties
or a structured graph-based visualization of an I/O plant (like the hierarchical arrangement of
the states in Figure 3.5 b)). The following definition provides such an automata structure that
corresponds to an I/O plant.

Definition 3.5 (I/O-Plant Form)
A generatorG ∶= (Σ,Q, δ, q0,Qm) is in I/O-plant formif

(i) Σ = UP∪̇YP∪̇UE∪̇YE with nonempty alphabetsUP, YP, UE, YE

(ii) Q = QY∪̇QUP∪̇QUE

(iii) q0 ∈ QY

(iv) [∀q ∈ QY, σ ∈ Σ](δ(q, σ)!⇒ (σ ∈ YP ∧ δ(q, σ) ∈ QUP) ∨ (σ ∈ YE ∧ δ(q, σ) ∈ QUE))

(v) [∀q ∈ QUP, σ ∈ Σ](δ(q, σ)!⇒ (σ ∈ UP ∧ δ(q, σ) ∈ QY))

(vi) [∀q ∈ QUE, σ ∈ Σ](δ(q, σ)!⇒ (σ ∈ UE ∧ δ(q, σ) ∈ QY))

(vii) [∀q ∈ QUP, µ ∈ UP](δ(q, σ)!)

(viii) [∀q ∈ QUE, µ ∈ UE](δ(q, σ)!)

(ix) Qm = Q

(x) G is accessible.
◻

Remark 3.2
Property (ix) guarantees thatG represents a prefix-closed system. Properties (ix) and (x) imply
thatG is trim. ◻

Lemma 3.1
If a generatorG ∶= (Σ,Q, δ, q0,Qm) is in I/O-plant form, then the system(Σ,Lm(G)) is an I/O
plant. ◻

28 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

Proof Preliminary note: Note that property (ix) impliesq0 ∈ Qm. Hence,Lm(G) ≠ ∅. We now
prove that(Σ,Lm(G)) provides all I/O-plant properties.

(i) (Σ,Lm(G)) is a system: by definition,G recognizes the languageLm(G) overΣ. Property
(i) requiresΣ = UP∪̇YP∪̇UE∪̇YE, and we identifyΣPE = ΣP∪̇ΣE ∶= Σ with ΣP ∶= UP∪̇YP and
ΣE ∶= UE∪̇YE.

(ii) (UP, YP) and(UE, YE) are plant-I/O ports of(Σ,Lm(G)). Proof: we show that(UP, YP)

provides all plant-I/O port properties. The plant-I/O portproperty of(UP, YP) carries over
to (UE, YE) by uniform substitution.

(ii.i) From property (i) in Definition 3.5 we directly concludeΣ = W ∪̇UP∪̇YP (with W =

Σ −UP − YP = UE∪̇YE) andUP ≠ ∅ ≠ YP.

(ii.ii) Lm(G) ⊆ (W ∗(YPUP)∗)∗ with W ∗ = (Y ∗
E
U∗

E
)∗. Proof: If Lm(G) = {ǫ}, obviously

Lm(G) ⊆ (W ∗(YPUP)∗)∗. ForLm(G) ⊃ {ǫ}, we continue with induction: Pick arbi-
traryσ ∈ Lm(G)∩Σ. Hence,δ(q0, σ)!. As property (iii) requiresq0 ∈ QY, property (iv)
impliesσ ∈ YP or σ ∈ YE. Both cases proveσ ∈ (W ∗(YPUP)∗)∗.
Now consider a nonempty stringsσn+1 = σ1σ2 . . . σnσn+1, σi ∈ Σ, i = 1..n, n ∈ N with
sσn+1 ∈ Lm(G). Assumes ∈ (W ∗(YPUP)∗)∗. We show thatsσn+1 ∈ (W ∗(YPUP)∗)∗.
Note that there exists someq ∈ Q such thatδ(q, σn)! andδ(q, σnσn+1)! and distinguish
two cases:

(a) σn ∈ YE ∪ YP. In this case, properties (v) and (vi) rule outq ∈ QUP ∪ QUE. Be-
cause of property (ii), we can concludeq ∈ QY. If σn ∈ YE, property (iv) re-
quiresδ(q, σn) ∈ QUE. Consequently, property (vi) impliesσn+1 ∈ UE. Hence,
sσn+1 ∈ (W ∗(YPUP)∗)∗YEUE ⊆ (W ∗(YPUP)∗)∗.
If σn ∈ YP, property (iv) requiresδ(q, σn) ∈ QUP. Consequently, property (vii)
impliesσn+1 ∈ UP. Hence,sσn+1 ∈ (W ∗(YPUP)∗)∗YPUP ⊆ (W ∗(YPUP)∗)∗.

(b) σn ∈ UP ∪ UE. Then, property (iv) rules outq ∈ QY. Because of property (ii),
we can concludeq ∈ QUP ∪QUE. Hence, properties (v) and (vi) implyδ(q, σn) ∈

QY. Consequently,σn+1 ∈ YE ∪ YP follows from property (iv). Hence,sσn+1 ∈

[(W ∗(YPUP)∗)∗(UP ∨UE) ∩ (W ∗(YPUP)∗)∗](YP ∨ YE) ⊆ (W ∗(YPUP)∗)∗.

Thus,sσn+1 ∈ (W ∗(YPUP)∗)∗ whenevers ∈ (W ∗(YPUP)∗)∗, which proves the induc-
tion step.

(ii.iii) (∀s ∈ Σ∗YP, µ ∈ UP)[s ∈ Lm(G)⇒ sµ ∈ Lm(G)]. Proof:
Pick arbitrarysν ∈ Lm(G), ν ∈ YP. Write q ∶= δ(q0, s) and observeδ(q, ν)!. As
ν ∉ UP ∪ UE, properties (v) and (vi) rule outq ∈ QUP ∪QUE. Because of property (ii),
q ∈ QY. Thus, asν ∈ YP, property (iv) implies thatq′ ∶= δ(q, ν) ∈ QUP. Consequently,
property (vii) implies that for allµ ∈ UP it holds thatδ(q′, µ)!. Hence,sνµ ∈ Lm(G)

for all µ ∈ UP.

SECTION 3.4 — CONSTRAINTS 29

Thus,(UP, YP) and(UE, YE) are plant-I/O ports of(Σ,Lm(G)).

Consequently,(Σ,Lm(G)) is an I/O plant. ◻

With a given plant model, we now can approach the problem of controller design. In the field
of discrete event systems, the usual design objectives are compliance with a desired behaviour
that is expressed as a safety specification and compliance with certain liveness properties such
that the desired behaviour is not only passively complied with but also exhibited actively. Safety
properties can be expressed as a language inclusion, whereas the liveness properties of the plant
strongly depend on its actual external configuration. For the discussion of the plant in a variety of
different external configurations, we introduce the notionof constraints.

3.4 Constraints

Considering its definition, an I/O plant may be subject to constraints on the operator and/or the
environment; e.g. the operator may or may not comply to the operator’s guidelines and the envi-
ronment may or may not provide resources.

Example 3.2
Transport Unit. Consider the transport unit that allows for transportationof workpieces. Its
ability to continually transport workpieces depends a) on the operator, as he has tooperate the
eventsdel_tr andtake_fl in a reasonable order, and b) on the environment, as it has to provide or
accept workpieces from time to time. ◻

In this framework, we describe those constraints as the variety of controller-I/O ports that can be
connected to the I/O plant to obtain the desired liveness properties.

Definition 3.6 (Constraint)
A constraintis a tuple(U,Y,L) if

(i) (Σ,L) is a system withΣ = U ∪̇Y ;

(ii) (U,Y) is a controller-I/O port of(Σ,L) ;

(iii) L is complete.
◻

By item (iii), we rule out constraints that preclude liveness of any I/O plant under such constraint.
We refer to theminimal constraint(U,Y,L) with L = (Y U)∗, if actually no constraint is con-
sidered, and themaximal constraint(U,Y,L) with L = ∅. The operator and the environment
constraint are denotedSP = (UP, YP,LP) andSE = (UE, YE,LE), respectively.

30 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

The following definition provides an automata structure that corresponds to a constraint.

Definition 3.7 (Constraint Form)
A generatorG ∶= (Σ,Q, δ, q0,Qm) is in constraint formif

(i) Σ = U ∪̇Y with nonempty alphabetsU, Y

(ii) Q = QY∪̇QU

(iii) q0 ∈ QY

(iv) [∀q ∈ QY, σ ∈ Σ](δ(q, σ)!⇒ (σ ∈ Y ∧ δ(q, σ) ∈ QU)

(v) [∀q ∈ QU, σ ∈ Σ](δ(q, σ)!⇒ (σ ∈ U ∧ δ(q, σ) ∈ QY))

(vi) [∀q ∈ QY, ν ∈ Y](δ(q, σ)!)

(vii) [∀q ∈ Q](∃σ ∈ Σ ∶ δ(q, σ)!)

(viii) Qm = Q

(ix) G is accessible.
◻

Lemma 3.2
If a generatorG ∶= (Σ,Q, δ, q0,Qm) is in constraint form, then the system(Σ,Lm(G)) is a con-
straint. ◻

Proof See Appendix A.2. ◻

In our framework, the notion of liveness is consistently formulated as liveness under constraints.

3.5 Liveness

A majority of the approaches to control of DES that regard liveness use the technique of marking
particular strings of plant and/or specification to expressdesired liveness properties. In most of
these approaches, the respective objective of controller design is to achieve or preserve the perma-
nent chance for any string of the closed loop to be extended toa marked string.

Our notion of liveness is different in that it requires output events to occur persistently rather than
strings/states to be reachable and thus is not based on marking. First, we define the notion of a
YP-live language and then identify two coupled liveness properties adequate for our setting.

SECTION 3.5 — LIVENESS 31

Definition 3.8 (YP-Liveness)
LetL be a regular language andYP be an alphabet. If

(∀w ∈ L∞)[pYP(w) ∈ Y
ω
P] ,

thenL is said to beYP-live.3 ◻

Apparently, any subset of aYP-live language is alsoYP-live:

Lemma 3.3
Let L be a regular language andYP be an alphabet. IfL is YP-live, then so is any sublanguage of
L. ◻

Proof Let K be an arbitrary sublanguage ofL. Because of Lemma 2.1, it holds thatK∞ ⊆
L∞. Thus, for allw ∈ K∞ we havew ∈ L∞ and, asL is YP-live, it holds thatpYP(w) ∈ Y ω

P .
Consequently,K is YP-live.

◻

The above statement is important for a) discussing the liveness of an I/O plant within different
external configurations (modularity) and b) abstraction-based control. UsingYP-liveness, we can
describe the liveness properties of an I/O plant as follows.

Definition 3.9 (I/O Plant: Liveness Properties)
Let SPE = (UP, YP,UE, YE,LPE) be an I/O plant and letSP = (UP, YP,LP) andSE = (UE, YE,LE)

be constraints.
(i) If LP ∥ LPE ∥ LE is complete, thenSPE said to becomplete w.r.t. the constraintsSP andSE.

(ii) If
(∀w ∈ (LP ∥ LPE ∥ LE)

∞)[pYP(w) ∈ Y
ω
P] ,

4 (3.1)

then the plant said to beYP-live w.r.t. the constraintsSP andSE.
◻

Completeness requires the plant to persistently issue events, i.e. prohibits deadlocks. Moreover, the
completeness property guarantees that each sequence of events contributes to aninfinitesequence
of events in the language limit considered byYP-liveness, see Proposition 2.2. The second liveness
property,YP-liveness, requires that any infinite sequence of events must include an infinite number
of measurement events reported to the operator (no livelocks between any twoYP-events). Hence,
properties (i) and (ii) when put together indeedguaranteethat an infinite sequence of measurement
eventsν ∈ YP is generated by the plant under constraints and, in return, influence by the operator
is persistently possible. Technically,LP ∥ LPE ∥ LE = ∅ provokes both liveness conditions to be
met trivially.

3If different alphabets such asYP2 or YC are concerned, we speak ofYP2- or YC-liveness, respectively.
4i.e. if LP ∥ LPE ∥ LE is YP-live

32 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

Example 3.3
Transport Unit. Temporarily, assume minimal (i.e. no) constraintsSPmin andSEmin for the model
of the TU which corresponds to arbitrary external configurations. Note thatSPE is neither complete
norYP-live with respect to these constraints. As seen in Figure 3.5 b), completeness is violated in
the error state because no further event is possible. Obviously, thisdeadlockis avoided by any
operator that meets a constraintSP on the correct alternation of the commandstake_fl anddel_tr,
see Figure 3.6.

2 4

1 3

empty, no_op
full

del_trtake_fl

no_op
full

empty,

Figure 3.6: Operator constraint for the TU

Moreover, as the TU plant model is designed independently ofthe environment, the extremal case
that the environmentnevercomplies with requests of the plant is included in the model.The
resultinglivelock violates theYP-liveness and is represented by a(req_fl nack)-loop between
states 3 and 4 and a(req_tr nack)-loop between states 7 and 8 in Figure 3.5 b).

The environment constraintSE ∶= (ΣE, ((req_fl + req_tr) pack)∗) models the prohibition of the
eventnack, i.e., the assumption that requests of the plant arealwaysaccepted by the environment;
see Figure 3.7.

1

2

req_tr
packreq_fl,

Figure 3.7: Environment constraint for the TU

The liveness properties of the plant are preserved if a controller connected to the plant complies
with the operator constraint and if the external configuration meets the environment constraint, see
Proposition 3.2. The resulting behaviour of the TU under thechosen constraints is shown in Figure
3.8.

SECTION 3.5 — LIVENESS 33

2 6

53

4

7

8

1

empty

no_op

take_fl

req_fl

pack

full

no_op

del_tr

req_tr

pack

Figure 3.8: Transport Unit under constraints

As can be seen, the TU is complete andYP-live w.r.t. the chosen constraints, as a) there is no
deadlock state (state with empty active event set) and b) a state is never visited twice unless at least
oneYP-event occurs. ◻

The following proposition shows that constraints can indeed be used asconditionsfor liveness of an
I/O plant, as its liveness is guaranteed whenever its surroundings pose a subset of the constraints.
Note that this result is a consequence of the I/O structure and the YP-liveness-property that is
preserved in any subset.

Proposition 3.2
Let SPE = (UP, YP,UE, YE,LPE) be an I/O plant that is complete andYP-live w.r.t. the constraints
SP = (UP, YP,LP) andSE = (UE, YE,LE).
Then,SPE is complete andYP-live w.r.t. any constraints̃SP = (UP, YP, L̃P) andS̃E = (UE, YE, L̃E)

with L̃P ⊆ LP andL̃E ⊆ LE. ◻

Proof We show thatL̃P ∥ LPE ∥ L̃E is complete andYP-live. Recall that, technically∅ is
complete andYP-live. Now, we consider̃LP ∥ LPE ∥ L̃E ≠ ∅. Observe that̃LP ∥ LPE ∥ L̃E ⊆ LP ∥
LPE ∥ LE ⊆ LPE.

Completeness.Pick an arbitrary strings ∈ L̃P ∥ LPE ∥ L̃E, i.e.s ∈ LPE, pP(s) ∈ L̃P andpE(s) ∈ L̃E.
Observing the language formatL̃P ∥ LPE ∥ L̃E ⊆ (YPUP + YEUE)∗ we distinguish:

• s = ǫ, or s = s′µ with µ ∈ UE ∪UP:

AsLP ∥ LPE ∥ LE is complete, there existsσ ∈ YP ∪ YE such thatsσ ∈ LP ∥ LPE ∥ LE.

If σ ∈ YP, thenpE(sσ) = pE(s) ∈ L̃E. For pP(s), it holds that eitherpP(s) = ǫ or pP(s) =

s′′µP with µP ∈ UP because of the language format ofLPE. As (UP, YP) is a controller-I/O
port of S̃P, it holds thatpP(s)ν ∈ L̃P ∀ν ∈ YP. In particular,pP(s)σ ∈ L̃P.

34 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

Analogously:If σ ∈ YE, thenpP(sσ) = pP(s) ∈ L̃P. ForpE(s), it holds that eitherpE(s) = ǫ

or pE(s) = s′′µE with µE ∈ UE because of the language format ofLPE. As (UE, YE) is a
controller-I/O port ofS̃E, it holds thatpE(s)ν ∈ L̃E ∀ν ∈ YE. In particular,pE(s)σ ∈ L̃E.

Together,sσ ∈ L̃P ∥ LPE ∥ L̃E.

• s = s′ν with ν ∈ YP: As pP(s) = pP(s′)ν ∈ L̃P and L̃P is complete per definition of I/O
constraints, there existsσ ∈ UP such thatpP(s)σ in L̃P. As (UP, YP) is a plant-I/O port of
SPE, it holds thatsµ ∈ LPE∀µ ∈ UP. In particular,sσ ∈ LPE. Moreover,pE(sσ) = pE(s) ∈

L̃E. Together,sσ ∈ L̃P ∥ LPE ∥ L̃E.

• Analogously: s = s′ν with ν ∈ YE: As pE(s) = pE(s′)ν ∈ L̃E and L̃E is complete per
definition of I/O constraints, there existsσ ∈ UE such thatpE(s)σ in L̃E. As (UE, YE) is a
plant-I/O port ofSPE, it holds thatsµ ∈ LPE∀µ ∈ UE. In particular,sσ ∈ LPE. Moreover,
pP(sσ) = pP(s) ∈ L̃P. Together,sσ ∈ L̃P ∥ LPE ∥ L̃E.

Observe that the above items cover all possible cases fors. Thus, for an arbitrary strings ∈ L̃P ∥
LPE ∥ L̃E, there existsσ ∈ ΣPE such thatsσ ∈ L̃P ∥ LPE ∥ L̃E, i.e.SPE is complete w.r.t.S̃P and
S̃E.

YP-liveness. As LP ∥ LPE ∥ LE is YP-live and asL̃P ∥ LPE ∥ L̃E ⊆ LP ∥ LPE ∥ LE, also
L̃P ∥ LPE ∥ L̃E is YP-live, see Lemma 3.3. ◻

Note that, in practice, the chosen constraintsSP andSE usually are not fulfilled a priori by the
surroundings of the plant and thus must be respected by the operator/controller or else be passed
on asrequirementsto superposed operators/controllers.

Remark 3.3
Regarding the Definition 3.8 ofYP-liveness, it is interesting to note that, in the framework [BW94]
for supervisory control oftimedDES, a state-based, but effectively identical property is used to
postulate persistent passage of time (as stated in [OW90]):using a (clock-)tick-event representing
the passage of one unit of time, a finite-state model of a timeddiscrete event system (TDES) is
supposed to beactivity-loop-free, meaning that, starting from a state of the TDES, there must
be no loop (sequence of transitions leading back to the same state) that is free oftick-events.
Consequently, as stated in [BW94], any infinite string generated by the TDES must include the
occurrence of infinitely manytick-events. ◻

In the following section, we define the term of an I/O controller enforcing a safety specification
and identify admissibility conditions for a complete andYP-live closed loop.

SECTION 3.6 — I/O CONTROLLER 35

3.6 I/O Controller

The task of the I/O controller is to assist the operator in manipulating the environment according
to a given specification; see Figure 3.10 a) and c). We proposeto draft the specification as an I/O-
plant modelSspecCE = (ΣCE,LspecCE) of thedesiredexternal closed loop, see Figure 3.10 c): by
its plant-I/O port(UC, YC) we introduce a setUC of abstract desired tasks (modes of operation) for
the closed loop and a setYC of desired responses of the closed loop to the operator. For each task
µ ∈ UC, the specification expresses the desired behaviour of the closed loop w.r.t. the environment
via sequences on the(UE, YE)-port and one or more associated responses denoting status,failure
or completion of the task. To take into account and to excludemisbehaviour by the operator5, an
operator constraintSC ∶= (ΣC,LC) can be introduced. The original constraintSE for liveness of
the plantSPE may also be assumed forSspecCE such that all in allSspecCE is reasonably designed
to be complete andYC-live w.r.t.SC andSE.

Example 3.4
Transport Unit. For the TU, a specification can be designed by the systemSspecCE =

(ΣC∪̇ΣE,LspecCE) with ΣC ∶= UC∪̇YC = {stby, l2r}∪̇{idle} andLspecCE as seen in Figure 3.9.

1

2

5

6

3

4

idlestby

l2r

pack

req_fl req_tr

pack

nack nack

Figure 3.9: Specification for the TU

By the measurement eventidle we introduce a feedback to the operator notifying that the TUis
ready for transport of the next workpiece. We specify that the operator can choose between two
operational modes. After the commandstby (standby), no interaction with the environment is
desired. With the commandl2r (left to right) we specify that a workpiece from left is requested
from the environment (req_fl). In case of positive acknowledge, the workpiece shall be provided

5e.g. operator tries to trigger a final task before a respective initial task

36 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

to the right (req_tr). Note that the specification is complete andYC-live w.r.t. aminimalSC and
the givenSE, i.e. we allow the operator for arbitrary orders of the commandsstby andl2r and may
assume the same constraints on the environment as for the original plant. Now, it is the controller’s
task to enforce appropriateΣP-sequences on the plant to achieve the specified behaviour with
respect to the environment. ◻

In order to provide the operator with the desired view on the closed loop, the controller must
provide the plant-I/O port(UC, YC) to the operator. Eventsµ ∈ UC issued by the operator trigger
more or less complex tasks to be performed by the controller and the plant. Occasionally, an
abstract measurement eventν ∈ YC has to be issued by the controller to indicate the status of
the current task. Hence, the controller performs both, control and measurement aggregation and
thereby provides an abstract external viewSCE = (ΣCE,LCE) of the closed loop between operator
and environment.
Formally, we define the I/O controller as a system with a controller-I/O port and a plant-I/O port
that interact with the plant and the operator, respectively.

controllerSCP

plantSPE

UPYP

YC UC

YE UE

(a) Closed loop

operator

⇓ SC

⇕ SP

⇑ SE

environment

(b) Constraints

SspecCE

YC UC

YE UE

(c) Specification

Figure 3.10: I/O Controller Synthesis Problem

Definition 3.10 (I/O Controller)
An I/O controller is a tupleSCP = (UC, YC,UP, YP,LCP), where

(i) (ΣCP,LCP) is a system withΣCP = ΣC∪̇ΣP, ΣC ∶= UC∪̇YC, ΣP ∶= UP∪̇YP ;

(ii) (UC, YC) and(UP, YP) are a plant- and a controller-I/O port for(ΣCP,LCP), respectively;

(iii) LCP ⊆ ((YPUP)∗(YPYCUCUP)∗)∗ ;

(iv) LCP is complete.
◻

SECTION 3.6 — I/O CONTROLLER 37

Items (i) and (ii) enforce the language formatLCP ⊆ ((YPUP)∗(YP(YCUC)∗UP)∗)∗. Thus, item
(iii) forbids the loop(YCUC)∗ and hence ensures that each commandµC ∈ UC from the operator
is actually applied to the plant beginning with a control event µP ∈ UP . Operator commands
without effect on the plant being controlled are thereby avoided. Note that controller and plant
synchronize only via the alphabetΣP; from the perspective of the plant, the controller conforms
with the alternation(YPUP)

∗ and, in particular, the controller cannot observe environment events.

When connecting a controllerSCP and a plantSPE we obtain thefull closed loop(ΣCPE,LCPE)

and theexternal closed loop(ΣCE,LCE) with the full closed-loop behaviourLCPE ∶= LCP ∥ LPE

and the external closed-loop behaviourLCE ∶= pCE(LCP ∥ LPE), respectively. For the language
format of the full closed loop under constraints, we obtain

LC ∥ LCP ∥ LPE ∥ LE ⊆ ((YPUP)∗(YPYCUCUP)∗(YEUE)∗)∗.

As an important result of the I/O structure, the external closed-loop behaviour itself can be seen to
be an I/O plant:

Proposition 3.3
Let SPE = (UP, YP,UE, YE,LPE) be an I/O plant, and letSCP = (UC, YC,UP, YP,LCP) be an I/O
controller.
Then, the external closed-loop systemSCE ∶= SCP ∥ex SPE ∶= (UC, YC,UE, YE,LCE) with LCE =

pCE(LCP ∥ LPE) is an I/O plant. ◻

Proof We show thatSCE provides all I/O-plant properties.
(i) LCE ⊆ pCE[((YPUP)∗(YPYCUCUP)∗(YEUE)∗)∗] = ((YCUC)∗(YEUE)∗)∗ ⊆ ΣCE

∗

⇒ (ΣCE,LCE) is a system.

(ii) • (UE, YE) is plant-I/O port of(ΣCE,LCE). Proof:
Obviously,ΣCE =W ∪̇UE∪̇YE with W = UC∪̇YC = ΣCE − YE −UE.

As shown in (i),LCE ⊆ (W ∗(YEUE)∗)∗.

ΣE∩ΣCP = ∅ ⇒ (∀s ∈ LCP ∥ LPE, ∀uE ∈ UE) [pPE(s)uE ∈ LPE ⇒ suE ∈ LCP ∥
LPE]. Hence,pCE(suE) = pCE(s)uE ∈ LCE. Thus, the free input property ofUE of
I/O-plant(ΣPE,LPE) is retained under control and projection.

• (UC, YC) is plant-I/O port of(ΣCE,LCE): as above.
◻

Moreover, persistent feedback to the operator has to be preserved in the closed loop, i.e.YC-
liveness is required. We observe that the I/O structure itself is not sufficiently strong to imply
completeness andYC-liveness for the full or external closed loop under arbitrary control action.

38 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

As, for example, the controller may not comply with the operator constraintSP identified for
liveness of the plant, the closed-loop system may run into adeadlocksituation, which is considered
undesirable. More subtle is the fact that arbitrary length stringss ∈ (ΣP∪ΣE)∗ may occur between
each pair of control and measurement eventsµ ∈ UC andν ∈ YC, which amounts to measurement
aggregation. For the considered prefix-closed languages this implies that the closed-loop could
also evolve on an infinite length strings ∈ (ΣP ∪ ΣE)ω. In this livelock situation the operator no
longer receives measurement eventsν ∈ YC and, hence, can not issue further control events.

The following admissibility condition addresses both issues in that it implies completeness and
YC-liveness for the closed-loop system; see Proposition 3.4 and Theorem 3.1.

Definition 3.11 (Admissibility)
Let SPE = (UP, YP,UE, YE,LPE) be an I/O plant and letSC = (UC, YC,LC), SP = (UP, YP,LP)

andSE = (UE, YE,LE) be constraints. Then, an I/O controllerSCP = (UC, YC,UP, YP,LCP) is
admissibleto the plantSPE w.r.t. the constraintsSC, SP, andSE if

(i) pP(LC ∥ LCP ∥ LPE ∥ LE) ⊆ LP ;

(ii) LCP ∥ LPE is YC-live w.r.t.SC andSE .
◻

Remark 3.4
Note that item (i) in the above definition impliespPE(LC ∥ LCP ∥ LPE ∥ LE) ⊆ LP ∥ LPE ∥ LE,
i.e. the plant sees the controller as a subset of the constraint SP. ◻

The above definition provides each constraint depicted in Fig. 3.10 b) with a certain role. While
SC andSE must be fulfilled by the external configuration in both items (i) and (ii), condition (i)
requires that the settingLC ∥ LCP complies with the constraintSP. HenceSP has to be met by
the controller. This condition already ensures completeness of the full and the external closed loop
behaviour, see Proposition 3.4. As a technical consequence, the set(LC ∥ LCP ∥ LPE ∥ LE)∞

is non-empty, which is relevant to condition (ii) that demandsYC-liveness of the full closed loop
behaviour. For the full closed, we obtain the following result.

Proposition 3.4
Let SCP = (UC, YC,UP, YP,LCP) be an I/O controller, letSPE = (UP, YP,UE, YE,LPE) be an I/O
plant, and letSC = (UC, YC,LC), SP = (UP, YP,LP) andSE = (UE, YE,LE) be constraints.

(i) If SPE is complete w.r.t.SP andSE, andSCP meets the admissibility condition (i), thenLC ∥
LCP ∥ LPE ∥ LE is complete.

(ii) If in addition SCP meets the admissibility condition (ii), thenLC ∥ pCE(LCP ∥ LPE) ∥ LE is
complete.

◻

Proof See Appendix A.2 ◻

SECTION 3.6 — I/O CONTROLLER 39

Note that, in general, the natural projection of a language can both, artificially produce complete-
ness of the result by hiding deadlocks or abolish completeness of the original language by hiding
all extensions of some string. Hence, Proposition 3.4 also states that both is not the case for the
full and external closed loop.

For the external closed loop, obtain the following important result.

Theorem 3.1 (External Closed Loop)
Let the I/O plantSPE = (UP, YP,UE, YE,LPE) be complete andYP-live w.r.t. the constraintsSP and
SE, and letSCP = (UC, YC,UP, YP,LCP) be admissible toSPE w.r.t. the constraintsSC, SP, andSE.
Then the external closed-loop systemSCE = (UC, YC,UE, YE,LCE), LCE = pCE(LCP ∥ LPE), is

(i) an I/O plant;

(ii) complete w.r.t.SC andSE;

(iii) YC-live w.r.t.SC andSE.
◻

Proof
(i) SCE is an I/O plant according to Proposition 3.3.

(ii) SCE is complete w.r.t.SC andSE according to Proposition 3.4, item (ii).

(iii) SCE is YC-live w.r.t. SC andSE. Proof: Note that the full closed loop behaviourSCPE is
YC-live w.r.t. SC andSE. This meanspYC(w′) ∈ Y ω

C for all w′ ∈ (LC ∥ LCPE ∥ LE)∞.
Observe also that for allw ∈ (LC ∥ LCE ∥ LE)∞ it holds thatw = pCE(w′) for some
w′ ∈ (LC ∥ LCPE ∥ LE)∞, andpYC(w) = pYC(pCE(w′)) = pYC(w′). Hence,pYC(w) ∈ Y ω

C for
all w ∈ LC ∥ LCPE ∥ LE.

◻

According to this result, the admissibility condition implies that the external closed loopSCE is an
I/O plant that is complete andYC-live with respect to the given constraints. Thus, in a hierarchical
control architecture, the closed loop can serve as a plant model for the design of the next layer of
control and measurement aggregation.

Hence, the problem to be solved is the synthesis of an admissible I/O controller. The controller
synthesis problem is given by the setting depicted in Figure3.10, with the I/O controller as the
desired solution.

Definition 3.12 (I/O Controller Synthesis Problem)
An I/O controller synthesis problemis a tuple (SPE,SC,SP,SE,SspecCE) where SPE =

(UP, YP,UE, YE,LPE) is an I/O plant, SC = (UC, YC,LC), SP = (UP, YP,LP) and SE =

40 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

(UE, YE,LE) are constraints, andSspecCE = (UC, YC,UE, YE,LspecCE) is asafety specification.
A solution for the I/O controller synthesis problemis an I/O controllerSCP = (UC, YC,UP, YP,LCP)

that is admissible toSPE w.r.t.SC, SP, andSE and that enforces the safety specificationSspecCE on
SPE w.r.t.SC andSE, i.e.pCE(LC ∥ LCP ∥ LPE ∥ LE) ⊆ LspecCE. ◻

Example 3.5
Transport Unit. The I/O-plant modelSPE of the TU as in Figure 3.5 b), the constraintsSP and
SE as in Figures 3.6 and 3.7, a minimal constraintSC and the specificationSspecCE as in Figure 3.9
pose an I/O controller synthesis problem. ◻

As the environment eventsΣE are not observable by the controller, the above problem amounts to
a controller synthesis problem under partial observation;we again refer to [MR99, KGM92] where
related problems are addressed. Note that the trivial controller (with empty language) solves the
synthesis problem. Hence, the following theorem establishes unique existence of a least restrictive
solution within afinite family of solutions.

Theorem 3.2
Given an I/O controller synthesis problem(SPE,SC,SP,SE,SspecCE), let SCPα =

(UC, YC,UP, YP,LCPα), α ∈ A, denote a finite family of solutions. ThenSCP =

(UC, YC,UP, YP,LCP), LCP ∶= ∪α∈ALCPα, also solves the problem. ◻

Proof We show thatSCP is admissible and enforcesSspecCE. We begin with proving thatSCP is
a controller that provides all admissibility properties.

• SCP is an I/O-controller. Proof:

(i) It is obvious thatSCP is a system.

(iia) (UC, YC) is a plant-I/O port. Proof: pick an arbitrarysν ∈ LCP, ν ∈ YC and an arbitrary
µ ∈ UC. Thus, there exists someα such thatsν ∈ LCPα. Consequently,sνµ ∈ LCPα and
thussνµ ∈ LCP.

(iia) (UP, YP) is a controller-I/O port. Proof: pick an arbitrarysµ ∈ LCP, µ ∈ UP and
an arbitraryν ∈ YP. Thus, there exists someα such thatsµ ∈ LCPα. Consequently,
sµν ∈ LCPα and thussµν ∈ LCP.

(iii) LCPα ⊆ ((YPUP)∗(YPYCUCUP)∗)∗, ∀α ∈ A.

⇒ ∪αLCPα ⊆ ((YPUP)∗(YPYCUCUP)∗)∗.

(iv) SCP is complete. Proof: pick an arbitrarys ∈ LCP. Thus, there exists someα such
thats ∈ LCPα. As (ΣCP,LCPα) is complete, there existsσ ∈ ΣCP such thatsσ ∈ LCPα.
Consequently,sσ ∈ LCP.

SECTION 3.6 — I/O CONTROLLER 41

• pP(LC ∥ LCP ∥ LPE ∥ LE) ⊆ LP.
Proof:
pP(LC ∥ ∪α[LCPα] ∥ LPE ∥ LE) =Lemma A.1

pP(∪α[(LC ∥ LCPα ∥ LPE ∥ LE)]) =

∪αpP(LC ∥ LCPα ∥ LPE ∥ LE) ⊆ LP.

• LCP ∥ LPE is YC-live w.r.t.LC andLE. Proof:

Pickw ∈ (LC ∥ ∪α[LCPα] ∥ LPE ∥ LE)∞ =Lemma A.1

(∪α[LC ∥ LCPα ∥ LPE ∥ LE])∞ =LemmaA.6

∪α[(LC ∥ LCPα ∥ LPE ∥ LE)∞].

Thus, there exists someα such thatw ∈ (LC ∥ LCPα ∥ LPE ∥ LE)∞. AsLCPα is admissible
to SPE w.r.t.LC andLE, it holds thatpYC(w) ∈ Y ω

C .

Finally,SCP enforcesSspecCE w.r.t.SC andSE. Proof:
pCE(LC ∥ ∪α(LCPα) ∥ LPE ∥ LE) =Lemma A.1

pCE(∪α(LC ∥ LCPα ∥ LPE ∥ LE)) =Equation 2.3

∪α(pCE(LC ∥ LCPα ∥ LPE ∥ LE)) ⊆ LspecCE ◻

Note that this result does not hold for the union of an infiniteset of solutions, asYC-liveness is not
necessarily preserved under infinite union.

Proposition 3.5
Given an I/O controller synthesis problemΠ ∶= (SPE,SC,SP,SE,SspecCE), let SCPα =

(UC, YC,UP, YP,LCPα), α ∈ N, denote an infinite family of solutions ofΠ.
ThenSCP = (UC, YC,UP, YP,LCP), LCP ∶= ∪α∈N0

LCPα, may not be a solution ofΠ, in general. ◻

Proof Given all entities of the above proposition, we show that there exist I/O controller
synthesis problems such thatLCP ∥ LPE is notYC-live w.r.t.LC andLE.
Consider a simple counterexample6 Π ∶= (SPE,SC,SP,SE,SspecCE) with SPE ∶=

({yP, uP, yE, uE}, (yPuP)∗), SspecCE ∶= ({yC, uC, yE, uE}, (yCuC)∗) and all constraints mini-
mal. From the following infinite family of controllersSCPα = (ΣCP, (yP(uPyP)αyCuCuP)∗),
α ∈ N0, obviously each single member is a solution. However, the infinite union of all solutions
leads toSCP = (ΣCP, (yP(uPyP)∗yCuCuP)∗). When attached to the plant, the full closed loop
behaviour isLCPE = LCP ∥ LPE = (yP(uPyP)∗yCuCuP)∗). One can see that the limitLCPE

∞

contains the stringw = yP(uPyP)ω with pYC(w) = ǫ /∈ Y ω
C . Hence,LCPE is notYC-live w.r.t. LP

andLE, and consequentlySCP is not a solution ofΠ. ◻

6This example is constructed for simplicity of the proof. There also exist praxis relevant examples.

42 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

Note that the above proposition does not affect any of the results presented in this framework.
However, the controller design has to be implemented with additional requirements such thatYC-
liveness is achieved also under infinite unions of solutionsor the set of all solutions is finite. The
shape of these requirements depends on the respective application. A possible elaboration of these
requirements respecting the application point of view together with a respective controller design
algorithm are proposed in Chapter 4.

Example 3.6
Transport Unit. For the I/O controller synthesis problem of the TU, our synthesis algorithm
returns the controllerSCP with LCP as depicted in Figure 3.11.

3

75

6

l2r

take_fl

4Err

Err 1

2

empty

idle

stby

no_op

YPUP

del_tr

fullempty

full

Figure 3.11: Controller for the TU

Formally, the I/O controller accepts all measurement events of the plant, even those that can ac-
tually not occur; the respective transitions are denoted bygray arrows leading to error states that
represent an error behaviourKerr

CP
(see Chapter 4) and are never reached. It is verified that if the

environment constraintSE is fulfilled, the closed loop is complete andYC-live and features the
external behaviour specified bySspecCE. ◻

We arrive at one of the central statements of this contribution: Our framework makes similar use
of the I/O structure as [MR99] and thereby allows forabstraction based controller synthesis; i.e.
solutions obtained for a plant abstraction are guaranteed to solve the original problem.

Theorem 3.3 (Abstraction-Based Control)
Given an I/O plantSPE = (UP, YP,UE, YE,LPE), let S̃PE = (UP, YP,UE, YE, L̃PE) be a plant ab-
straction, i.e.LPE ⊆ L̃PE. If the plantSPE is complete andYP-live w.r.t. the constraintsSP andSE

SECTION 3.6 — I/O CONTROLLER 43

and if SCP solves the I/O controller synthesis problem(S̃PE,SC,SP,SE,SspecCE), thenSCP also
solves(SPE,SC,SP,SE,SspecCE). ◻

Proof

(I) SCP is admissible toSPE w.r.t.SC andSE. Proof:

– As SCP is admissible toS̃PE w.r.t. SC andSE, it holds thatSCP is a controller by
definition of admissibility.

– AsSCP is admissible tõSPE w.r.t.SC andSE, it holds thatpP(LC ∥ LCP ∥ L̃PE ∥ LE) ⊆

LP. Note that, withLPE ⊆ L̃PE, it follows that
pP(LC ∥ LCP ∥ LPE ∥ LE) ⊆ pP(LC ∥ LCP ∥ L̃PE ∥ LE) ⊆ LP.

– As (ΣCPE,LCP ∥ L̃PE) is YC-live w.r.t. LC andLE,7 for all w ∈ (LC ∥ LCP ∥ L̃PE ∥
LE)∞ it holds thatpYC(w) ∈ Y ω

C
. In particular, this holds for allw ∈ (LC ∥ LCP ∥

LPE ∥ LE)∞ ⊆ (LC ∥ LCP ∥ L̃PE ∥ LE)∞. Hence(ΣCPE,LCP ∥ LPE) is YC-live w.r.t.
LC andLE.

(II) SCP enforcesLspecCE onSPE w.r.t.SC andSE. Proof: AsLCP enforcesLspecCE on S̃PE w.r.t.
SC andSE, it holds thatpCE(LC ∥ LCP ∥ L̃PE ∥ LE) ⊆ LspecCE. Note thatpCE(LC ∥ LCP ∥
LPE ∥ LE) ⊆ pCE(LC ∥ LCP ∥ L̃PE ∥ LE) ⊆ LspecCE. Hence,SCP enforcesLspecCE onSPE

w.r.t.SC andSE.
◻

If the abstraction is of less complexity (number of states) the computational effort for controller
synthesis is reduced accordingly. However, as a well-knowndownside of abstraction-based con-
trol, there is no guarantee that there exists a non-trivial controller for the plant abstraction even if
there does exist one for the original plant. Hence the question, how to obtain a "good" abstraction,
i.e. an abstraction that can be realized on a state space thatis small in comparison to the original
plant while still allowing for successful controller synthesis. We propose the safety specification
SspecCE of the preceding design step as a plant abstraction of the external closed-loop behaviour
SCE, as, by being enforced on the plant, it meets the abstractionconditionLCE ⊆ LspecCE and
represents those aspects of the preceding design step that are relevant for subsequent controller
design. Consequently, we expect to obtain a non-trivial solution based on that abstraction. This
line of thought has been further elaborated in the context ofhybrid systems [MR05, MRD03].

Example 3.7
Transport Unit. For the design of superposed controllers for achain of TU’sexplained in Chapter
5, we do not compute the external closed-loop behaviour of each locally controlled TU, but rather

7Follows from admissibility ofSCP to S̃PE w.r.t.SC andSE.

44 CHAPTER 3 — DISCRETE EVENT SYSTEMS WITH INPUTS AND OUTPUTS

use the specification as seen in Figure 3.9 as an abstracted plant model of the locally controlled
behaviour. ◻

The following definition provides an automata structure that corresponds to an I/O controller.

Definition 3.13 (I/O Controller Form)
A generatorG ∶= (Σ,Q, δ, q0,Qm) is in I/O-controller formif

(i) Σ = UC∪̇YC∪̇UP∪̇YP with nonempty alphabetsUC, YC, UP, YP

(ii) Q = QUC∪̇QYC,UP∪̇QUP∪̇QYP

(iii) q0 ∈ QYP

(iv) [∀q ∈ QYP, σ ∈ Σ](δ(q, σ)!⇒ (σ ∈ YP ∧ δ(q, σ) ∈ QYC,UP ∪QUP))

(v) [∀q ∈ QUP, σ ∈ Σ](δ(q, σ)!⇒ (σ ∈ UP ∧ δ(q, σ) ∈ QYP))

(vi) [∀q ∈ QYC,UP, σ ∈ Σ](δ(q, σ)!⇒ (σ ∈ UP ∧ δ(q, σ) ∈ QYP)) ∨ (σ ∈ YC ∧ δ(q, σ) ∈ QUC))

(vii) [∀q ∈ QUC, σ ∈ Σ](δ(q, σ)!⇒ (σ ∈ UC ∧ δ(q, σ) ∈ QUP))

(viii) [∀q ∈ QUC, µ ∈ UC](δ(q, σ)!)

(ix) [∀q ∈ QYP, µ ∈ YP](δ(q, σ)!)

(x) Qm = Q

(xi) [∀q ∈ Q](∃σ ∈ Σ ∶ δ(q, σ)!)

(xii) G is accessible.
◻

Lemma 3.4
If a generatorG ∶= (Σ,Q, δ, q0,Qm) is in I/O-controller form, then the system(Σ,Lm(G)) is an
I/O controller. ◻

Proof See appendix, Proof A.2. ◻

Chapter 4

Controller Synthesis

It is an approved method of discrete event controller synthesis to first reduce the possible plant
behaviour to a desired (but maybe infeasible) behaviour by composition with the specification.
From the desired behaviour, the closed-loop behaviour, i.e. a behaviour that features the desired
liveness properties and that can be achieved by a controller, is deduced by subset construction.
From this result, the solution, i.e. the controller that achieves the closed-loop behaviour is then
extracted. Our synthesis procedure, which is presented in this chapter, conforms with this method.
The basic ideas of the procedure have also been published in [PMS08]. Thereby, a major aspect is
to restrict a given language to aYC-live sublanguage, see admissibility condition (ii) in Definition
3.11.

4.1 YC-Acyclic Sublanguage

The calculation of aYC-live sublanguage involves the detection of strings in the composition of
plant and specification that compromiseYC-liveness. In the automata representation of the consid-
ered language, such a string is indicated by a so-calledYC-less cycle of states, within which each
state can be visited arbitrarily often without the occurrence of anyYC-event.

Example 4.1
Consider the generator of the languageL in Figure 4.1 a) overΣ = {a, b, c, yC} with YC ∶= {yC}.

46 CHAPTER 4 — CONTROLLER SYNTHESIS

1

2

3

a

yC c

b

(a) LanguageL

5

1

2 46

3

a b a

yCc

b

(b) SublanguageK1

3

1

2 4

b

cyC

a

(c) SublanguageK2

Figure 4.1: YC-live andYC-acyclic sublanguage

The indicated cycle of the states1 and2 is aYC-less cycle, as they can be visited infinitely often
without the occurrence of the eventyC. ◻

We observe that a string that violatesYC-liveness features two properties:

a) Nerode-equivalence to at least one of its own strict prefixes (i.e., a cycle is closed)

b) The extension from each Nerode-equivalent prefix to the considered string does not contain
anyYC-event.

Example 4.2
The states1 and2 in Figure 4.1 a) represent e.g. the stringaba and its nerode-equivalent prefixa,
where the continuationba from a to aba does not contain the eventyC (i.e. items a) and b) above
are met). Due to the nerode-equivalence, we can appendba to a arbitrarily often to obtain a string
of L, i.e. a(ba)∗ ⊆ L. Consequently,a(ba)ω ∈ L∞ with pYC(a(ba)ω) = ǫ /∈ Y ω

C , i.e.L is notYC-
live. ◻

A language that does not contain such strings isYC-live. This can be shown by the following propo-
sition introducing an equivalent formulation of theYC-liveness property based on the above items
a) and b). From this property, we will deduce the family of so-calledYC-Acyclic sublanguages
featuring a unique supremal element.

Proposition 4.1
LetK be a regular language over the alphabetΣ ⊇ YC. K is YC-live if and only if

∀s ∈ K ∶ (∀t ≠ ǫ)[st ≡K s⇒ pYC(t) ≠ ǫ] (4.1)

where≡K denotes the Nerode equivalence overΣ∗ w.r.t.K.
◻

SECTION 4.1 —YC-ACYCLIC SUBLANGUAGE 47

Proof Both directions of the equivalence are shown separately:
Part A) Let K be a regular language over the alphabetΣ ⊇ YC with the limitK∞. The following
implication is true:
K meets Property (4.1) of Proposition 4.1⇒K is YC-live.
Proof: Pick some arbitraryw ∈ K∞. Observe according to the definition of the limit:
∃ (ni)i∈N0

, ni+1 > ni ∶ wni ∈ K, i.e. infinitely many finite prefixes ofw are element ofK.
As K is regular, we can partitionK into a finite set of Nerode cells. Consequently, at least one
Nerode cell has to hold an infinite number of (but not necessarily all) prefixeswni, and we can
conclude:
∃ (ñj)j∈N0

, ñj+1 > ñj ∶ wñj+1 ≡K wñj , where, for eachj, wñj = wni for somei. With wñ0 we start
the following procedure:
As wñ0 < wñ1, we can writewñ1 = wñ0t0 for somet0 ∈ Σ∗ − {ǫ}. Note that, asK meets Property
(4.1) and aswñ1 ≡K wñ0, it holds thatpYC(t0) ≠ ǫ. Accordingly,wñ2 = wñ0t0t1 with pYC(t1) ≠ ǫ.
Repeating this procedure for eachj, we obtainwñ0t0t1t2 ⋅ ⋅ ⋅ = w. As pYC(tj) ≠ ǫ for all j, it holds
thatpYC(w) = pYC(wñ0t0t1 . . .) = pYC(wñ0)pYC(t0)pYC(t1) ⋅ ⋅ ⋅ ∈ Y ω

C .
Part B) Let K be a regular language over the alphabetΣ ⊇ YC with the limitK∞. The following
implication is true:
K is YC-live⇒K meets Property (4.1) of Proposition 4.1.
Proof: For arbitrarys ∈ K, consider the following set of extensions ofs in K′:

TK,s ∶= {t ≠ ǫ∣st ≡K s}

For all s ∈ K with TK,s = ∅, Property (4.1) of Proposition 4.1 is obviously met. For alls ∈ K with
TK,s ≠ ∅, pick arbitraryt ∈ T and observest ≡K s. As s can be extended byt such thatst ∈ K
andst is Nerode equivalent tos, alsost can be extended byt such thatstt ∈ K. Following up this
deliberation we obtains(t)∗ ⊆ K. Hence, for theω-stringw = s(t)ω, we have:∃ (ni)i∈N0

, ni+1 >

ni ∶ wni ∶= s(t)i ∈ K. Hence,w ∈ K∞ and, asK is YC-live, pYC(w) = pYC(s)pYC((t)ω) ∈ Y ω
C . As s

is of finite length, it has to hold thatpYC((t)ω) ∈ Y ω
C

, which impliespYC(t) ≠ ǫ. As s was chosen
arbitrarily,K meets Property (4.1). ◻

Note that any sublanguage of aYC-live language isYC-live, too (Lemma 3.3). Due to the equiv-
alence toYC-liveness, this equally holds for the above property (4.1).A YC-live sublanguage of
an arbitrary language is achieved by allowing only finite sequences of transitions between states
within aYC-less cycle. Unfortunately, in general, thesupremalYC-live sublanguage of a given lan-
guage does not exist. Given the family of allYC-live sublanguages of some language, thesupremal
YC-live sublanguage isnot automatically given by their union, which we have shown in Proof 3.6
and can also be seen in the example in Figure 4.1.

Example 4.3
Again, we examine the automaton representation ofL in Figure 4.1 a). A solution for avoid an
infinite repetition of the indicated loop is to cancel the transitiona or b closing the loop after an

48 CHAPTER 4 — CONTROLLER SYNTHESIS

arbitrary but finite numbern of repetitions. For each fixedn ∈ N, such a solutionK ⊆ L can easily
be determined (see Figure 4.1 b) and c), for example). In contrast, the infinite union of all these
solutions would lead to a language in which then-wise repetition of all loops is turned into an
arbitrary repetition (cf. definition of the Kleene-Closure). Thus, the infinite union of allYC-live
sublanguages results in the original languageL, which is known to be non-YC-live. ◻

But, along with the problem, this example also makes evidenthow to resolve it. From an applica-
tion point of view, even thefinite iteration ofYC-less cycles is undesirable, as it poses a back step
on the path to the nextYC-event. Hence, we propose to derive a so-calledYC-Acyclic sublanguage
that guarantees that aYC-less cycle of the original language isneverclosed.

Definition 4.1 (YC-Acyclic Sublanguage)
Let L be a regular language overΣ, and letYC ⊆ Σ be an alphabet. A stringt ∈ Σ∗ is YC-Acyclic
w.r.t.L, if

∀r, s ∈ Σ∗, r < t ∶ (rs = t ∧ rs ≡L r)⇒ pYC(s) ≠ ǫ

where≡L denotes the Nerode equivalence overΣ∗ w.r.t.L.

The languageK is aYC-Acyclic sublanguage ofL if

• K ⊆ L

• ∀s ∈ K ∶ s is YC-Acyclic w.r.tL
◻

Note that in the above definition, different from Proposition 4.1, nerode equivalence w.r.t. another
languageL but not w.r.t.K itself is checked. This slight but important difference guarantees that
K contains only strings that do not close ayC-free cycle inL, which is important for the existence
of a supremalYC-Acyclic sublanguage. It is readily shown that aYC-Acyclic sublanguage w.r.t.
some other language is alwaysYC-live, see Proposition 4.2. In general, the reverse does nothold,
i.e. Definition 4.1 indeed confines the family ofYC-live languages.

Proposition 4.2
LetK be aYC-Acyclic sublanguage of a languageL over the alphabetΣ ⊇ YC. Then,K is YC-live.

◻

Proof
To prove thatK is YC-live, we use Proposition 4.1 and show that property (4.1) holds forK:
pick arbitrarys ∈ K andǫ < t ∈ Σ∗ such thatst ≡K s. Note that, inK, s can be extended byt.
As st ≡K s, alsost can be extended byt such thatstt ∈ K. Following up this deliberation, we get
stn ∈ K for arbitraryn ∈ N0, i.e. st∗ ∈ K. AsK ⊆ L, it holds thatst∗ ∈ L. AsL is regular,L can

SECTION 4.1 —YC-ACYCLIC SUBLANGUAGE 49

be partitioned into a finite set of nerode cells. Hence,∃ n1 ∈ N0, n2 ∈ N such thatstn1tn2 ≡L stn1 .
As K is a YC-Acyclic sublanguage ofL, it holds thatpYC(tn2) ≠ ǫ. Consequently,pYC(t) ≠ ǫ.
Summing up, ass andt were chosen arbitrarily, we conclude:

∀s ∈ K ∶ (∀t ≠ ǫ with st ∈ K)[st ≡K s⇒ pYC(t) ≠ ǫ].

I.e. property (4.1) is met forK. Hence, according to Proposition (4.1),K is YC-live. ◻

Example 4.4
Consider the sublanguagesK1 andK2 in Figure 4.1 b) and c) of the languageL in Figure 4.1 a).
While both,K1 andK2 areYC-live, onlyK2 is aYC-Acyclic sublanguage ofL. ◻

The least restrictive way to achieve aYC-Acyclic sublanguage of some languageL ⊆ Σ∗ is to
remove only those stringssσ ∈ L, σ ∈ Σ, that just close aYC-less cycle, i.e.s is YC-Acyclic w.r.t.
L, but notsσ. As a result, thesupremalYC-Acyclic sublanguage of a languageL ⊆ Σ∗ is the set of
all strings ofL that areYC-Acyclic w.r.t.L.

Proposition 4.3
LetK be a regular language over the alphabetΣ ⊇ YC. Then,

YCAcyclic(K) ∶= {t ∈ K ∣ (∀r, s ∈ Σ∗)[rs = t ∧ rs ≡K r⇒ s = ǫ ∨ pYC(s) ≠ ǫ]} (4.2)

is thesupremalYC-Acyclic sublanguage w.r.t.K. ◻

Proof Let K be a regular language over the alphabetΣ ⊇ YC andKYC
∶= YCAcyclic(K). We

show that (a)KYC
is aYC-Acyclic sublanguage w.r.t.K and (b) anyYC-Acyclic sublanguage w.r.t.

K is contained inKYC
.

(a) KYC
is a YC-Acyclic sublanguage w.r.t.K. Proof: Obviously,KYC

⊆ K by definition of
the operatorYC-Acyclic(). We show

∀s ∈ KYC
∶ (∀t ≠ ǫ with st ∈ KYC

)[st ≡K s⇒ pYC(t) ≠ ǫ]}.

Pick some arbitrarys ∈ KYC
and consider the following set of extensions ofs in KYC

:

TKYC
,s ∶= {t ≠ ǫ∣st ∈ KYC

∧ st ≡K s}

W.l.o.g. assume thatTKYC
,s is nonempty and pick some arbitraryt ∈ TKYC

,s. Hence,st ∈ KYC
and

st ≡KYC
s. Consequently, property (4.2) has to hold forst and thuspYC(t) ≠ ǫ. As s was chosen

arbitrarily, we have:

∀s ∈ KYC
∶ (∀t ≠ ǫ with st ∈ KYC

)[st ≡K s⇒ pYC(t) ≠ ǫ]},

50 CHAPTER 4 — CONTROLLER SYNTHESIS

i.e.KYC
is aYC-Acyclic sublanguage w.r.t.K.

(b) LetK′ be aYC-Acyclic sublanguage w.r.t.K. We showK′ ⊆ KYC
, i.e. t ∈ K′ ⇒ t ∈ KYC

. So,
pick arbitraryt ∈ K′. Consider an arbitrary concatenation of stringsr ands such thatrs = t. We
show that the property

rs ≡K r⇒ s = ǫ ∨ pYC(s) ≠ ǫ (4.3)

is fulfilled. Property (4.3) obviously holds ifrs /≡K r or s = ǫ. Now consider the nontrivial case
rs ≡K r ands ≠ ǫ. Note thatK′ is aYC-Acyclic sublanguage w.r.t.K andr ∈ K′, asr ≤ t. Thus, for
all extensions̃s with rs̃ ∈ K′, it holds thatrs̃ ≡K r⇒ pYC(s̃) ≠ ǫ. In particularpYC(s) ≠ ǫ.
Hence, property (4.3) is fulfilled for arbitrary concatenationsrs with rs = t, and we havet ∈ KYC

.
As t ∈ K′ was chosen arbitrarily, it holds thatK′ ⊆ KYC

. ◻

The supremalYC-Acyclic sublanguage of a languageL is computed according to Proposition 4.3
by separatingYC-Acyclic strings ofL from those that are not. As this partition need not be as
coarse as the Nerode-Equivalence overL, the state space (and thus the complexity) of the canon-
ical recognizer ofYCAcyclic(L) may be greater than that ofL, respectively. As a consequence,
YCAcyclic(L) cannot be achieved by simply erasing transitions the canonical recognizer ofL, in
general.

Example 4.5
Reconsider Example 4.1. Indeed,K2 is the supremalYC-Acyclic sublanguage ofL. As can be
seen,K2 is not retrieved by just canceling the transition labeled byuP in the generator ofL, as
this transition represents the last event ofYC-Acyclic strings as well as non-YC-Acyclic strings. In
order to achieve the supremalYC-Acyclic sublanguage ofL, state2 has to be split in states2 and4,
where state2 is reached only from state1 and state4 is reached from state3 only, see Figure 4.2.

3

1

2 4

uPuP

uCyC

yP

Figure 4.2: Transformation of the generator ofL

SECTION 4.2 — SUPREMAL YC-ACYCLIC SUBLANGUAGE: GRAPH-BASED COMPUTATION 51

After this transformation introducing equivalent states,the result can now be obviously obtained
by canceling the transition from state2 to state1. ◻

A graph based algorithmic construction of the supremalYC-Acyclic sublanguage is presented in
section 4.2. Note that, as an obvious but useful property, all subsets of the supremalYC-Acyclic
sublanguage are alsoYC-Acyclic andYC-live. Our I/O controller synthesis procedure computes the
supremalYC-Acyclic sublanguage to yield an I/O controller that fulfills the admissibility condition
(ii) in Definition 3.11.

4.2 SupremalYC-Acyclic Sublanguage: Graph-Based Compu-
tation

LetK be a regular language andYC be an alphabet. In this section, we provide a method to compute
the finite automata representation of the supremalYC-Acyclic sublanguageK1 ∶= YcAcyclic(K).
Recall that a non-YC-live string features nerode equivalence to at least one of its own strict prefixes
and that the extension from this prefix to the string is free ofYC-events. To identify such strings,
we refine the informal notion of aYC-less cycle to the following definition, which has been derived
from the notion of strongly connected components in [AHU75].

Definition 4.2 (YC-less Strongly Connected Components)
Let G ∶= (Σ,Q, δ, q0,Qm) be a finite state automaton. We can partitionQ into equivalence classes
Qi, 1 ≤ i ≤ ∣Q∣, such that statesq1 ∈ Q andq2 ∈ Q are equivalent if and only if there is a paths1

with δ(q1, s1) = q2 andpYC(s1) = ǫ and a paths2 with δ(q2, s2) = q1 andpYC(s2) = ǫ.
A stateqi ∈ Qi is denotedentry state ofQi if δ(q, σ) = qi for someq ∈ Q −Qi, σ ∈ Σ.
A classQj of the above partition is calledYC-less strongly connected component (YC-less SCC)if
either∣Qj ∣ > 1, or Qj = qj andδ(qj , σ) = qj for someσ ∈ Σ − YC.
Such classQj is calledstrictly YC-less SCC if additionally

∀s ∈ Σ∗, q ∈ Qj ∶ δ(q, s) ∈ Qj ⇒ pYC(s) = ǫ.

◻

The absence ofYC-less SCC’s in an automaton G coincides with theYC-liveness of the language
generated byG.

52 CHAPTER 4 — CONTROLLER SYNTHESIS

Theorem 4.1
Let G = (Σ,Q, δ, q0,Qm) be a (deterministic) finite state automaton andYC be an alphabet.L(G)
is YC-live if and only if G is free ofYC-less SCC’s. ◻

Proof See Appendix A.2 ◻

Our procedure for finding the supremalYC-Acyclic sublanguage requires that allYC-less SCC’s
in the generator of the original language are strictlyYC-less. This can be achieved by a simple
transformation of the generator that does not change the generated and the marked language. We
explain the transformation by a simple but representative example, see Figure 4.3.

1 2

yC1

a

b
yC2

(a) G1: ambiguousYC-less SCC

1a 2a

yC1

yC2

1b 2b

ba

yC2

b

yC1

a

(b) G2: ambiguity resolved by state-
splitting transformation

Figure 4.3: Transformation to achieve strictlyYC-less SCC’s

In automatonG1 in Figure 4.3 a), the states 1 and 2 pose aYC-less SCC. However, the SCC can
be traversed by the execution ofYC-transitions without leaving the SCC. The automaton in Figure
4.3 b) generates the same language as the automaton in Figure4.3 a). Now, the SCC{1b,2b} is
strictly YC-less and is left whenever aYC-event occurs. This transformation is necessary whenever
YC-transitions are in parallel to non-YC-transitions within aYC-less SCC. In the worst case, the
state space is doubled by this transformation. However, in our approach, such transformation is
never necessary because of the involved language structures.

SECTION 4.2 — SUPREMAL YC-ACYCLIC SUBLANGUAGE: GRAPH-BASED COMPUTATION 53

To achieve the supremalYC-Acyclic sublanguage of some given languageK according to Propo-
sition 4.3, we proceed according to the following informal,but vivid description. An illustrating
example is provided below.

Procedure: YCACYCLIC (G)

(1) The procedure starts with a state minimal automatonG that generates the languageK. We
require a minimal state space such that any two paths lead to the same state iff the cor-
responding strings are nerode equivalent w.r.t.K, which is helpful to examine all nerode
equivalent strings in order to verify property (4.2).

(2) Identify allYC-less SCC’s ofG. Technically, this is achieved by an efficient variant of depth-
first search algorithm for finding SCC’s presented in [AHU75]. If YC-less SCC’s were found,
proceed with (3). Else,G is the result.

(3) If not all YC-less SCC’s are strictlyYC-less, transformG as above. If there areYC-less SCC’s
with more than one entry state, transformG by duplicating the affectedYC-less SCC’s, such
that each duplicate has a unique entry state, see also the below example. The idea for such
transformation is provided in [JMRT08]. Note that the resulting automaton still generatesK.

(4) For eachYC-less SCC, cancel transitions leading from a state of thisYC-less SCC to its
own entry state (denotedback transitions), unless the transition is triggered by aYC-Event.
Each string inK corresponding to a path ending with the canceled transitions violates the
property required for the elements ofYCAcyclic(K). However, in the resulting transformed
automatonG′ generating a sublanguageK′ ⊆ K, there still might remainYC-less SCC’s
as subsets of theYC-less SCC’s found in this iteration step. Hence, we setG = G′ and
proceed with Step (2). At this point, it is interesting to note that, as transitions have been
deleted, some strings inK′ may now be nerode equivalent w.r.t.K′ thoughnot w.r.t. K.
However, as the corresponding automatonG′ is still defined over the same state spaceQ

of the automatonG, the states ofG′ still refer to the nerode cells of the original language
K, which is of interest. Hence it would be unwise to exhibit a state space minimization
on G′ before proceeding with step (2), as the result of the procedure would deviate from
YCAcyclic(K).

54 CHAPTER 4 — CONTROLLER SYNTHESIS

We illustrate the above steps by the following example.

Example 4.6
Consider the automatonG that generates a languageK as depicted in Figure 4.4 a). TheYC-events
areYC = {α,β}.

1 2

7

α

3

4

5

6

a b

f

e

β

h

c d

g i

k

l

(a) Automaton G withYC-eventsα andβ.

1

2a

3a

3b

2b

5a

4a

5b

4b

76

a b

a b

c d

c d

g

k

l

l

α

h

e

β

i

e

β

(b) Transformation:YC-less SCC’s with unique entry
states

Figure 4.4: Example for computation of the supremalYC-Acyclic sublanguage

Note thatK is notYC-live. E.g. the strings = α(ab)∗ is contained inK. Hence,w = α(ab)ω ∈

K∞ with pYC(w) = α /∈ Y ω
C . An automaton generating the supremalYC-Acyclic sublanguage is

constructed by the procedure YCACYCLIC(K):
Step (1).G is a state minimal realization ofK.
Step (2).TheYC-less SCC’s ofG are highlighted in Figure 4.4 a) by gray dashed margins. These
SCC’s have to be broken by canceling transitions. Consider the YC-less SCC{2,3}. It can be
entered via the path(1, α,2) or via the path(1, h,5)(5, e,3). Hence, the states 2 and 3 are entry
states of the SCC{2,3}, and(1, α,2) and(5, e,3) are called entry transitions. The least restrictive
way to break the SCC {2,3} is to cancel the transitionb after the occurrence of the stringαa or
to cancela after the occurrence ofheb. I.e. depending on the past string, the transitionsa andb

have to be either canceled or not. This means that the states2 and3 have to be split to be able to
distinguish the respective cases. This motivates step (3).
Step (3).If a YC-less SCC hasn > 1 entry states, then this SCC is replaced byn duplicates with

SECTION 4.2 — SUPREMAL YC-ACYCLIC SUBLANGUAGE: GRAPH-BASED COMPUTATION 55

one unique entry state each, see Figure 4.4 b). E.g. the SCC{2,3} with the entry states2 and3

is replaced by an SCC{2a,3a} with the entry state2a and an SCC {2b,3b} with the entry state
3b. Entry transitions are shifted to the duplicate of the corresponding entry state, i.e.(1, α,2) is
replaced by(1, α,2a), and(5, e,3) is replaced by(5, e,3b). All transitions having their origin in
a state of theYC-less SCC are replaced byn duplicates. Note that also the SCC{4,5} has to be
duplicated. Note that those states whose label only differsin the suffix “a” or “b” are equivalent,
and the generated language is stillK.
Step (4). After the transformation in step (3), transitions that definitely have to be canceled are
easily identified by transitions starting from a state of some YC-less SCC and leading back to the
(unique) entry state of the sameYC-less SCC. These transitions are highlighted in Figure 4.4 b) by
bold edges. The resulting automatonG′ after cancellation is shown in the figure below. To check
if G′ still containsYC-less SCC’s, we return to:
Step(2). As can also be seen in the figure below,G′ does not containYC-less SCC’s. Moreover, it
is readily observed thatG′ generates the supremalYC-Acyclic sublanguage.

1

2a

3a

3b

2b

5a

4a

5b

4b

76

b

a

d

c

g

k

l

l

α

h

e

β

e

β

Figure 4.5: Result: automaton generating the supremalYC-Acyclic sublanguage

◻

We informally show that the procedure YCACYCLIC(G) indeed leads to the supremalYC-acyclic
sublanguage.

Proposition 4.4
If G generates the languageK and marks the languageKm, then the resultG′ ∶= YCACYCLIC(G)

56 CHAPTER 4 — CONTROLLER SYNTHESIS

of the above procedure generates and marks the supremalYC-Acyclic sublanguage ofK andKm,
respectively. ◻

Proof (informal)

• The resultG′ is obtained after a finite number of steps.In step (3), theYC-less SCC’s are
duplicated according to their number of entry states. In step (4), however, the size of each
YC-less SCC is reduced by at least one state, as the former entrystates loose membership in
the according SCC by the canceling of back transitions. Hence, allYC-less SCC’s and their
duplicates have to vanish after a finite number of iterations.

• The resultG′ generates and marks aYC-Acyclic sublanguage ofK andKm, respectively.
Note thatG′ is free ofYC-less SCC’s and hence, the language generated byG′ is a YC-
Acyclic sublanguage ofK according to Theorem 4.1. ForKm consider Definition 4.1 and
observe that1 s1 ≡Km

s2 ⇒ s1 ≡K s2 to conclude thatG′ marks aYC-Acyclic sublanguage of
Km.

• L(G′) andLm(G′) are the supremalYC-Acyclic sublanguages ofK andKm, respectively.
Note that, by step (3), allYC-less SCC’s considered in step (4) are strictlyYC-less. Hence
it is ensured that, by canceling of the back transitions, only non-YC-Acyclic strings w.r.t.K
andKm are removed fromL(G′) andLm(G′).

◻

Accordingly, during I/O controller synthesis, the supremal YC-Acyclic sublanguage can be com-
puted by the procedure YCACYCLIC(G) to account for admissibility condition (ii) in Definition
3.11.

Moreover, the controller synthesis procedure has to account for admissibility condition (i), for
the I/O structure required in Definition 3.10 of the I/O controller and for the problem of partial
observation, as the controller cannot directly observe theenvironment eventsΣE. These issues are
treated by the next section.

4.3 Complete, Controllable and Normal Sublanguage

As mentioned before, the I/O controller synthesis procedure first computes full the closed-loop
behaviourLCPE = LC ∥ LCP ∥ LPE ∥ LE achieved by the solution (i.e. the controller to be

1This property holds for the generated and marked language ofany automaton. The reverse direction need not
hold, in general.

SECTION 4.3 — COMPLETE, CONTROLLABLE AND NORMAL SUBLANGUAGE 57

synthesized) and then extracts the I/O controller from it. Therefore, the closed-loop behaviour
must meet the conditionscompleteness, controllabilityandnormality.

Completenessof the closed-loop is a direct consequence of admissibilityof the I/O controller, see
Proposition 3.4.

Language controllabilityis a property that has been introduced by the SCT to describe those
closed-loop languages that can be enforced on the plant by disabling only controllable events and
is defined as follows.

Definition 4.3 (Controllability [RW87b])
Let L ⊆ Σ∗ be a prefix-closed language, and letΣuc ⊆ Σ be the set of uncontrollable events. The
languageK ⊆ L is said to becontrollablew.r.t.L and the set of uncontrollable eventsΣuc if

KΣuc ∩L ⊆ K.

◻

This means that the occurrence of uncontrollable events inL has to be accepted byK. In our
framework, the I/O controller has to accept the inputsUC andYP and has no direct access at all to
the environment eventsΣE. For the language of the full closed loop, this implies that it must be
controllable w.r.t.LC ∥ LPE ∥ LE and the set of uncontrollable eventsΣuc ∶= UC ∪ YP ∪ΣE.

Language normalityis a property that guarantees that a closed-loop behavior isachieved by a
controller also in the case of partial observation and defined as follows:

Definition 4.4 (Normality (e.g. [Won08]))
Let K ⊆ L be prefix-closed languages over the alphabetΣ, and letpo∶Σ

∗ → Σ∗o be the natural
projection, withΣo ⊆ Σ. Then,K is said to be normal w.r.t.L andpo if

K = p−1o (po(K)) ∩L

◻

This property can be rewritten asK = po(K) ∥ L. The following proposition states that an I/O
controller can only enforce normal sublanguages on the I/O plant.

Proposition 4.5
Let K ⊆ L be languages over the alphabetΣ, and letpo∶Σ∗ → Σ∗o be the natural projection to the
alphabetΣo ⊆ Σ. A languageKo ⊆ Σ∗o such that

Ko ∥ L = K (4.4)

exists if and only ifK is normal w.r.t.po andL. ◻

58 CHAPTER 4 — CONTROLLER SYNTHESIS

Proof
if. If K is normal w.r.t.po andL, thenKo is obviously given bypo(K).
only if. We show thatKo does not exist ifK is not normal w.r.t.po andL. First observe that
Ko ∥ L = p−1o (Ko) ∩L and, asK is not normal w.r.t.po andL, the following inequality holds:

p−1o (po(K)) ∩L ⊃ K (4.5)

We distinguish the casesKo ⊇ po(K) andKo ⊂ po(K):

• Ko ⊇ po(K): then,p−1o (Ko) ∩L ⊃ K follows directly from the above inequality (4.5)

• Ko ⊂ po(K):
Proof by contradiction: AssumeKo ∥ L = K. Note that here Definition 2.5 of the syn-
chronous composition evaluates toKo ∥ L = p−1o (Ko) ∩L and observe

p−1o (Ko) ∩L = K

⇓

po[p
−1
o (Ko) ∩L)] = po(K)

⇓ Lemma A.2

po(p
−1
o (Ko)) ∩ po(L) ⊇ po(K)

⇓

Ko ∩ po(L) ⊇ po(K)

⇓ (Ko ⊂ po(K) ⊆ po(L))

Ko ⊇ po(K).

As the last consequence contradictsKo ⊂ po(K), we haveKo ∥ L ≠ K.

Consequently,Ko does not exist. ◻

Hence, an I/O controller with the languageLCP over ΣCP enforcing the closed-loop behaviour
LCPE onLC ∥ LPE ∥ LE (both overΣCPE) does not exist unlessLCPE is normal w.r.t.LC ∥ LPE ∥
LE andpCP∶Σ

∗
CPE → Σ∗CP.

Remark 4.1
In particular, also observable languages (see e.g. [Won08]for definition) cannot be enforced by an
I/O controller unless they are normal languages as above. ◻

According to the above considerations, during I/O controller synthesis, a complete, controllable
and normal sublanguage has to be calculated. Unfortunately, results on the existence and computa-
tion of thesupremalcomplete, controllable and normal sublanguage have not been presented up to

SECTION 4.4 — I/O CONTROLLER SYNTHESIS PROCEDURE 59

now in DES literature. On the other hand, the supremal complete and controllable sublanguage as
well as an efficient algorithm for its computation are presented in [KGM92]. Moreover, the supre-
mal normal sublanguage is presented in [BGK+90] as a compact formula that can be evaluated
without iteration. In the I/O controller synthesis algorithm presented in the next section, a com-
plete, controllable and normal sublanguage is derived by iteration of (I) computing the supremal
complete and controllable sublanguage according to [KGM92] and (II) computing the supremal
normal sublanguage according to [BGK+90] until a fixpoint is reached. Hence, the resulting sub-
language is guaranteed to be complete, controllable and normal. It is denoted by the operator
(⋅)cCN .

Remark 4.2
In the TU example and all examples considered during the development of this framework, this
procedure led to nontrivial results after a small number of steps. However, neither finite-step
conversion nor supremality of the result are considered in this contribution. ◻

4.4 I/O Controller Synthesis Procedure

Let Π ∶= (SPE,SC,SP,SE,SspecCE) be an I/O controller synthesis problem according to Definition
3.12. To illustrate the details of each step of the controller synthesis, we introduce the conceptional
example of a simple machine.

Example 4.7
Simple Machine. We consider a production cell, whose complex tasks are internally controlled,
such that a very simple view from the outside is provided for superposed logic control: whenever
not busy, the machine reportsrdy, and the operator can start or stop the machine. After thestp

command, the machine remains ready. After thestart command, the machine starts some process,
during which a shared resource is requested. If the resourceis provided, the machine successfully
finishes the process and reportsrdy again. This logical behaviour can directly be modeled as an
I/O plantSPE ∶= (UP, YP,UE, YE,LPE). We identify the plant-I/O port that models interaction with
the operator with(UP, YP) ∶= ({stp, start},{rdy}), interaction with the environment is captured
by (UE, YE) ∶= ({pack,nack},{req}). By the unobservable environment-eventreq, we model the
machines requirement for the shared resource. For a plant description that is independent from the
environment, we introduce the unobservable environment-eventsnack (negative acknowledge) in
case of unavailable shared resource andpack denoting that the resource is provided. The possible
behaviourLPE can be modeled as depicted in the following automaton model.

60 CHAPTER 4 — CONTROLLER SYNTHESIS

2

13

4

rdy

stpstart

pack

req

nack

Figure 4.6: I/O plant model of a simple machine

Liveness and constraints:
Temporarily, assume minimal constraintsSP andSE, which corresponds to arbitrary external con-
figurations. Note thatLPE is complete but notYP-live w.r.t. these constraints; as the plant model is
designed independently from the environment and the constraintSE is minimal, the extreme case
that the shared resource isneverprovided when requested is included. The resulting livelock is
represented by a(req nack) loop between states 3 and 4 in the automaton model. It corresponds
to the nonempty set of stringsΣ∗PE(req nack)∗ ∩LPE. Hence, the limit(LPE)∞ containsω-strings
of the sortw ∶= s(req nack)ω, s ∈ Σ∗PE with pYP(w) /∈ Y ω

P .
Thus liveness has to be discussed by the introduction of reasonable constraints. One approach is
to restrictSP to a guideline for the operator or controller such thatLPE is YP-live w.r.t.SP and an
arbitrary i.e. minimal environmental configurationSE. The least restrictive constraintSP that can
be found is given bySP = (ΣP, (rdy stp)∗), i.e. start is never enabled.
A more reasonable approach is to relax the requirement ofYP-liveness to configurations in which
a shared resource is provided after a finite amount of requests. This configuration is given by a
minimal constraintSP and any environment constraint(ΣE,LE) with Σ∗E(req nack)ω ∩ LE

∞ = ∅

. For this example, we chooseSE ∶= (ΣE, (req pack)∗), which means that shared resources are
always provided when requested. Note that in practice, thisconstraint usually is not fulfilled a
priori. Our approach addresses this fact by passing on the constraintsSP andSE asrequirements
to the hierarchy of superposed controllers. This can be seenin Equations 5.1 and 5.2 in Theorem
5.1.
Safety Specification:
Assume that a standby for maintenance has to be possible after a certain amount ofn pro-
cesses. To formulate a respective specification for the external behaviour, we introduce the set

SECTION 4.4 — I/O CONTROLLER SYNTHESIS PROCEDURE 61

UC ∶= {operate, stby} of desired modes of operation and the desired feedbackYC ∶= {idle}.
The desired effect of the modes on the environment can be described by the systemSspecCE ∶=

(UC, YC,UE, YE,LspecCE), see Figure 4.7 a). From now on, for a better illustration of the computa-
tion of YC-live sublanguages, we discuss the specification depicted in Figure 4.7 b), which requires
the possibility for a standby after an unspecified amount of processes.

13-n

4-n

req

nack

2

3-2

4-2

req

nack

3-1

4-1

⋯

⋯

req

nack

operate

pack
pack

idle

stby

(a) Standby aftern processes

1

2

53

4

req

nack

operate

idle

stby

pack

req

idle

(b) Standby after undefined number of processes

Figure 4.7: SpecificationSspecCE for a simple machine

This specificationSspecCE together with the I/O plant modelSPE, minimal constraintsSC, SP and
the exclusion ofnack by the above constraintSE completes the I/O controller synthesis problem
of this example:Π ∶= (SPE,SC,SP,SE,SspecCE). ◻

For being a solution forΠ, the systemSCP has to be an admissible I/O controller that enforces
SspecCE onSPE w.r.t.SC andSE. In the following, we propose an algorithmic procedure to compute
the minimal restrictive solutionSCP to Π within the family of so-calledYC-Acyclic sublanguages.

62 CHAPTER 4 — CONTROLLER SYNTHESIS

I/O Controller Synthesis Algorithm (I/O CSA)
Let Π ∶= (SPE,SC,SP,SE,SspecCE) be an I/O controller synthesis problem, whereSspecCE is an
I/O plant model of the desired external closed-loop behaviour. The systemSCP = (ΣCP,LCP) is
computed as follows.

(I) Restrict the behaviour of the full closed loop:

K0 ∶= LPEc ∥ LP ∥ (YP(ǫ + YCUC)UP)∗ ∥ LspecCE

whereLPEc is the plant under constraintsLPEc ∶= LC ∥ LPE ∥ LE.

(II) Compute the supremalYC-Acyclic sublanguage:

K1 ∶= YCAcyclic(K0)

(III) Define the eventsΣuc ∶= UC ∪ YP ∪ΣE uncontrollable and the eventsΣo ∶= ΣCP observable.
Compute a complete, controllable and normal sublanguage ofK1 w.r.t.LPEc, Σuc andΣo:

K2 ∶= (K1)
(cCN)

(IV) Compute the projection to the controller alphabet:

KCP ∶= pCP(K2)

(V) Add error behaviour to makeYP andUC free inLCP:

LCP ∶= KCP ∪Kerr
CP

with Kerr
CP ∶= (K

YP

CP ∪K
UC

CP)(UPYP)
∗, see Definition 4.5.

We consider the first step of the presented algorithm.

Step (I): Desired behaviour of the full closed loop
By parallel composition, we restrict the possible plant behaviour LPEc to the language format
(YP(ǫ + YCUC)UP) (required by Definition 3.10 of the I/O controller), to the constraintLP (re-
quired by the admissibility condition (i) in Definition 3.11) and to the safety specificationLspecCE.
Note that, conversely, any superlanguage ofK0 inevitably leads to violation of one of these prop-
erties.

SECTION 4.4 — I/O CONTROLLER SYNTHESIS PROCEDURE 63

Example 4.8
Simple Machine.The result of this step for the problemΠ is depicted in the following figure.

3

2 495

10 6 8 1 11

7

idle

operate

idle

pack

stpstart

stby

start start

req

stp

rdy

stp

rdy

stp

rdy

start

Figure 4.8: Desired closed loop behaviour of a simple machine

Observe the livelocks indicated by the dashed grey cycles. Hence, this candidate for the full closed
loop behaviour violates theYC-liveness property required by admissibility in Definition3.11. ◻

The next step of the synthesis algorithm addressesYC-liveness.

Step II) Computation of YC-live sublanguages The supremalYC-Acyclic sublanguage ofK0

is computed according to Definition 4.3. Note that any sublanguage ofYCAcyclic(L) is also a
YC-Acyclic (and thusYC-live) sublanguage ofL. Hence, the restriction in the following step does
not compromise this property.

Example 4.9
Simple Machine. The supremalYC-Acyclic sublanguage of the desired behaviour as seen in
Figure 4.8 is shown in the following figure.

64 CHAPTER 4 — CONTROLLER SYNTHESIS

3

2 495

10 6 8 1 11

7

idle

operate

idle

pack

start

stby

start

req

stp

rdy rdy

start

Figure 4.9: Simple machine: supremalYC-Acyclic sublanguage of the desired behaviour

In this intermediate result, completeness is violated by the deadlock states10 and11. Additionally,
controllability fails in state10 due to a missingrdy-transition. Moreover both, the normality and
the controllability condition require a transition with the uncontrollable and unobservable event
req in state11. ◻

Step III) Computation of a complete, controllable and normal sublanguage By this step, a
full closed-loop behaviourK2 is obtained, that can be realized by an admissible I/O controller, see
Section 4.3.

Example 4.10
Simple Machine.The full closed-loop behaviour that is achieved for the simple machine is repre-
sented by the automaton in the subsequent figure.

SECTION 4.4 — I/O CONTROLLER SYNTHESIS PROCEDURE 65

1

2

3

5

6

7

4

rdy

idle

start

stby

stp

operate

req

pack

Figure 4.10: Simple machine: full closed-loop behaviour

◻

The following steps are concerned with educing the I/O controller fromK2.

Step IV) Compute the projection to ΣCP. By this, the unobservability of the environment al-
phabet for the controller is taken into account. The normality achieved by step III) guarantees that
the I/O controller will enforceK2 in the closed loop.

Example 4.11
Simple Machine. For the simple machine example, the projection toΣCP yields the result shown
in Figure 4.11

66 CHAPTER 4 — CONTROLLER SYNTHESIS

1

2

3

5 4

rdy

idle

stby

stp

operate

start

Figure 4.11: Simple machine: projection toΣCP

◻

Step V) MakeYP and UC free. Note thatYP is not necessarily free inKCP, as a strings of KCP

can only be extended by an eventνP ∈ YP if there exists a corresponding strings′νP in the plant
behaviourLPE with pCP(s′) = s, i.e. if s′νP is possible plant behaviour. Similarly,UC need not be
free inKCP, as the constraintSC, whose language is a component ofLPEc, might here and there
exclude the occurrence ofUC-events by its controller-I/O port property. To formally account for
theseYP- andUC-events that do not occur in the closed-loop behavior, we insert the strategic error
behaviorKerr

CP that does not contribute to the closed-loop behaviour, i.e.Kerr
CP ∥ (LCP ∥ LPEc) = ∅.

The construction ofKerr
CP

is based on the following definition.

Definition 4.5
Given a languageK and an alphabetΣ, the languageKΣ is defined as follows:

KΣ
∶= {sσ, σ ∈ Σ ∣ (∃σ′ ∈ Σ)[sσ′ ∈ K ∧ sσ /∈ K]},

◻

Note thatKΣ ⊆ KΣ andKΣ ∩K = ∅. In in the error behaviourKerr
CP

in Step V) of the I/O controller
synthesis algorithm,KYP identifies all strings inK that can be extended by at least one but notany
yP-event without leavingK and adds the missingyP-events not accepted inK. The role ofKUC is
analogous.

Example 4.12
For the simple machine, we obtainKerr

CP = ∅, as already in the automaton in Figure 4.11 eachYP-
event, i.e. the onlyyP-eventrdy, is accepted after theuP-eventsstp andstart. Also, eachuC-event

SECTION 4.4 — I/O CONTROLLER SYNTHESIS PROCEDURE 67

(stby, operate) is accepted after theyC-eventidle. Hence, Step V) preserves the result shown in
Figure 4.11.

The Transport Unit, however, provides an example with non-empty error-behaviour, see Figure
3.11. ◻

The following important lemma shows that the extension byKerr
CP does not affect the closed-loop

behaviour under constraints:

Lemma 4.1
Let Π ∶= (SPE,SC,SP,SE,SspecCE) be an I/O controller synthesis problem according to Defini-
tion 3.12 and letKCP andLCP be constructed according to Steps IV and V of the I/O Controller
Synthesis Algorithm, respectively. Then, it holds that

LCP ∥ LPEc = KCP ∥ LPEc.

◻

Interestingly, for the proof of this lemma, the normality property ofK2 (I/O CSA, Step III) is
needed.

Proof See Appendix A.2. ◻

By the above lemma, it is ensured that the extension byYP- andUC-events does not extend the
closed-loop behaviour, in particular no undesired behaviour is added. This is an important fact,
needed to prove the following statement, which is one of the main results of our work. We are now
able to state that the above algorithm leads to a solution ofΠ.

Theorem 4.2 (Solution for the I/O Controller Synthesis Problem)
Let Π ∶= (SPE,SC,SP,SE,SspecCE) be an I/O controller synthesis problem according to Definition
3.12, whereSspecCE is an I/O plant (describing the desired external closed-loop behaviour). If the
languageLCP is constructed according to the I/O controller Synthesis Algorithm applied toΠ,
then:
SCP ∶= (ΣCP,LCP) is a solution forΠ.

◻

Proof (outline)
At this place, we provide an outline on the items that have to be shown. The complete proof is
found in the appendix, see Appendix A.2. We have to show the following items:

1) SCP is an I/O controller:

68 CHAPTER 4 — CONTROLLER SYNTHESIS

(i) SCP is a system withΣCP = ΣC∪̇ΣP, ΣC ∶= UC∪̇YC, ΣP ∶= UP∪̇YP ;

(ii) (UC, YC) and(UP, YP) are a plant- and a controller-I/O port forSCP, respectively;

(iii) LCP ⊆ ((YPUP)∗(YPYCUCUP)∗)∗ ;

(iv) LCP is complete.

2) SCP is admissible toSPE w.r.t.SC, SP andSE:

(i) pP(LC ∥ LCP ∥ LPE ∥ LE) ⊆ LP

(ii) LCP ∥ LPE is YC-live w.r.t.SC andSE

3) SCP enforcesSspecCE onSPEc. ◻

Example 4.13
Simple Machine.By Theorem 4.2, it is shown that the automaton in Figure 4.11 indeed represents
an admissible I/O controller that enforces the specification shown in Figure 4.7 ◻

Chapter 5

Hierarchical Control System

Suppose we are provided an overall system consisting ofn plant components that in their particular
configuration interact via shared resources. According to the previous chapters, the individual plant
components can be modeled independently (no shared events)as I/O plants with corresponding
constraints, see Chapter 3. This step leads to one I/O plant per component and corresponding
constraints; i.e. fori = 1..n, SPEi = (UPi, YPi,UEi, YEi,LPEi), SPi = (UPi, YPi,LPi) andSEi =

(UEi, YEi,LEi) where each I/O plantSPEi is complete andYPi-live w.r.t. the constraintsSPi and
SEi. As at this stage all components are regarded as independententities with no synchronization
built in, all alphabetsΣPi ∶= UPi∪̇YPi andΣEi ∶= UEi∪̇YEi are disjunct.

For each component, a local I/O controller can be designed asin Chapter 4 according to an indi-
vidual specificationSspecCEi

.

Example 5.1
Transport Unit. Consider a chain of an arbitrary number of TU’s as in Figure 5.1. Each single TU
can be provided with a local I/O controller as in Figure 3.11 designed according to the previous
chapters.

Figure 5.1: Chain of transport units

◻

By Theorem 3.1, the overall system is still given as a set ofn I/O plants, where the I/O-plant model
of eachcontrolledcomponent is given as the external closed loop of the uncontrolled I/O plant and
its I/O controller.

70 CHAPTER 5 — HIERARCHICAL CONTROL SYSTEM

However, due to their particular configuration, the components usually interact via shared re-
sources, and most control objectives explicitly involve the cooperation of plant components. By
the next section, we enable control of the concurrent behaviour of a group of interacting compo-
nents. Based on this result, Section 5.2 provides a guidancehow to alternate hierarchical control
and subsystem composition to achieve an overall hierarchy as in Figure 1.11. The core results of
this chapter have been published in [PMS06] and [PMS07a].

5.1 Control of Composed Systems

For convenience, we consider groups of only two componentsSPEi = (UPi, YPi,UEi, YEi,LPEi),
i ∈ {1,2}; the behaviour of each group is described by a system architecture as seen in Figure 5.2
a).

operator

plantSPE1 plantSPE2

environmentSEL

external environment

ULYL

UE1YE1 UE2YE2

YP1 UP1 YP2 UP2

(a) interaction via I/O environment

operator

SPE1 ∥io SPE2

environmentSEL

external environment

ULYL

UEYE

YP UP

(b) compound I/O shuffle model

Figure 5.2: Group of I/O plants with I/O environment

First, the individual and independently designed I/O plantsSPEi are composed by a shuffle com-
position to technically form a compound model as in Figure 5.2 b), see Section 5.1.1. Then, the
restrictions due to interaction of the components with eachother and with the external configura-
tion are described in a subordinate environment model, see Section 5.1.2. We show that controller
design for the resulting compound of the group and the interaction model can be conducted ac-
cording to the previous chapters with liveness of the individual interacting components preserved.

SECTION 5.1 — CONTROL OF COMPOSEDSYSTEMS 71

5.1.1 I/O Shuffle

To technically capture the behaviour of both plantsSPEi in one mathematical model, we intro-
duce theI/O shuffleoperationSPE1 ∥io SPE2. It is based on the ordinary shuffle product (parallel
composition under absence of shared events), but restricted by the additional conditionLio on the
ordering of input-output event-pairs and extended by a well-defined error behaviourLerr. The
latter accounts for situations whereLio is violated, i.e. a measurement event from the one plant
component is replied to by a control event to the other plant component.

Definition 5.1 (I/O shuffle)
Given two I/O plantsSPEi = (UPi, YPi,UEi, YEi,LPEi), i ∈ {1,2}, the I/O shuffleSPE = SPE1 ∥io
SPE2 is defined as a tupleSPE = (UP, YP,UE, YE,LPE), where:

(i) UP ∶= UP1∪̇UP2, YP ∶= YP1∪̇YP2, UE ∶= UE1∪̇UE2, YE ∶= YE1∪̇YE2 ;

(ii) LPE ∶= [(LPE1 ∥ LPE2) ∩Lio] ∪Lerr ∶= L∥ ∪Lerr, with

(iii) Lio ∶= (ΣPE1ΣPE1 +ΣPE2ΣPE2)∗ and

(vi) Lerr ∶= ∪4
i=1Li with

L1 ∶= (L∥YP1 ∩L∥)UP2 ,
L2 ∶= (L∥YP2 ∩L∥)UP1 ,
L3 ∶= (L∥YE1 ∩L∥)UE2 ,
L4 ∶= (L∥YE2 ∩L∥)UE1 ;

◻

Observe that the I/O shuffle of prefix-closed systemsSPEi is prefix-closed (without any effect, the
languagesLi in item (vi) can be replaced byLi). It is readily shown that the I/O shuffle indeed is
a shuffle composition in the sense that the behaviour of neither plant is restricted, i.e.

for i = 1,2 ∶ LPEi ⊆ LPE,

see Appendix, Lemma A.7. Moreover, the I/O shuffle retains the I/O structure of its arguments:

Proposition 5.1
If SPEi, i ∈ {1,2} are I/O plants, so isSPE = SPE1 ∥io SPE2. ◻

Proof We show thatSPE provides all I/O-plant properties.

(i) It is obvious thatSPE is a system.

(ii) (UP, YP) is plant-I/O port forSPE:

72 CHAPTER 5 — HIERARCHICAL CONTROL SYSTEM

– Σ =W ∪̇UP∪̇YP with W = ΣPE −UP − YP = UE∪̇YE

– LPE ⊆ (W ∗(YPUP)∗)∗

– (∀s ∈ Σ∗YP, µ ∈ UP) [s ∈ LPE ⇒ sµ ∈ LPE]. Proof: Picks = ryP1 ∈ LPE with yP1 ∈

YP1. Consider two cases: (1)s ∈ Lerr −L∥. Then,sµ ∈ Lerr ∀µ ∈ UP by construction of
Lerr. (2) s ∈ L∥ As s = ryP1, s ∈ L∥YP ∩ L∥. Hence,sµ ∈ L1 ⊆ Lerr ⊆ LPE ∀µ ∈ UP2.
Note furthermore thatpPE1(s) = pPE1(r)yP1 ∈ LPE1. As UP1 is a free input ofSPE1,
it holds thatpPE1(r)yP1µ ∈ LPE1 for all µ ∈ UP1. As LPE1 andLPE2 do not share
events,pPE2(sµ) = pPE2(s) ∈ LPE2 and consequentlysµ ∈ LPE1 ∥ LPE2. Note also that
sµ = ryP1µ ∈ Lio and thussµ ∈ L∥ ⊆ LPE

In summary,∀s = ryP1 ∈ LPE with yP1 ∈ YP1 and∀µ ∈ UP, it holds thatsµ ∈ LPE.
Note that the same holds∀s = ryP2 ∈ LPE with yP2 ∈ YP2 for symmetry reasons.

(UE, YE) is plant-I/O port forSPE: as above.
◻

Accordingly, the constraintsSPi andSEi of the individual I/O plants have to be composed such that
the liveness properties are represented correctly by the I/O shuffle under the compound constraints.
We merge the constraints of the individual plants by the standard shuffle product restricted to the
I/O structureLio of Definition 5.1. This way, the resulting constraint (that has to be met by the
superposed controller) also includes the avoidance of the error-behaviourLerr.

Proposition 5.2
Let SPE1 andSPE2 be I/O-plants, and letLPi, LEi, i ∈ {1,2} be constraints. Then, for the I/O-
shuffleSPE = (ΣPE,LPE1 ∥io LPE2) and the constraintsLP ∶= (LP1 ∥ LP2) ∩Lio andLE ∶= (LE1 ∥
LE2) ∩Lio, it holds that

LP ∥ LPE ∥ LE = LP ∥ L∥ ∥ LE,

i.e. the error behaviourLerr is avoided under the compound constraints. ◻

Proof Note thatLPE = L∥ ∪Lerr. Thus

LP ∥ LPE ∥ LE =
Lem.A.1 (LP ∥ L∥ ∥ LE) ∪ (LP ∥ Lerr ∥ LE).

Note that, in the above synchronous compositions we haveΣP,ΣE ⊆ ΣPE, i.e. all events are shared
events and hence

LP ∥ Lerr ∥ LE = LP ∩Lerr ∩LE.

AsLP ⊆ Lio andLE ⊆ Lio, we get

LP ∩Lerr ∩LE = (LP ∩Lio) ∩Lerr ∩ (LE ∩Lio) = LP ∩Lerr ∩Lio ∩LE.

SECTION 5.1 — CONTROL OF COMPOSEDSYSTEMS 73

Observe the language structure ofLerr: Lerr ⊆ Σ∗PE(YP1UP2 + YP2UP1 + YE1UE2 + YE2UE1) to
conclude thatLerr ∩Lio = ∅. Thus,

LP ∩Lerr ∩Lio ∩LE = LP ∥ Lerr ∥ LE = ∅

and finally
(LP ∥ L∥ ∥ LE) ∪ (LP ∥ Lerr ∥ LE) = LP ∥ L∥ ∥ LE.

◻

The following proposition states that the constraints of the individual plants indeed can be lifted to
the compound plant by the (standard) shuffle product.

Proposition 5.3
Let SPE1 andSPE2 be I/O-plants, and letLPi, LEi, i ∈ {1,2} be constraints. IfSPE1 is complete
andYP-live w.r.t. LP1 andLE1, and ifSPE2 is complete andYP-live w.r.t. LP2 andLE2, then the
I/O-shuffleSPE = (ΣPE,LPE1 ∥io LPE2) is complete andYP-live w.r.t.LP ∶= (LP1 ∥ LP2)∩Lio and
LE ∶= (LE1 ∥ LE2) ∩Lio. ◻

Proof
SPE = (ΣPE,LPE1 ∥io LPE2) is complete w.r.t.LP andLE:
Pick some arbitrarys ∈ LP ∥ LPE ∥ LE. Regarding Proposition 5.2,LP ∥ LPE ∥ LE = LP ∥
L∥ ∥ LE. Thus,pPE1(s) ∈ pPE1(L∥) = LPE1 andpPE2(s) ∈ pPE2(L∥) = LPE2. As LP1 ⊆ LP and
LE1 ⊆ LE, pPE1(s) ∈ LP1 ∥ LPE1 ∥ LE1 andpPE2(s) ∈ LP2 ∥ LPE2 ∥ LE2. Consider the following
two cases:

(i) s ∈ Σ∗
PE

YP1: AsLPE is an I/O-plant,sµ ∈ LPE for all µ ∈ UP. In particular, this holds for all
µ ∈ UP1. As pPE1(s) ∈ LPE1 andLPE1 is complete w.r.t.LP1, there existŝµ ∈ UP1 such that
pP1(pPE1(s)µ̂) ∈ LP1. As sµ̂ ∈ LPE, aspE(sµ) = pE(s) ∈ LE and aspP(sµ) = pP(s)µ ∈ LP

(becauseLP1 ⊆ LP), it follows thatsµ̂ ∈ LP ∥ LPE ∥ LE.

(ii) s ∈ Σ∗PEYE1: analogous to case (i): AsLPE is an I/O-plant,sµ ∈ LPE for all µ ∈ UE. In
particular, this holds for allµ ∈ UE1. As pPE1(s) ∈ LPE1 andLPE1 is complete w.r.t.LP1,
there existŝµ ∈ UE1 such thatpE1(pPE1(s)µ̂) ∈ LE1. As sµ̂ ∈ LPE, aspP(sµ) = pP(s) ∈ LP

and aspE(sµ) = pE(s)µ ∈ LE (becauseLE1 ⊆ LE), it follows thatsµ̂ ∈ LP ∥ LPE ∥ LE.

(iii) s ∈ Σ∗PE(UE1 ∪UP1): AsLPE1 is complete w.r.t.LP1 andLE1, there existsν ∈ YE1 ∪YP1 such
thatpPE1(sν) ∈ LPE1. As LPE1 andLPE2 do not share events,pPE2(sν) = pPE2(s) ∈ LPE2

and thussν ∈ LPE1 ∥ LPE2. Note that alsosν ∈ Lio. Thus,sν ∈ L∥ ⊆ LPE. As LP1 ⊆ LP,
LP2 ⊆ LP, LE1 ⊆ LE andLE2 ⊆ LE, it holds thatsν ∈ LP ∥ LPE ∥ LE.

(iv) The casess ∈ Σ∗PEYP2, s ∈ Σ∗PEYE2 ands ∈ Σ∗PE(UE2 ∪ UP2) are included due to symmetry
reasons.

74 CHAPTER 5 — HIERARCHICAL CONTROL SYSTEM

Hence, for alls ∈ LP ∥ LPE ∥ LE, there existsσ ∈ ΣPE such thatsσ ∈ LP ∥ LPE ∥ LE.

SPE = (ΣPE,LPE1 ∥io LPE2) is YP-live w.r.t.LP andLE:
Pickw ∈ (LP ∥ LPE ∥ LE)∞ and observe:

[LP ∥ LPE ∥ LE]∞ =Prop.5.2[LP ∥ L∥ ∥ LE]∞ =

[LP ∥ ((LPE1 ∥ LPE2) ∩Lio) ∥ LE]∞ ⊆ [LP ∥ LPE1 ∥ LPE2 ∥ LE]∞ =

[(LP1 ∥ LPE1 ∥ LE1) ∥ (LP2 ∥ LPE2 ∥ LE2)]∞

According to Lemma A.5, it holds thatpPE1(w) ∈ (LP1 ∥ LPE1 ∥ LE1)∞ and/orpPE2(w) ∈ (LP2 ∥
LPE2 ∥ LE2)∞. Hence,pYP1(pPE1(w)) = pYP1(w) ∈ Y ω

P1
and/orpYP2(pPE2(w)) = pYP2(w) ∈ Y ω

P2
.

In general,pYP(w) ∈ Y ω
P . ◻

Hence, a compound I/O plant model for the independent behaviour of the two plant components
is established, together with constraints that properly capture the conditions for liveness of the
individual plant components.

Remark 5.1
In this thesis, we consider an I/O-shuffle that leads to a prefix-closed result in case of prefix-closed
arguments. In practice, composed plants often feature the persistent guarantee of its components
to (sooner or later)alternatelyissue events – a property that usually cannot be enforced by control
action but, instead, is naturally given by the composed plant. In particular in the case of control
tasks that require thealternateoperation of the involved plant components, a composed plant model
based on the above I/O-shuffle can lead to over-restrictive results for the superposed controller.
Hence, ongoing research includes an I/O-shuffle that formally expresses the ability of alternation
by a non-prefix-closed resultSPE = SPE1 ∥io SPE2 such that

w ∈ LPE
∞⇒ pPE1(w) ∈ LPE1

∞
∧ pPE2(w) ∈ LPE2

∞

◻

We proceed with modeling the interaction of the plants composed in the I/O-shuffle via a common
environment model, calledI/O environment.

5.1.2 I/O Environment

Technically, the I/O environment is a system, that is connected to an I/O plant via the port(UE, YE),
see Figure 5.2 b). Therefore,(UE, YE) has to be a controller-I/O port of the I/O environment. The
I/O environment is used to describe two distinct kinds of interaction.

SECTION 5.1 — CONTROL OF COMPOSEDSYSTEMS 75

Internal interaction. The port(UE, YE) has to be a controller-I/O port of the I/O environment,
as it is connected to the plant-I/O port(UE, YE) of the respective I/O plant. Via this port, the
environment model can disable sequences of environment events that are not possible due to the
concurrent behaviour of both plants, e.g. if both plants share resources among each other. Interact-
ing discrete event systems often feature concurrent behaviour meaning that the liveness property
of the individual plant components is lost in the compound behaviour due to conflicts in the in-
teraction. In our framework, such situations (that have to be avoided by control) are captured by
the I/O environment: seen from the I/O plant, the environment poses a constraint that is able and
likely to violate the environment constraintsSEi necessary for liveness of the plantsSPEi.

External interaction.Furthermore, the I/O environment forwards those sequencesof environment
events that concern the interaction of one or both plants with the remainingenvironment to the
plant-I/O port(YL,UL) that is connected with the external configuration. This is the case if e.g. the
compound shares a resource with another group of plant components.

As a technical consequence of these considerations, we define the environment model to be of the
same I/O structure as a controller.

Definition 5.2 (I/O environment)
An I/O environmentis a tupleSEL = (UE, YE,UL, YL,LEL), where:

(i) (ΣEL,LEL) is a system withΣEL ∶= UE∪̇YE∪̇UL∪̇YL ;

(ii) (UE, YE) and(UL, YL) are a controller- and a plant-I/O port, respectively ;

(iii) LEL ⊆ ((YEUE)∗(YEYLULUE)∗)∗ ;

(iv) LEL is complete.
◻

Example 5.2
Transport Unit. Consider a chain of an arbitrary number of TU’s, numbered alphabetically from
left to right. To design a control hierarchy, we begin with compounding groups of two TU’s, e.g.
TU A and TU B. Note that the two plant models do not share events; the membership of each event
to the respective component is indicated by the suffixes _A and _B in the event labels, e.g.idle_A

andidle_B. As indicated above, each locally controlled TU is abstracted by its specification (e.g.
as in Figure 3.9), so first the I/O shuffle of the specificationsof two transport units is computed.

The environment modelSEL = (ΣEL,LEL) for the resulting module AB is designed in two steps,
see Figure 5.3.

76 CHAPTER 5 — HIERARCHICAL CONTROL SYSTEM

1

2

3

4

5

6

7

8 9

10

11

req_fl_A

req_tr_B req_fl_B

req_tr_Areq_fl_AB

req_tr_AB

pack_AB

nack_AB

pack_A,
pack_B

nack_A,
nack_B

nack_B

pack_A

req_fl_B

req_tr_B,
req_fl_A,
req_tr_A

pack_B

nack_A,

nack_B

TU A TU B TU A TU B

Figure 5.3: Environment model of two transport units TU A and B

First, we consider theinternal interaction between TU A and B, namely the propagation of a work-
piece from TU A to TU B, see right half of the automaton model inFigure 5.3. Initially, due to its
I/O-controller structure, the environment has to accept all YE-events (all events labeledreq_ . . .) is-
sued by TU A or TU B and may respond by theUE-eventsnack_A, pack_A or nack_B, pack_B,
depending on the correct order of requests. The eventreq_fl_B is responded bynack_B (state 7)
as TU A has not provided a workpiece yet. Instead,req_tr_A is followed bypack_A, after which
only the appropriate requestreq_fl_B leads to positive acknowledge (state 8), as TU B has to take
over the workpiece provided by TU A.
The second step is the description of theexternal interaction (left part of Figure 5.3) of mod-
ule AB with the remaining environment. To this end, we introduce the alphabetsYL ∶=

{req_fl_AB,req_tr_AB} andUL ∶= {nack_AB,pack_AB} as the plant-I/O port ofSEL. As
req_fl_A represents a request of the entire module AB, it is “translated” to the remaining envi-
ronment byreq_fl_AB (state 2). Now, the plant-I/O port ofSEL has to accept allUL-events. Both
acknowledges from the remaining environment,nack_AB andpack_AB are reported to TU A by
nack_A andpack_A, respectively (states 4, 5 and 6). In the same way, the request req_tr_B is
“translated” to the remaining environment (state 3).
Note that the environment constraintsSEi as depicted in Figure 3.7 are violated in states 6, 7 and
11, because the shared resource is not provided as requested. Hence, in the compound of module
AB andSEL, the liveness of TU A and B is not preserved. ◻

SECTION 5.1 — CONTROL OF COMPOSEDSYSTEMS 77

Analogously to the I/O controller form, an I/O environment form can be defined for an automaton
graph to represent an I/O environment.
The I/O-shuffle and the environment model are composed to onemodel of the interacting plants.
Its external behaviourSPL (see Proposition 5.4) is an I/O plant: comparing the I/O structure of
controller and environment, Proposition 3.3 carries over to the compound of plant and environment
by uniform substitution as in Figure 5.4.

IO environment: I/O controller:

SL ↔ SC

SEL ↔ SCP

I/O port (YE,UE) ↔ I/O port (YP,UP)

SPE ↔ SPE

I/O port (YP,UP) ↔ I/O port (YE,UE)

SP ↔ SE

Figure 5.4: Analogy between I/O environment and I/O controller

Proposition 5.4
Let SPE = (UP, YP,UE, YE,LPE) be an I/O plant and letSEL = (UE, YE,UL, YL,LEL) be an I/O
environment. Then the external behaviourSPL ∶= (UP, YP,UL, YL,LPL) with LPL ∶= pPL(LPE ∥
LEL) is an I/O plant. ◻

Proof
See proof of Proposition 3.3 with the analogies shown in Figure 5.4. ◻

In Proposition 5.3, suitable compound operator- and environment constraints describing the live-
ness of the individual plant components have been identifiedfor the I/O shuffle. Now, the environ-
ment constraintSE is replaced by the I/O environment. Hence, suitable constraintsSP andSL are
required to enforce the original environment constraint inorder to guarantee liveness of the com-
pound plant. The following theorem characterizes such constraints. Typically,SL is given from an
application context, and the below condition is solved for the variableSP.

Theorem 5.1 (Compound Plant Model)
For i ∈ {1,2}, let SPEi = (UPi, YPi,UEi, YEi,LPEi) be an I/O plant, that is complete and
YPi-live w.r.t. the constraintsSEi = (UEi, YEi,LEi) and SPi = (UPi, YPi,LPi). Let SEL =

(UE, YE,UL, YL,LEL) be an I/O environment and consider the compound systemSPL =

(UP, YP,UL, YL,LPL), LPL = pPL((LPE1 ∥io LPE2) ∥ LEL). Let SP = (UP, YP,LP) and
SL = (UL, YL,LL) be constraints with

pE(LP ∥ (LPE1 ∥io LPE2) ∥ LEL ∥ LL) ⊆ (LE1 ∥ LE2) ∩Lio , (5.1)

pP(LP ∥ (LPE1 ∥io LPE2) ∥ LEL ∥ LL) ⊆ (LP1 ∥ LP2) ∩Lio . (5.2)

78 CHAPTER 5 — HIERARCHICAL CONTROL SYSTEM

with Lio as defined in Definition 5.1. ThenSPL is
(i) an I/O plant;

(ii) complete w.r.t.SP andSL ,

(iii) YP-live w.r.t.SP andSL .
◻

Proof

(I) LPL is an I/O-plant. Proof: this follows from Proposition 5.4.

(II) LPL is complete w.r.t.LP andLL. Proof: Picks ∈ LP ∥ LPL ∥ LL; hence there exists
r ∈ LP ∥ LPE ∥ LEL ∥ LL such thatpPL(r) = s. As LPE ∥ LEL is complete andYP-live
w.r.t. LP andLL, there existsr′ν, ν ∈ YP such thatrr′ν ∈ LP ∥ LPE ∥ LEL ∥ LL. As
pPL(r′ν) = pPL(r′)ν ≠ ǫ, pPL(r′)ν = σr′′ with someσ ∈ ΣPL andr ∈ Σ∗

PL
.1 Observing

pPL(rr′ν) = pPL(r)pPL(r′)ν = sσr′′, it holds that there existsσ ∈ ΣPL such thatsσ ∈ LP ∥
LPL ∥ LL.

(III) LPL is YP-live w.r.t.LP andLL. Proof: Pickw ∈ (LP ∥ LPE ∥ LEL ∥ LL)∞. As SPE is YP-
live w.r.t.LP andLL, it holds thatpYP(w) ∈ Y ω

P
. Note that for allw′ ∈ (LP ∥ LPL ∥ LL)∞,

it holds thatpYP(w′) = pYP(pPL(w)) = pYP(w) for somew ∈ (LP ∥ LPE ∥ LEL ∥ LL)∞.
HencepYP(w′) ∈ Y ω

P
for all w′ ∈ (LP ∥ LPL ∥ LL)∞.

◻

Hence, liveness of the compound plant is achieved whenever the external constraintsSP andSL

enforce the internal constraintsSEi andSPi. Then, we end up with an I/O plant as discussed
in Chapter 4 and, hence, can approach the control problem accordingly. In particular, we can
substitute the actual plant modelsSPEi by an abstraction: due to monotonicity of the applied
language operations, this leads to an abstraction of the compound plant and to a conservative
constraintSP. As we are now in the position to design controllers also for groups of components,
we can approach the design of a hierarchical control system for multi-component DES.

5.2 Stepwise Hierarchical System Design

In order to design a hierarchical control architecture for the composed system as illustrated in
Figure 1.11, we suggest the following recurring sequence ofsteps:

1Note that not necessarilyσ = ν.

SECTION 5.3 — COMPLEXITY OF THE TRANSPORTUNIT EXAMPLE 79

1. Component-wise controller design.For each component a local I/O controller can be de-
signed as in Chapter 4 according to an individual specification SspecCEi

. By Theorem 3.1,
the overall system is still given as a set ofn I/O plants, where the I/O-plant model of each
controlledcomponent is given as the external closed loop of the uncontrolled I/O plant and
its I/O controller.

2. Abstraction step.For the next hierarchical level, the original I/O plant components (uncon-
trolled plants or external closed loops) are replaced by an abstraction that captures only the
behaviour that is relevant for superposed control action. For the controlled components, as
mentioned earlier in this text, we propose to use the specificationsSspecCEi

as an abstraction
for the external closed loop.

3. Subsystem composition.We suggest that groups of a comparatively small number of plant
components shall be described by a compound model and equipped with control and mea-
surement aggregation by one superposed I/O controller per group. At this point, the com-
plexity of the compound model of each group (that is exponential in the number of compo-
nents) is effectively reduced by the use of abstractions in the preceding step. We formally
obtain a compound model of the group by ashuffle productcomposition and model the in-
teraction of the plant components by an environment model represents the limited amount of
resources available and thus, in general, doesnot meet the original environment constraints
necessary for liveness of the individual plant components.

4. Superposed control.For each group and a specification for each group, we synthesize a
superposed controller that respects Theorem 5.1 and thus meets the operator constraints and
enforces the original environment constraints by only requesting resources when available.
We end up with a new level of̃n < n plant components, one per group. By replacement with
the corresponding specifications, we proceed with step 2.

This procedure is iterated until one controller for the abstract overall plant model is designed. The
exponential growth of complexity in the number of plant components observed in the monolithic
approach is effectively avoided.

5.3 Complexity of the Transport Unit Example

For the subsystem composition step, the complexity of the resulting compound model is exponen-
tial in the number of subcomponents. However, the exponential growth has no effect on the next
hierarchical level, as the controlled group is replaced by the specification model. As a result, as-
suming a fixed upper bound for the complexity of the specifications, the complexity of the overall
control system is linear in the number of plant components. This deliberation is supported by the
TU example.

80 CHAPTER 5 — HIERARCHICAL CONTROL SYSTEM

Example 5.3
Transport Unit. Again, we consider the chain of an arbitrary number of TU’s. The above se-
quence of hierarchical design steps is accomplished as follows.
Controller design:A local controller for each TU is designed for the specificationSspecCE accord-
ing to the previous sections. The local plant models and local controllers comprise 9 states each.
Abstraction step: As proposed above, the external closed loop(ΣCE,LCE) of each TU is replaced
by SspecCE.
Subsystem composition:The abstractions of each two neighbored TU’s are composed using the
I/O shufflecomposition. For each pair, the interaction of the two TU’s among themselves and with
the remaining environment is captured by a subordinateI/O environmentmodel, which counts 14
states. The compound model of any two TU’s is built of two specifications as in Figure 3.9 with
6 states each and the 14-state environment model. Hence, thecomposed result is of the order of
6 × 6 × 14 = 504 states.
Design of superposed controllers:For the resulting compound models of two TU’s, we require
that the controlled module behaves as if it were one single transport unit. Accordingly, we keep
up the specification in Fig. 3.9 also for the compounds of two TU’s, by copy and paste and correct
renaming of the events. The controller for two TU’s and that specification counts 28 states. Now,
the compound of any two controlled TU’s is replaced by the specification with only 6 states - a
considerable reduction compared to 504 states which we obtained above.
Overall hierarchy: Keeping up this specification for all levels, until a top-level controller for an
abstract model of the whole chain of TU’s is synthesized leads to a hierarchy of identical I/O con-
trollers and I/O environments. Hence, the overall complexity can easily be predicted for a chain
counting an arbitrary number of TU’s.
Table 5.1 shows the sum of states for a chain of up to 16 TU’s: both, the plant model hierarchy
(comprising all I/O plants and the environment hierarchy) and the controller hierarchy feature lin-
ear complexity compared to the exponential growth of a monolithic plant model (see third column
in Table 5.1. The according model is found in Appendix A.3).

Table 5.1: Transport Unit: Sum of States

No. plant controller monolithic
of TU’s hierarchy hierarchy plant model

1 9 9 6

2 2 ⋅ 9 + 14 = 32 2 ⋅ 9 + 28 = 46 36

4 78 120 1296

8 170 278 7776

16 354 594 approx.2,8 ⋅ 1012

◻

Chapter 6

Conclusions

In this contribution, we provide an input/output-based (I/O-based) system theoretic framework
of hierarchical abstraction-based control system design for discrete event systems. The I/O-based
description of discrete event models is adopted to formal languages from J.C. Willems’ behavioural
systems theory and is the key ingredient that allows for abstraction-based controller synthesis under
preservation of safety- and liveness-properties.

First, a notational basis for theconcept of formal languagesis established in Chapter 2, includ-
ing the graph-based representation by automata and the notion of ω-languages used to describe
sequential behaviour.

With the formal language framework as a basis, anI/O-based modeling framework for DESis
developed in Chapter 3. As a mathematical plant model, the I/O plant is proposed as an entity that
interacts with an operator and an environment via well-defined I/O ports. The notion of liveness
is reformulated in the context of inputs and outputs in form of a conditional liveness that depends
on constraints on the external configuration of the plant. Byits I/O structure, the corresponding
I/O controller preserves controllability and basic liveness properties in the closed loop. As a main
result, any controller that solves the control problem for an abstraction of the plant, is provably
also a solution for the genuine control problem for the original plant.

In Chapter 4, an algorithmiccontroller design procedureis established that respects admissibility
conditions and yields a solution to the controller design problem. Liveness of the closed loop is
realized in form a an acyclic language that is algorithmically achieved via a cycle-free topology of
the corresponding automata graph.

An extension of the results to a multi-layercontrol hierarchyis proposed in Chapter 5. First, a
compound model for a group of plant components is developed by the I/O shuffle operation and
by the notion of the I/O environment. The latter describes the interaction within the group of
subplants and the interaction of the group with the remaining plant configuration. The presented

82 CHAPTER 6 — CONCLUSIONS

results show, that the resulting compound model readily serves as an I/O plant model for the next
layer of superposed control, and constraints on liveness ofthe individual plant components can be
passed on to be met by the superposed controller.
Next, a hierarchy of superposed controllers is developed, that is complemented by a hierarchy
of environment models. At each layer of controller design, the plant models can be replaced by
the specifications of the preceding design step due to the results on abstraction-based control.
By repeated alternation of abstraction, subsystem composition with an environment model and
superposed control, an overall control hierarchy is established that scales well in the number of
plant components.

In parallel to this thesis, the I/O based approach has been implemented as the plug-inHioSysof the
open-source C++ library libFAUDES (see [FAU, MSP08, MPS09]). The HioSys plug-in imple-
ments suitable data structures such as the class HioPlant, that extends the libFAUDESvGenerator
class (which implements an automaton) by state- and event-attributes according to the I/O-plant
form (Definition 3.5). Moreover, the plug-in offers a complete set of functions to step-by-step
support the I/O-based design method as well as comprehensive routines such asHioSynthHierar-
chical(), which computes an I/O controller for a composed system. Viathe libFAUDES interface
to the scripting language LUA, the I/O-based design can be conducted by writing scripts that run
without compiling. For a complete documentation, see [FAU].

The computational savings of the I/O based hierarchical approach compared to the monolithic ap-
proach to discrete event controller design are presented byapplication to the conceptional example
of a chain of transport units that accompanies the thesis. Evaluated on this example, our approach
features linear complexity in the number of plant components - having turned a complicated prob-
lem into a manageable one.

Appendix A

Proofs

This appendix provides some lemmas and proofs for statements made in the body of the thesis.

A.1 Languages and According Properties

Lemma A.1
LetLa, Lb andLc be languages. It holds that

(La ∪Lb) ∥ Lc = (La ∥ Lc) ∪ (Lb ∥ Lc)

◻

Proof
(a)(La∪Lb) ∥ Lc ⊆ (La ∥ Lc)∪(Lb ∥ Lc). Proof: Picks ∈ (La∪Lb) ∥ Lc. Hence,pab(s) ∈ La∪Lb

andpc(s) ∈ Lc. W.l.o.g. assumepab(s) ∈ La. Thus,pab(s) = pa(s). Since we havepa(s) ∈ La and
pc(s) ∈ Lc, it holds thats ∈ La ∥ Lc ⊆ (La ∥ Lc) ∪ (Lb ∥ Lc).
(b) (La ∪ Lb) ∥ Lc ⊇ (La ∥ Lc) ∪ (Lb ∥ Lc). Proof: Note that it obviously holds thatLa ∥ Lc ⊆

(La ∪Lb) ∥ Lc andLb ∥ Lc ⊆ (La ∪Lb) ∥ Lc. Thus,(La ∥ Lc) ∪ (Lb ∥ Lc) ⊆ (La ∪Lb) ∥ Lc. ◻

Lemma A.2
LetL1 ⊆ Σ∗1 , L2 ⊆ Σ∗2 be languages over the alphabetsΣ1, Σ2, and letpo ∶ (Σ1 ∪Σ2)∗ → Σ∗o be the
natural projection to the alphabetΣo ⊆ Σ1 ∩Σ2. Then,

po(L1) ∩ po(L2) ⊇ po(L1 ∩L2)

where equality does not hold, in general. ◻

84 APPENDIX A. PROOFS

Proof Pick an arbitrary stringso ∈ po(L1 ∩ L2). Hence,∃s ∈ L1 ∩ L2 such thatpo(s) = so.
Note thats ∈ L1 and s ∈ L2 and, consequently,po(s) ∈ po(L1) and po(s) ∈ po(L2). Hence,
po(s) = s ∈ po(L1) ∩ po(L2). Thus we havepo(L1 ∩L2) ⊆ po(L1) ∩ po(L2).
In general, equality does not hold - example: LetL1 = {ac} overΣ1 = a, c, L2 = {bc} overΣ1 = b, c

andΣo = c. Then
po(L1 ∩L2) = po(∅) = ∅ ⊂ po(L1) ∩ po(L2) = {c}.

◻

Lemma A.3
LetL1 andL2 be prefix-closed languages. Then,

(L1)
∞ ∥ (L2)

∞ ⊆ (L1 ∥ L2)
∞ (A.1)

◻

Proof Pick w ∈ (L1)∞ ∥ (L2)∞. Thus,p1(w) ∈ (L1)∞ andp2(w) ∈ (L2)∞. Consequently,
(p1(w))n ∈ L1 and(p2(w))n ∈ L2 for all n ∈ N0, asL1 andL2 are prefix-closed. Obviously, there
exists an infinite sequence(ki)i∈N0,ki+1>ki

such thatp1(wki) = (p1(w))n1 ∈ L1 for eachn1 ∈ N0.
For eachki, with the lengthn2 of p2(wki), we havep2(wki) = (p2(w))n2 ∈ L2. So, for allki, it
holds thatp1(wki) ∈ L1 andp2(wki) ∈ L2, i.e. wki ∈ L1 ∥ L2 for all ki of the infinite sequence(ki).
Hence,w ∈ (L1 ∥ L2)∞. As w was chosen arbitrarily,(L1)∞ ∥ (L2)∞ ⊆ (L1 ∥ L2)∞. ◻

Lemma A.4
For the subset relation A.1 (Lemma A.3), equality does not hold, in general. ◻

Proof Counterexample: Consider the prefix-closed languagesL1 = {ǫ, a} over the alphabet
Σ1 = {a} andL2 = b∗ over the alphabetΣ2 = {b}. With L1 ∥ L2 = b∗ab∗, we have(L1 ∥ L2)∞ =

bω + b∗abω. On the other hand, with(L1)∞ = ∅ and(L2)∞ = bω, we get(L1)∞ ∥ (L2)∞ = ∅ and
thus(L1)∞ ∥ (L2)∞ ⊂ (L1 ∥ L2)∞. ◻

Lemma A.5
LetL1 andL2 be regular languages over the alphabetsΣ1 andΣ2, respectively. Then,

∀w ∈ (L1 ∥ L2)
∞
∶ p1(w) ∈ (L1)

∞ or p2(w) ∈ (L2)
∞ (or both).

◻

Proof Pickw ∈ (L1 ∥ L2)∞ and observew = σ1σ2⋯ with σi ∈ Σ1 ∪Σ2 for all i ∈ N. Thus,

σi ∈ Σ1 for infinitely manyi ∈ N,or σi ∈ Σ2 for infinitely manyi ∈ N (or both). (*)

SECTION A.2 — INPUT/OUTPUT-BASED RESULTS 85

Observe also that∃(n)n∈N ∶ wn ∈ L1 ∥ L2, i.e. p1(wn) ∈ L1 andp2(wn) ∈ L2. Consequently,
because of (*),

∃(n1)n1∈N ∶ (p1(w))
n1 ∈ L1,or ∃(n2)n2∈N ∶ (p2(w))

n2 ∈ L2 (or both).

As a consequence,
p1(w) ∈ (L1)

∞ or p2(w) ∈ (L2)
∞ (or both).

◻

Lemma A.6
LetL1 andL2 be regular languages. It holds that

(L1 ∪L2)
∞ = (L1)

∞
∪ (L2)

∞

◻

Proof
(i) (L1∪L2)∞ ⊇ (L1)∞∪(L2)∞. Proof: Pickw ∈ (L1)∞∪(L2)∞ and w.l.o.g. assumew ∈ (L1)∞.

Hence, there exists an infinite sequence(ni)i∈N0,ni+1>ni
such thatw∣ni

∈ L1 for all ni, where
L1 ⊆ L1 ∪L2. Thus,w ∈ (L1 ∪L2)∞.

(ii) (L1 ∪ L2)∞ ⊆ (L1)∞ ∪ (L2)∞. Proof: Pickw ∈ (L1 ∪ L2)∞. Hence, there exists an infinite
sequence(ni)i∈N0,ni+1>ni

such thatw∣ni
∈ L1 ∪ L2 for all ni. Thus, for allni, w∣ni

∈ L1 or
w∣ni

∈ L2 (or both). As(ni) is infinite, there exists an infinite sequence(ni1)i1∈N0,ni1+1>ni1

such thatw∣ni1
∈ L1, or there exists an infinite sequence(ni2)i2∈N0,ni2+1>ni2

such thatw∣ni2
∈ L2

(or both). Thus,w ∈ (L1)∞ or w ∈ (L2)∞ (or both), i.e.w ∈ (L1)∞ ∪ (L2)∞.
◻

A.2 Input/Output-Based Results

Lemma A.7
Given two I/O plantsSPEi = (UPi, YPi,UEi, YEi,LPEi) and their I/O shuffleSPE = SPE1 ∥io SPE2, it
holds that

LPE1 ⊆ LPE andLPE2 ⊆ LPE

◻

Proof For symmetry reasons, it is obviously sufficient to show the following relationship only.

LPE1 ⊆ L∥ ⊆ LPE

Proof: Note thatL∥ ∶= (LPE1 ∥ LPE2)∩Lio. LPE1 andLPE2 do not share events. Thus, it holds that
LPE1 ⊆ LPE1 ∥ LPE2. Moreover,

LPE1 ⊆ [(YP1UP1)∗(YE1UE1)∗]∗ ⊆ Lio.

Hence,LPE1 ⊆ L∥ ⊆ L∥ ∪Lerr = LPE. ◻

86 APPENDIX A. PROOFS

Proof Proof of Lemma 3.2
Preliminary note: Note that property (viii) in Definition 3.7 impliesq0 ∈ Qm. Hence,Lm(G) ≠ ∅.
We now prove that(Σ,Lm(G)) provides all Constraint properties.

(i) (Σ,Lm(G)) is a system withΣ = U ∪̇Y : by definition,G recognizes the languageLm(G)

overΣ, and Property (i) requiresΣ = U ∪̇Y .

(ii) (U,Y) is a controller-I/O port of(Σ,Lm(G)). Proof: we show that(U,Y) provides all
controller-I/O port properties.

(ii.i) From property (i) in Definition 3.7 we directly concludeΣ = W ∪̇U ∪̇Y with W = ∅

andU ≠ ∅ ≠ Y .

(ii.ii) Lm(G) = (Y U)∗. Proof: IfLm(G) = {ǫ}, obviouslyLm(G) = (Y U)∗. ForLm(G) ⊃

{ǫ}, we continue with induction: Pick arbitraryσ ∈ Lm(G) ∩Σ. W.l.o.g. assume such
σ exists (completeness is shown in the next item). Hence,δ(q0, σ)!. As property (iii)
requiresq0 ∈ QY, property (iv) impliesσ ∈ Y . Hence,σ ∈ (Y U)∗.
Now consider a nonempty stringsσn+1 = σ1σ2 . . . σnσn+1, σi ∈ Σ, i = 1..n, n ∈ N with
sσn+1 ∈ Lm(G). Assumes ∈ (Y U)∗. We show that alsosσn+1 ∈ (Y U)∗. Note that
there exists someq ∈ Q such thatδ(q, σn)! andδ(q, σnσn+1)! and consider the following
cases:

(a) σn ∈ Y . In this case, property (v) rules outq ∈ QU. Because of property (ii), we can
concludeq ∈ QY and, with property (iv),δ(q, σn) ∈ QU. Consequently, property
(v) impliesσn+1 ∈ U . Hence,sσn+1 ∈ (Y U)∗.

(b) σn ∈ U . In this case, property (iv) rules outq ∈ QY. Because of property (ii),
we can concludeq ∈ QU and, with property (v),δ(q, σn) ∈ QY. Consequently,
property (iv) impliesσn+1 ∈ Y . Hence,sσn+1 ∈ (Y U)∗ whenevers ∈ (Y U)∗,
which proves the induction step.

(ii.iii) (∀s ∈ Σ∗U ∪ {ǫ}, ν ∈ Y)[s ∈ Lm(G)⇒ sν ∈ Lm(G)]. Proof:
First considers = ǫ ∈ Lm(G) and observeδ(q0, s) = q0 ∈ QY by property (iii). Conse-
quently, property (vi) implies that for allν ∈ Y it holds thatδ(q0, sν)!. Hence, ifs = ǫ,
sν ∈ Lm(G) for all ν ∈ Y .
Now pick arbitrarysµ ∈ Lm(G), µ ∈ U .1 Write q ∶= δ(q0, s) and observeδ(q,µ)!. As
µ ∉ Y , property (iv) rules outq ∈ QY. Because of property (ii),q ∈ QU. Thus, asµ ∈ U ,
property (v) implies thatq′ ∶= δ(q,µ) ∈ QY. Consequently, property (vi) implies that
for all ν ∈ Y it holds thatδ(q′, ν)!. Hence,sµν ∈ Lm(G) for all ν ∈ Y .

(iii) Lm(G) is complete. Proof: We have to show(∀s ∈ Lm(G) ∶ ∃ σ ∈ Σ) [sσ ∈ Lm(G)]. Note
that due to property (viii),Lm(G) = Lm(G). Now pick arbitrarys ∈ Lm(G). Hence there

1Note that due to the I/O structure proven in (ii.ii),s ≠ ǫ.

SECTION A.2 — INPUT/OUTPUT-BASED RESULTS 87

exists someq ∈ Q such thatδ(q0, s) = q. Because of property (vii) there existsσ ∈ Σ, q′ ∈ Q

such thatq′ = δ(q, σ) = δ(q0, sσ). Property (viii) impliesq′ ∈ Qm. Thus,sσ ∈ Lm(G).

Consequently,(Σ,Lm(G)) is an I/O constraint. ◻

Proof Proof of Lemma 3.4
Preliminary note: Note that property (x) in Definition 3.13 impliesq0 ∈ Qm. Hence,Lm(G) ≠ ∅.
We now prove that(Σ,Lm(G)) provides all I/O-controller properties.

(i) (Σ,Lm(G)) is a system: by definition,G recognizes the languageLm(G) overΣ. Property
(i) requiresΣ = UC∪̇YC∪̇UP∪̇YP, and we identifyΣCP = ΣC∪̇ΣP ∶= Σ with ΣC ∶= UC∪̇YC and
ΣP ∶= UP∪̇YP.

(ii) (UC, YC) and(UP, YP) are a plant-I/O and a controller-I/O port of(Σ,Lm(G)). Proof: we
first show that(UC, YC) provides all plant-I/O port properties.

(ii.i) From property (i) in Definition 3.13 we directly concludeΣ = W ∪̇UC∪̇YC (with W =

Σ −UC − YC = UP∪̇YP) andUC ≠ ∅ ≠ YC.

(ii.ii) Lm(G) = (W ∗(YCUC)∗)∗ with W ∗ = (Y ∗
P
U∗

P
)∗. Proof: We showLm(G) ⊆

((YPUP)∗(YPYCUCUP)∗)∗, which is a subset of(W ∗(YCUC)∗)∗. If Lm(G) = {ǫ},
obviouslyLm(G) = ((YPUP)∗(YPYCUCUP)∗)∗. ForLm(G) ⊃ {ǫ}, we continue with
induction: Pick arbitraryσ ∈ Lm(G) ∩ Σ. Hence,δ(q0, σ)!. As property (iii) requires
q0 ∈ QYP, property (iv) impliesσ ∈ YP. Hence,σ ∈ ((YPUP)∗(YPYCUCUP)∗)∗.
Now consider a nonempty stringsσn+1 = σ1σ2 . . . σnσn+1, σi ∈ Σ, i = 1..n, n ∈ N

with sσn+1 ∈ Lm(G). Assumes ∈ ((YPUP)∗(YPYCUCUP)∗)∗. We show thatsσn+1 ∈

((YPUP)∗(YPYCUCUP)∗)∗. Note that there exists someq ∈ Q such thatδ(q, σn)! and
δ(q, σnσn+1)! and consider the following cases:

(a) σn ∈ YP. In this case, properties (v), (vi) and (vii) rule outq ∈ QUC ∪ QYC,UP ∪

QUP. Because of property (ii), we can concludeq ∈ QYP and, with property (vi),
δ(q, σn) ∈ QYC,UP. Consequently, property (vii) impliesσn+1 ∈ YC ∪ UP. Hence,
sσn+1 ∈ ((YPUP)∗(YPYCUCUP)∗)∗.

(b) σn ∈ UP. In this case, properties (iv) and (vii) rule outq ∈ QUC ∪QYP. Because
of property (ii), we can concludeq ∈ QYC,UP ∪QUP and, with properties (v) and
(vi), δ(q, σn) ∈ QYP. Consequently, property (iv) impliesσn+1 ∈ YP. Hence,
sσn+1 ∈ ((YPUP)∗(YPYCUCUP)∗)∗.

(c) σn ∈ YC. In this case, properties (iv), (v) and (vii) rule outq ∈ QUC ∪QUP ∪QYP.
Because of property (ii), we can concludeq ∈ QYC,UP and, with property (vi),
δ(q, σn) ∈ QUC. Consequently, property (vii) impliesσn+1 ∈ UC. Hence,sσn+1 ∈

((YPUP)∗(YPYCUCUP)∗)∗.

88 APPENDIX A. PROOFS

(d) σn ∈ UC. In this case, properties (iv), (v) and (vi) rule outq ∈ ∪QYC,UP ∪QUP ∪

QYP. Because of property (ii), we can concludeq ∈ QUC and, with property
(vii), δ(q, σn) ∈ QUP. Consequently, property (v) impliesσn+1 ∈ UP. Hence,
sσn+1 ∈ ((YPUP)∗(YPYCUCUP)∗)∗.

Hence,sσn+1 ∈ (W ∗(YCUC)∗)∗ whenevers ∈ (W ∗(YCUC)∗)∗, which proves the in-
duction step.

(ii.iii) (∀s ∈ Σ∗YC, µ ∈ UC)[s ∈ Lm(G)⇒ sµ ∈ Lm(G)]. Proof:
Pick arbitrarysν ∈ Lm(G), ν ∈ YC. Write q ∶= δ(q0, s) and observeδ(q, ν)!. As
ν ∉ UC ∪UP ∪ YP, properties (iv), (v) and (vii) rule outq ∈ QUC ∪QUP ∪QYP. Because
of property (ii),q ∈ QYC,UP. Thus, asν ∈ YC, property (vi) implies thatq′ ∶= δ(q, ν) ∈

QUC. Consequently, property (viii) implies that for allµ ∈ UC it holds thatδ(q′, µ)!.
Hence,sνµ ∈ Lm(G) for all µ ∈ UC.

Thus,(UC, YC) is a plant-I/O port of(Σ,Lm(G)). We now show that(UP, YP) provides all
controller-I/O port properties.

(ii.iv) From property (i) in Definition 3.13 we directly concludeΣ =W ′∪̇UP∪̇YP (with W ′ =

Σ −UP − YP = UC∪̇YC) andUP ≠ ∅ ≠ YP.

(ii.v) Lm(G) = (YPW ′∗UP)∗ with W ′∗ = (Y ∗
C
U∗

C
)∗. Proof: with item (ii.ii), we have shown

Lm(G) ⊆ ((YPUP)∗(YPYCUCUP)∗)∗, which is a subset of(YPW ′∗UP)∗.

(ii.vi) (∀s ∈ Σ∗UP ∪ {ǫ}, ν ∈ YP)[s ∈ Lm(G)⇒ sν ∈ Lm(G)]. Proof:
First considers = ǫ ∈ Lm(G) and observeδ(q0, s) = q0 ∈ QYP by property (iii). Conse-
quently, property (ix) implies that for allν ∈ YP it holds thatδ(q0, sµ)!. Hence, ifs = ǫ,
sµ ∈ Lm(G) for all µ ∈ UC.
Now pick arbitrarysµ ∈ Lm(G), µ ∈ UP.2 Write q ∶= δ(q0, s) and observeδ(q,µ)!. As
µ ∉ UC ∪ YP, properties (iv) and (vii) rule outq ∈ QUC ∪ QYP. Because of prop-
erty (ii), q ∈ QYC,UP ∪ QUP. Thus, asν ∈ UP, properties (v) and (vi) imply that
q′ ∶= δ(q, ν) ∈ QYP. Consequently, property (ix) implies that for allµ ∈ UC it holds
thatδ(q′, µ)!. Hence,sνµ ∈ Lm(G) for all µ ∈ UC.

(iii) As shown in item (ii.ii),Lm(G) ⊆ ((YPUP)∗(YPYCUCUP)∗)∗.

(iv) Lm(G) is complete. Proof: We have to show(∀s ∈ Lm(G) ∶ ∃ σ ∈ Σ) [sσ ∈ Lm(G)]. Note
that due to property (x),Lm(G) = Lm(G). Now pick arbitrarys ∈ Lm(G). Hence there
exists someq ∈ Q such thatδ(q0, s) = q. Because of property (xi) there existσ ∈ Σ, q′ ∈ Q

such thatq′ = δ(q, σ) = δ(q0, sσ). Property (x) impliesq′ ∈ Qm. Thus,sσ ∈ Lm(G).

Consequently,(Σ,Lm(G)) is an I/O controller. ◻

2Note that due to the I/O structure proven in (ii.ii),s ≠ ǫ.

SECTION A.2 — INPUT/OUTPUT-BASED RESULTS 89

Proof Proof of Proposition 3.4

(i) If SPE is complete w.r.t.SP andSE, thenLC ∥ LCP ∥ LPE ∥ LE is complete. Proof:
Pick an arbitrarys ∈ LC ∥ LCP ∥ LPE ∥ LE. We will show that there always existsσ such
thatpPE(sσ) ∈ LPE ∥ LE andpCP(sσ) ∈ LC ∥ LCP (or pC(sσ) ∈ LC andpCP(sσ) ∈ LCP), i.e.
sσ ∈ LC ∥ LCP ∥ LPE ∥ LE. Observe that, sinceSCP fulfills condition (i) of Definition 3.11,
pPE(s) ∈ LP ∥ LPE ∥ LE.

First considers = ǫ. SinceLP ∥ LPE ∥ LE ⊆ ((YPUP)∗(YEUE)∗)∗ andLP ∥ LPE ∥ LE

is complete, we can pickσ ∈ YP ∪ YE with pPE(sσ) = σ ∈ LP ∥ LPE ∥ LE. In partic-
ular, pPE(sσ) ∈ LPE ∥ LE. Consider the following two cases: (a) Ifσ ∈ YP, we have
pCP(sσ) = σ ∈ LCP, asLCP ⊆ ((YPUP)∗(YPYCUCUP)∗)∗ andYP is free inSCP. Furthermore,
pC(sσ) = ǫ ∈ LC. (b) If σ ∈ YE, we havepCP(sσ) = ǫ ∈ LCP ∥ LC.

For the cases ≠ ǫ, write s = rσ for some (r ∈ Σ∗
CPE

, σ ∈ ΣCPE). Thus, we have
pC(rσ) ∈ LC, pCP(rσ) ∈ LCP, pPE(rσ) ∈ LPE and pE(rσ) ∈ LE. Now, we need to
establish the existence ofσ̂ ∈ ΣCPE such thatpPE(rσσ̂) ∈ LPE ∥ LE, pCP(rσσ̂) ∈ LCP and
pC(rσσ̂) ∈ LC. We distinguish the following cases.
(a) σ ∈ YC: sinceSC is complete and sinceLC ⊆ (YCUC)∗, we can pickµC ∈ UC with

pC(rσµC) ∈ LC. As UC is free inSCP, pCP(rσµC) ∈ LCP. Obviously,pPE(rσµC) =

pPE(rσ) ∈ LPE ∥ LE.

(b) σ ∈ YE: sinceLP ∥ LPE ∥ LE ⊆ ((YPUP)∗(YEUE)∗)∗ is complete, we can pickµE ∈ UE

with pPE(rσµE) ∈ LP ∥ LPE ∥ LE ⊆ LPE ∥ LE. Obviously,pCP(rσµE) = pCP(rσ) ∈

LC ∥ LCP.

(c) σ ∈ UC: sinceSCP is complete and sinceLCP ⊆ ((YPUP)∗(YPYCUCUP)∗)∗, we can pick
µP ∈ UP with pCP(rσµP) ∈ LCP. Observerσ = tνPv with t ∈ Σ∗CPE, νP ∈ YP andv ∈ Σ∗C.
In particular,pPE(rσ) = pPE(t)νP ∈ LPE. AsLPE ⊆ ((YPUP)∗(YEUE)∗)∗ andUP is free
in SPE, we havepPE(rσ)µP = pPE(t)νPµP ∈ LPE. Furthermore,pC(rσµP) = pC(rσ) ∈

LC andpE(rσµP) = pE(rσ) ∈ LE.

(d) σ ∈ UE ∪ UP: asLPE ⊆ ((YPUP)∗(YEUE)∗)∗ and asSPE is complete w.r.t.SP and
SE, there exists somêσ ∈ YP ∪ YE with pPE(rσσ̂) ∈ LP ∥ LPE ∥ LE. In partic-
ular, pPE(rσσ̂) ∈ LPE ∥ LE. If σ̂ ∈ YE, we havepCP(rσσ̂) = pCP(rσ) ∈ LCP and
pC(rσσ̂) = pC(rσ) ∈ LC.
Else σ̂ ∈ YP. Observe that either (a)rσ ∈ Σ∗E or b) rσ = tµPv with t ∈ ΣCPE,
µP ∈ UP andv ∈ Σ∗

E
. In particular, (a)pCP(rσ) = ǫ or (b) pCP(rσ) = pCP(t)µP. As

LCP ⊆ ((YPUP)∗(YPYCUCUP)∗)∗ andYP free inSCP, both cases implypCP(rσ)σ̂ ∈ LCP.
Moreover,pC(rσσ̂) = pC(rσ) ∈ LC.

90 APPENDIX A. PROOFS

e) σ ∈ YP: sinceSCP is complete, we can pick̂σ ∈ YC ∪ UP with pCP(rσσ̂) ∈ LCP;
if σ̂ ∈ YC we havepC(rσσ̂) = pC(rσ)σ̂ ∈ LC as YC is free in SC. Furthermore,
pPE(rσσ̂) = pPE(rσ) ∈ LPE ∥ LE;
elseσ̂ ∈ UP. Then,pPE(rσσ̂) = pPE(rσ)σ̂ ∈ LPE, asUP is a free input ofSPE. Further-
more,pE(rσσ̂) = pE(rσ) ∈ LE andpC(rσσ̂) = pC(rσ) ∈ LC;

(ii) If in addition SCP is admissible w.r.t.SC, SP andSE thenLC ∥ pCE(LCP ∥ LPE) ∥ LE is
complete. Proof: Picks ∈ pCE(LCP ∥ LPE); hence there existsr ∈ LCP ∥ LPE such that
pCE(r) = s. AsLCP ∥ LPE is complete andYC-live w.r.t.LC andLE, there existsr′ν, ν ∈ YC

such thatrr′ν ∈ LCP ∥ LPE. As pCE(r′ν) = pCE(r′)ν ≠ ǫ, it holds thatpCE(r′)ν = σr′′ with
someσ ∈ ΣCE andr ∈ Σ∗CE.3 ObservingpCE(rr′ν) = pCE(r)pCE(r′)ν = sσr′′, it holds that
there existsσ ∈ ΣCE such thatsσ ∈ LCE.

◻

Proof Proof of Theorem 4.1
IF. To show: G is free ofYC-less SCC’s⇒ L(G) is YC-live. Proof by contradiction: Assume
G is free ofYC-less SCC’s, butL(G) is notYC-live. Hence, according to Proposition 4.1, there
exists a stringst ∈ L(G), t ≠ ǫ, with st ≡L(G) s andpYC(t) = ǫ. Note that ass can be extended
by t to the equivalent stringst, alsost can be extended to the equivalent stringstt ∈ L(G), and
so on, i.e.s can be extended by an arbitrary repetition oft. Hence,st∗ ⊆ L(G). Let n denote
the finite number of states ofG. Thus, only a maximum number ofm ≤ n elements ofst∗ can be
represented by different states. All remaining elements ofst∗ are represented by some of the same
m states. Accordingly, we can find two stringsstn1 andstn1tn2, n2 ≠ 0, that are represented by the
same state:δ(q0, stn1) = δ(q0, stn1tn2) ∶= q1. Note that each stateq2 on the pathtn2 from q1 to q1

belongs to the same equivalence classQi ⊆ Q according to Definition 4.2, asq2 is equivalent toq1

(acc. to the equivalence defined in Def. 4.2): from each stateq2 on this path, there exists a pathτb

to stateq1 as well as there exists a pathτa from q1 to q2, with pYC(τa) = pYC(τb) = ǫ, asτaτb = tn2

andpYC(tn2) = ǫ. Consider two possible cases:
a) ∣Qi∣ > 1, thenQi is aYC-less SCC.
b) ∣Qi∣ = 1. Consequently,tn2 = t = σ for someσ ∈ Σ − YC, ast ≠ ǫ andpYC(t) = ǫ. Thus,Qi is a
YC-less SCC.
Hence,Qi is aYC-less SCC, and we have the contradiction.
ONLY IF. To show: L(G) is YC-live ⇒ G is free of YC-less SCC’s. Proof by contradiction:
AssumeL(G) is YC-live but G is not free ofYC-less SCC’s, i.e. there exists at least oneYC-less
SCC that shall be denotedQi. Consider two possible cases:
a) ∣Qi∣ = 1. Then,Qi consists of one elementqi. Denotes the path from the initial state toqi,
i.e. s ∈ L(G) andδ(q0, s) = qi. According to Definition 4.2,δ(qj , σ) = qj for someσ ∈ Σ − YC.
Hence,sσ ≡L(G) s, and alsosσ can be extended byσ, i.e. sσσ ∈ L(G), and so on. We get
sσ∗ ⊆ L(G). For the limit ofL(G), we can concludew ∶= sσω ∈ L(G)∞. As σ ∈ Σ − YC, it holds

3Note that not necessarilyσ = ν.

SECTION A.2 — INPUT/OUTPUT-BASED RESULTS 91

thatpYC(w) = ǫ /∈ Y ω
C . Thus, in this case,L(G) is notYC-live.

b) ∣Qi∣ > 1. We choose two statesq1 ≠ q2 that are element ofQi. Denotes the path from the initial
state toq1, i.e.s ∈ L(G) andδ(q0, s) = q1. As Qi is aYC-less SCC, there exists a patht1 from q1

to q2, i.e. δ(q1, t1) = δ(q0, st1) = q2 andst1 ∈ L(G). Likewise, there exists a patht2 from q2 to
q1, i.e. δ(q2, t2) = δ(q0, st1t2) = q1 andst1t2 ∈ L(G). Note that, asδ(q0, s) = δ(q0, st1t2), it holds
that s ≡L(G) st1t2. As s can be extended byt1t2, also the nerode-equivalent stringst1t2 can be
extended byt1t2, i.e. st1t2t1t2 ∈ L(G), and so on. We gets(t1t2)∗ ⊆ L(G). For the limit ofL(G),
we can concludew ∶= s(t1t2)ω ∈ L(G)

∞. As, according to Definition 4.2,pYC(t1) = pYC(t2) = ǫ,
it holds thatpYC(w) = ǫ /∈ Y ω

C
. Thus, also in this case,L(G) is notYC-live.

Hence,L(G) is notYC-live, and we have the contradiction. ◻

Proof Proof of Lemma 4.1
Observe

LCP ∥ LPEc = (KCP ∪K
YP

CP
(UPYP)

∗
∪KUC

CP
(UPYP)

∗) ∥ LPEc =Lemma A.1

= (KCP ∥ LPEc) ∪ (K
YP

CP
(UPYP)

∗ ∥ LPEc) ∪ (K
UC

CP
(UPYP)

∗ ∥ LPEc).

We showKYP

CP(UPYP)
∗ ∥ LPEc = ∅ = K

UC

CP(UPYP)
∗ ∥ LPEc. As LPEc is prefix-closed, for any

strings ∈ Σ∗
CPE

it holds thats /∈ LPEc ⇒ st /∈ LPEc ∀t ∈ Σ∗
CPE

. This means that it is sufficient to
showKYP

CP ∥ LPEc = ∅ = K
UC

CP ∥ LPEc, which can be done by showing:

∀s ∈ Σ∗CPE ∶ pCP(s) ∈ K
YP

CP
∪KUC

CP
⇒ s /∈ LPEc

Pick arbitrarys ∈ LPEc.
First, considerpCP(s) ∈ K

YP

CP
and observe from Definition 4.5 ofKYP

CP
:

(1) pCP(s) ∈ Σ∗CPYP. Hence,s = rCPEνPtE with rCPE ∈ Σ∗CPE, νP ∈ YP, tE ∈ Σ∗E,
(2) pCP(s) = rCPνP /∈ KCP (with rCP = pCP(rCPE)),
(3) rCPν′P ∈ KCP for someν′P ∈ YP.

Proof by contradiction:we show thats ∈ LPEc is a contradiction to item (2) above.
So, assumes ∈ LPEc. AsLPEc = LC ∥ LPE ∥ LE ⊆ [(YP(YCUC)∗UP)∗Σ∗E]

∗ 4, it holds that every
YP-event is followed by aUP- or YC- event. Comparing this tos = rCPEνPtE, this meanstE = ǫ

ands = rCPEνP.
From item (3), we knowpCP(rCPEν′

P
) = rCPν′

P
∈ KCP. As KCP = pCP(K2), there exists

r′CPE ∈ ΣCPE such thatr′CPEν′P ∈ K2.
Note thatK2 ⊆ LPEc, i.e. r′

CPE
ν′

P
∈ LPEc. In particular, as both,K2 andLPEc are prefix-closed,

r′CPE ∈ K2 andr′CPE ∈ LPEc.

4This language structure results from the I/O plant languageformat ofLPE synchronized with the language format
of LC induced by the controller-I/O port(UP, YP) of SC.

92 APPENDIX A. PROOFS

Now, we use the normality property ofK2: ComputepCP(r′CPE) = rCP. As alsopCP(rCPE) = rCP,
we have

rCPE ∈ p−1CP(pCP(r
′
CPE)) ⊆ p−1CP(pCP(K2)).

As rCPE ∈ LPEc, we haverCPE ∈ p−1CP(pCP(K2)) ∩ LPEc. As K2 is normal w.r.t.LPEc andΣCP,
we receiverCPE ∈ K2. Hence, as according to the assumptionrCPEνP ∈ LPEc, and asK2 is
controllable w.r.t.LPEc andYP, it holds thatrCPEνP ∈ K2.
Thus,pCP(rCPEνP) = rCPνP ∈ KCP, which contradicts the above item (2)!

Second, considerpCP(s) ∈ K
UC

CP and observe from Definition 4.5 ofKUC

CP:

(1) pCP(s) ∈ Σ∗CPUC. Hence,s = rCPEµCtE with rCPE ∈ Σ∗CPE, µC ∈ UC, tE ∈ Σ∗E,
(2) pCP(s) = rCPµC /∈ KCP (with rCP = pCP(rCPE)),
(3) rCPµ′C ∈ KCP for someµ′C ∈ UC.

Proof by contradiction:we show thats ∈ LPEc is a contradiction to item (2) above.
So, assumes ∈ LPEc. As LPEc = LC ∥ LPE ∥ LE ⊆ [(YP(YCUC)∗UP)∗Σ∗E]

∗, it holds that every
UC-event is followed by aUP- or YC- event. Comparing this tos = rCPEµCtE, this meanstE = ǫ

ands = rCPEµC.
From item (3), we knowpCP(rCPEµ′C) = rCPµ′C ∈ KCP. As KCP = pCP(K2), there exists
r′
CPE
∈ ΣCPE such thatr′

CPE
µ′

C
∈ K2.

Note thatK2 ⊆ LPEc, i.e. r′CPEµ′C ∈ LPEc. In particular, as both,K2 andLPEc are prefix-closed,
r′
CPE
∈ K2 andr′

CPE
∈ LPEc.

Now, we use the normality property ofK2: ComputepCP(r′CPE) = rCP. As alsopCP(rCPE) = rCP,
we have

rCPE ∈ p−1CP(pCP(r
′
CPE)) ⊆ p−1CP(pCP(K2)).

As rCPE ∈ LPEc, we haverCPE ∈ p−1
CP
(pCP(K2)) ∩ LPEc. As K2 is normal w.r.t.LPEc andΣCP,

we receiverCPE ∈ K2. Hence, as according to the assumptionrCPEµC ∈ LPEc, and asK2 is
controllable w.r.t.LPEc andUC, it holds thatrCPEµC ∈ K2.
Thus,pCP(rCPEµC) = rCPµC ∈ KCP, which contradicts the above item (2)!

Consequently, the assumptions ∈ LPEc is wrong in both cases. I.e. for arbitrarys ∈ Σ∗CPE

with pCP(s) ∈ K
YP

CP ∪K
UC

CP we gets /∈ LPEc. I.e. KYP

CP ∥ LPEc = ∅ = K
UC

CP ∥ LPEc and thus, asLPEc

is prefix-closed,KYP

CP
(UPYP)

∗ ∥ LPEc = ∅ = K
UC

CP
(UPYP)

∗ ∥ LPEc. ◻

Proof (Theorem 4.2)
Observe that for the languages constructed in the I/O Controller Synthesis Algorithm it holds that
K2 ⊆ K1 ⊆ K0.
Note that, technically,(ΣCP,∅) is a solution. Now, considerLCP ⊃ ∅. We have to show the
following items:

SECTION A.2 — INPUT/OUTPUT-BASED RESULTS 93

1) SCP is an I/O controller:
(i) SCP is a system withΣCP = ΣC∪̇ΣP, ΣC ∶= UC∪̇YC, ΣP ∶= UP∪̇YP ;

(ii) (UC, YC) and(UP, YP) are a plant- and a controller-I/O port forSCP, respectively;

(iii) LCP ⊆ ((YPUP)∗(YPYCUCUP)∗)∗ ;

(iv) LCP is complete.
2) SCP is admissible toSPE w.r.t.SC, SP andSE:

(i) pP(LC ∥ LCP ∥ LPE ∥ LE) ⊆ LP

(ii) LCP ∥ LPE is YC-live w.r.t.SC andSE

3) SCP enforcesSspecCE onSPEc.

Proof:
1)
i) SCP is a system, asΣCP is provided byΠ andLCP is a regular language overΣCP.
ii) a) (UC, YC) is a plant-I/O port forSCP and b)(UP, YP) is a controller-I/O port forSCP.
a) We prove all plant-I/O port properties for(UC, YC) given in Definition 3.2:

I) ΣCP =W ∪̇UC∪̇YC with W = ΣP, UC ≠ ∅ ≠ YC given byΠ.

II) Note thatLCP = KCP ∪K
YP

CP(UPYP)
∗
∪KUC

CP(UPYP)
∗.

First, considerKCP and observe
KCP = pCP(K2) ⊆ pCP(K0) ⊆ (YP(ǫ + YCUC)UP)∗ ⊆ (Σ∗P(YCUC)∗)∗.

Second, considerKYP

CP(UPYP)
∗ and pick arbitrarys ∈ KYP

CP. Then, according to Defini-
tion (4.5), s = s′νP for someνP ∈ YP and ∃ν′P ∈ YP such thats′ν′P ∈ KCP, where
KCP ⊆ (Σ∗P(YCUC)∗)∗. Consequently, asνP and ν′P are from the same alphabetYP, also
s = s′νP ∈ (Σ∗P(YCUC)∗)∗. As s was chosen arbitrarily, it holds thatKYP

CP
⊆ (Σ∗

P
(YCUC)∗)∗.

Moreover, ass = s′νP, it holds that also the extension toKYP

CP(UPYP)
∗ meets the language

format(Σ∗P(YCUC)∗)∗.

Third (analogous toKYP

CP
), considerKUC

CP
(UPYP)

∗ and pick arbitrarys ∈ KUC

CP
. Then, according

to Definition (4.5),s = s′µC for someµC ∈ UC and∃µ′C ∈ UC such thats′µ′C ∈ KCP, where
KCP ⊆ (Σ∗P(YCUC)∗)∗. Consequently, asµC andµ′

C
are from the same alphabetUC, also

s = s′µC ∈ (Σ∗P(YCUC)∗)∗. As s was chosen arbitrarily, it holds thatKUC

CP ⊆ (Σ
∗
P(YCUC)∗)∗.

Moreover, ass = s′µC, it holds that also the extension toKUC

CP(UPYP)
∗ meets the language

format(Σ∗
P
(YCUC)∗)∗.

Summing up, we getLCP ⊆ (Σ∗P(YCUC)∗)∗.

III) To show: UC is free inSCP, i.e.:∀s ∈ Σ∗
CP

YC, µ ∈ UC ∶ s ∈ LCP⇒ sµ ∈ LCP.

94 APPENDIX A. PROOFS

Proof: pick an arbitrarys ∈ LCP ∩ Σ∗CPYC and arbitraryµ ∈ UC. ObserveLCP = KCP ∪

KYP

CP
(UPYP)

∗
∪KUC

CP
(UPYP)

∗.

First, considers ∈ KYP

CP(UPYP)
∗. As s ∈ Σ∗CPYC, butKYP

CP ∈ Σ∗CPYP, s /∈ KYP

CP. This means,s

is element of the extension ofKYP

CP toKYP

CP(UPYP)
∗. Hence, ass ∈ Σ∗CPYC, and as in(UPYP)

∗

all UC-events are enabled after aYC-event, it holds thatsµ ∈ KYP

CP
(UPYP)

∗
⊆ LCP.

Second, considers ∈ KUC

CP
(UPYP)

∗. As s ∈ Σ∗
CP

YC, butKUC

CP
∈ Σ∗

CP
UC, s /∈ KUC

CP
. This means,s

is element of the extension ofKUC

CP toKUC

CP(UPYP)
∗. Hence, ass ∈ Σ∗CPYC, and as in(UPYP)

∗

all UC-events are enabled after aYC-event, it holds thatsµ ∈ KUC

CP(UPYP)
∗
⊆ LCP.

Third, considers ∈ KCP. AsKCP = pCP(K2) and ass ∈ Σ∗
CP

YC, ∃s′ ∈ K2 such thatpCP(s′) = s

ands′ = s′′νC with s′′ ∈ Σ∗CPE, νC ∈ YC. AsK2 is complete,∃σ ∈ ΣCPE such thats′σ ∈ K2.
Considering the language format ofK2, it holds that

K2 ⊆ K0 ⊆ (YP(ǫ ∨ YCUC)UP)∗ ∥ LspecCE ⊆ (Σ∗P(YCUC)∗)∗ ∥ ((YCUC)∗(YEUE)∗)∗ ⊂ (Σ∗PE(YCUC)∗)∗

This means thatYC- andUC-events strictly alternate inK2. Hence, ass′ = s′′νC we conclude
σ = µC ∈ UC. I.e. sµC ∈ KCP ⊆ LCP for someµC ∈ UC. Now, pick arbitraryµ′

C
∈ UC − µC.

Then, eithersµ′C ∈ KCP or, if sµ′C /∈ KCP, thensµ′C ∈ K
UC

CP ⊆ LCP (see Definition 4.5 ofKUC

CP).
Summing up, we have:s ∈ LCP ∩Σ∗

CP
YC⇒ sµ ∈ LCP for arbitraryµ ∈ UC.

Hence,(UC, YC) is plant-I/O port ofSCP.
b) (UP, YP) is a controller-I/O port forSCP. Proof: we prove all controller-I/O port properties for
SCP given in Definition 3.3:

I) ΣCP =W ∪̇UP∪̇YP with W = ΣC, UP ≠ ∅ ≠ YP given byΠ.

II) LCP ⊆ (YPΣ∗
C
UP)∗. Proof:

First, considerKCP and observeKCP = pCP(K2) ⊆ pCP(K0) ⊆ pCP((YP(ǫ ∨ YCUC)UP)∗) ⊆

(YPΣ∗CUP)∗.

Second, considerKYP

CP
(UPYP)

∗ and pick arbitrarys ∈ KYP

CP
. Then, according to Definition

(4.5),s = s′νP for someνP ∈ YP and∃ν′P ∈ YP such thats′ν′P ∈ KCP, whereKCP ⊆ (YPΣ∗CUP)∗.
Consequently, asνP andν′P are from the same alphabetYP, alsos = s′νP ∈ (YPΣ∗CUP)∗. As
s was chosen arbitrarily, it holds thatKYP

CP ⊆ (YPΣ∗CUP)∗. Moreover, ass = s′νP, it holds that

also the extension toKYP

CP(UPYP)
∗ meets the language format(YPΣ∗CUP)∗.

Third (analogous toKYP

CP), considerKUC

CP(UPYP)
∗ and pick arbitrarys ∈ KUC

CP. Then, accord-
ing to Definition (4.5),s = s′µC for someµC ∈ UC and∃µ′

C
∈ UC such thats′µ′

C
∈ KCP,

whereKCP ⊆ (YPΣ∗CUP)∗. Consequently, asµC andµ′C are from the same alphabetUC, also
s = s′µC ∈ (YPΣ∗

C
UP)∗. As s was chosen arbitrarily, it holds thatKUC

CP
⊆ (YPΣ∗

C
UP)∗. More-

over, ass = s′µC, it holds that also the extension toKYP

CP(UPYP)
∗ meets the language format

(YPΣ∗CUP)∗.

Hence,LCP = KCP ∪K
YP

CP
(UPYP)

∗
∪KUC

CP
(UPYP)

∗
⊆ (YPΣ∗

C
UP)∗.

III) (∀s ∈ Σ∗CPUP ∪ {ǫ}, ν ∈ YP)[s ∈ LCP⇒ sν ∈ LCP]. Proof:
Pick arbitrarys ∈ (Σ∗

CP
UP ∪ {ǫ}) ∩LCP. We showsν ∈ LCP for arbitraryν ∈ YP. As s ∈ LCP,

SECTION A.2 — INPUT/OUTPUT-BASED RESULTS 95

eithers ∈ KCP or s ∈ KYP

CP(UPYP)
∗ or s ∈ KUC

CP(UPYP)
∗.

First, considers ∈ KCP. Note that (only) this case includess = ǫ, asKCP is prefix-
closed and asǫ /∈ KYP

CP
∪ KUC

CP
. As KCP = pCP(K2), ∃s′ ∈ K2 ⊆ K1 ⊆ K0 with pCP(s′) = s.

Note that, asK2 is complete,∃σ1 ∈ ΣCPE such thats′σ1 ∈ K2, and∃σ2 ∈ ΣCPE such that
s′σ1σ2 ∈ K2 and so on. Repeating this procedure infinitely often, we receive: ∃w ∈ Σω

CPE
with

w = σ1σ2 . . . andsw ∈ K∞2 .
As K2 ⊆ K1, it holds thatK2 is YC-live (see Proposition 4.2). Thus,pYC(s′w) ∈ Y ω

C , and
∃n ∈ N such thats′wn = s′tνC, t ∈ Σ∗

CPE
, νC ∈ YC ands′tνC ∈ K2 ⊆ K0.

As pCP(K0) ⊆ (YP(ǫ ∨ YCUC)UP)∗, and as eithers = ǫ or s = s′′µ, µ ∈ UP, it holds that
pCP(t) = νPt′, t′ ∈ Σ∗

CP
, νP ∈ YP. Hence,pCP(s′t) = sνPt′ ∈ KCP, i.e. sνP ∈ KCP ⊆ LCP.

Now, pick arbitraryν′P ∈ YP − νP. Then, eithersν′P ∈ KCP or, if sν′P /∈ KCP, then
sν′

P
∈ KYP

CP
⊆ LCP (see Definition 4.5 ofKYP

CP
).

Second, considers ∈ KYP

CP(UPYP)
∗. Note that, ass ∈ Σ∗CPUP ∪ {ǫ} but KYP

CP ∈ Σ∗CPYP,
it holds thatǫ < s /∈ KYP

CP
. I.e. s = tµP, t ∈ Σ∗

CP
, µP ∈ UP, ands is element of the extension

of KYP

CP to KYP

CP(UPYP)
∗. As in the extension(UPYP)

∗ all YP-events are possible after some

UP-event, it holds thatsνP ∈ K
YP

CP(UPYP)
∗
⊆ LCP for arbitraryνP ∈ YP.

Third, considers ∈ KUC

CP(UPYP)
∗. Note that, ass ∈ Σ∗CPUP ∪ {ǫ} but KUC

CP ∈ Σ∗CPUC,
it holds thatǫ < s /∈ KUC

CP
. I.e. s = tµP, t ∈ Σ∗

CP
, µP ∈ UP, ands is element of the extension

of KUC

CP
to KUC

CP
(UPYP)

∗. As in the extension(UPYP)
∗ all YP-events are possible after some

UP-event, it holds thatsνP ∈ K
UC

CP(UPYP)
∗
⊆ LCP for arbitraryνP ∈ YP.

Summing up, we receivesν ∈ LCP for arbitraryν ∈ YP.

Hence,(UP, YP) is controller-I/O port ofSCP.
iii) LCP ⊆ ((YPUP)∗(YPYCUCUP)∗)∗ = (YP(ǫ ∨ YCUC)UP)∗. Proof:
First, observeKCP = pCP(K2) ⊆ pCP(K0) ⊆ (YP(ǫ ∨ YCUC)UP)∗.
Second, considerKYP

CP(UPYP)
∗ and pick arbitrarys ∈ KYP

CP. Then, according to Definition (4.5),
s = s′νP for someνP ∈ YP and∃ν′

P
∈ YP such thats′ν′

P
∈ KCP, whereKCP ⊆ (YP(ǫ ∨ YCUC)UP)∗.

Consequently, asνP andν′P are from the same alphabetYP, alsos = s′νP ∈ (YP(ǫ ∨ YCUC)UP)∗.
As s was chosen arbitrarily, it holds thatKYP

CP ⊆ (YP(ǫ ∨ YCUC)UP)∗. Moreover, ass = s′νP, it

holds that also the extension toKYP

CP
(UPYP)

∗ meets the language format(YP(ǫ ∨ YCUC)UP)∗.

Third (analogous toKYP

CP), considerKUC

CP(UPYP)
∗ and pick arbitrarys ∈ KUC

CP. Then, accord-
ing to Definition (4.5),s = s′µC for someµC ∈ UC and ∃µ′C ∈ UC such thats′µ′C ∈ KCP,
whereKCP ⊆ (YP(ǫ ∨ YCUC)UP)∗. Consequently, asµC and µ′

C
are from the same alpha-

bet UC, also s = s′µC ∈ (YP(ǫ ∨ YCUC)UP)∗. As s was chosen arbitrarily, it holds that
KUC

CP
⊆ (YP(ǫ ∨ YCUC)UP)∗. Moreover, ass = s′µC, it holds that also the extension to

96 APPENDIX A. PROOFS

KUC

CP(UPYP)
∗ meets the language format(YP(ǫ ∨ YCUC)UP)∗.

Hence,LCP = KCP ∪K
YP

CP(UPYP)
∗
⊆ (YP(ǫ ∨ YCUC)UP)∗.

iv) LCP is complete. Proof: pick arbitrarys ∈ LCP.

First, considers ∈ KYP

CP
(UPYP)

∗. Observe thatKYP

CP
(UPYP)

∗ is complete by construction

and thus∃σ ∈ ΣCP such thatsσ ∈ KYP

CP
(UPYP)

∗
⊆ LCP.

Second, considerKUC

CP
(UPYP)

∗. Observe thatKUC

CP
(UPYP)

∗ is complete by construction and

thus∃σ ∈ ΣCP such thatsσ ∈ KUC

CP(UPYP)
∗
⊆ LCP.

Third, considers ∈ KCP. Then,∃s′ ∈ K2 such thatpCP(s′) = s. Note thatK2 is complete.
Thus,∃σ1 ∈ ΣCPE such thats′σ ∈ K2. Analogously,∃σ2 ∈ ΣCPE such thats′σ1σ2 ∈ K2. Repeating
this procedure infinitely often, we receivew ∈ Σω

CPE
with s′w = s′σ1σ2 ⋅ ⋅ ⋅ ∈ K∞2 . AsK2 ⊆ K1 is YC-

live, pYC(s′) ∈ Y ω
C . Hence,∃n ∈ N such thatwn = tνC ∈ K2. Note thatpCP(tνC) = pCP(t)νC ≠ ǫ.

Consequently, forpCP(s′) = s, ∃σ ∈ ΣCP with σ ≤ pCP(tνC) andsσ ∈ KCP ⊆ LCP.

Summing up, for arbitrarys ∈ LCP, ∃σ ∈ ΣCP such thatsσ ∈ LCP. Hence,LCP is com-
plete.

Consequently,SCP is an I/O controller.

2) SCP is admissible toSPE w.r.t. SC, SP and SE. Proof: We have to show (i)
pP(LC ∥ LCP ∥ LPE ∥ LE) ⊆ LP and (ii)LCP ∥ LPE is YC-live w.r.t.SC andSE.
(i) pP(LC ∥ LCP ∥ LPE ∥ LE) ⊆ LP. Proof:
Observe

pP(LC ∥ LCP ∥ LPE ∥ LE) = pP(LCP ∥ LPEc) =Lemma 4.1pP(KCP ∥ LPEc) ⊆

pP(KCP) = pP(pCP(K2)) = pP(K2) ⊆ pP(K0) =

pP(LPEc ∥ LP ∥ (YP(ǫ ∨ YCUC)UP)∗ ∥ LspecCE) ⊆ LP

(ii) to show:LC ∥ LCP ∥ LPE ∥ LE is YC-live. Proof:
Observe
LC ∥ LCP ∥ LPE ∥ LE = LCP ∥ LPEc =Lemma 4.1 KCP ∥ LPEc = pCP(K2) ∥ LPEc =

p−1CP(pCP(K2)) ∩ LPEc. Note that, by definition,K2 is normal w.r.t.ΣCP and LPEc. Thus
p−1CP(pCP(K2)) ∩ LPEc = K2. Summing up, we getLC ∥ LCP ∥ LPE ∥ LE = K2, andK2 ⊆ K1 is
YC-live.

3) SCP enforcesSspecCE onSPE w.r.t.SC andSE. Proof:

SECTION A.3 — CHAIN OF TRANSPORTUNITS: MONOLITHIC PLANT MODEL 97

Observe

pCE(LC ∥ LCP ∥ LPE ∥ LE) =Lemma 4.1pCE(KCP ∥ LPEc) =

pCE(pCP(K2) ∥ LPEc) = pCE(p
−1
CP(pCP(K2)) ∩LPEc)

Note that, by definition,K2 is normal w.r.t.ΣCP andLPEc. ThuspCE(p−1CP(pCP(K2)) ∩ LPEc) =

pCE(K2). Note thatpCE(K2) ⊆ pCE(K0) ⊆ LspecCE. Summing up,pCE(LC ∥ LCP ∥ LPE ∥ LE) ⊆

LspecCE.

From items 1) to 3), we conclude:SCP is a solution forΠ. ◻

A.3 Chain of Transport Units: Monolithic Plant Model

A standard shared event model of a TU B that lies between a TU A on its left and a TU C on its
right is shown in the subsequent figure. The events are interpreted as follows. The shared events
(denoted by bold labels) areA2B andB2C and describe the propagation of a workpiece from TU
A to TU B and from TU B to TU C, respectively.Bfull / Bempty is issued by the sensor when a
workpiece arrives in / leaves the box. A workpiece that was received from TU A is transported to
the right border of the TU byBdel2r. Btakefl moves the box to the left border.

1

2 3 4

56

A2B

Bfull Bdel2r

Btakefl

B2C

Bempty
Bdel2r

Btakefl

Figure 1.1: Transport Unit: simple shared-event model

The composition of TU B with the analogous model of TU A results in a state minimal automaton
with 36 states, i.e. the worst case of exponential growth is found for this example. For a chain of
up to 16 TU’s, we obtain the numbers in the third column of table 5.1.

98 APPENDIX A. PROOFS

References

[AHU75] A.V. A HO, J.E. HOPCROFT, AND J.D. ULLMAN . The Design and Analysis of Com-
puter Algorithms. Addison-Wesley, 1975.

[Bal94] S. BALEMI . Input/Output Discrete Event Processes and CommunicationDelays.Dis-
crete Event Dynamic Systems: Theory and Applications, 4(1):41–85, February 1994.

[BGK+90] R. D. BRANDT, V. GARG, R. KUMAR, F. LIN , S. I. MARCUS, AND W. M. WON-
HAM . Formulas for Calculating Supremal Controllable and Normal Sublanguages.
System and Control Letters, 15(2):111–117, 1990.

[BHP+93] S. BALEMI , G.J. HOFFMANN, P.GYUGYI , H.WONG-TOI, AND G.F. FRANKLIN .
Supervisory Control of a Rapid Thermal Multiprocessor.IEEE Transactions on Auto-
matic Control, 38(7):1040–1059, July 1993.

[BW94] B.A. BRANDIN AND W.M. WONHAM. Supervisory control of timed discrete-event
systems.IEEE Transactions on Automatic Control, 39:329–342, 1994.

[CDFV88] R. CIESLAK , C. DESCLAUX, A. FAWAZ , AND P. VARAIYA . Supervisory Control of
Discrete Event Processes with Partial Observation.IEEE Transactions on Automatic
Control, 33(3):249–260, 1988.

[CKN98] J.E.R. CURY, B.A. KROGH, AND T. NIINOMI . Synthesis of supervisory controllers
for hybrid systems based on approximating automata.IEEE Transactions on Automatic
Control, Special issue on hybrid systems, 43:564–568, 1998.

[CL08] C.G. CASSANDRAS AND S. LAFORTUNE. Introduction to Discrete Event Systems.
Springer, New York, USA, 2nd edition, 2008.

[dCCK02] A.E.C. DA CUNHA , J.E.R. CURY, AND B.H. KROGH. An Assume Guarantee Rea-
soning for Hierarchical Coordination of Discrete Event Systems.WODES, 2002.

[dQC00] M.H. DE QUERIOZ AND J.E.R. CURY. Modular Control of Composed Systems.
American Control Conference, 2000.

100 REFERENCES

[FAU] Friedrich-Alexander University Discrete Event Systems library (libFAUDES), as of
July 2009. http://www.rt.eei.uni-erlangen.de/FGdes/faudes.

[FM06] H. FLORDAL AND R. MALIK . Modular Nonblocking Verification Using Conflict
Equivalence. InIEEE Proc. WODES’06 - 8th International Workshop on Discrete
Event Systems, Ann Arbor, USA, pages 100–106, 2006.

[GM04] B. GAUDIN AND H. MARCHAND. Modular Supervisory Control of a Class of Con-
current Discrete Event Systems.Workshop on Discrete Event Systems, 2004.

[GM05] B. GAUDIN AND H. MARCHAND. Efficient Computation of Supervisors for loosely
synchronous Discrete Event Systems: A State-Based Approach. IFAC World Congress,
2005.

[HC02] P. HUBBARD AND P.E. CAINES. Dynamical Consistency in Hierarchical Supervisory
Control. IEEE Transactions on Automatic Control, 47(1):37–52, 2002.

[HU79] J.E. HOPCROFT ANDJ.D. ULLMAN . Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, Reading, 1979.

[JMRT08] T. JERON, H. MARCHAND, V. RUSU, AND V. TSCHAEN. Ensuring the Conformance
of Reactive Discrete-Event Systems Using Supervisory Control. In IEEE Proceedings,
42nd Conference on Decision and Control, volume 3, pages 2692–2697, December
2008.

[KASL00] X. K OUTSOUKOS, P.J. ANTSAKLIS, J.A. STIVER, AND M.D. LEMMON. Supervi-
sory Control of Hybrid Systems.Proceedings of the IEEE, 88:1026–1049, July 2000.

[KGM92] R. KUMAR, V. GARG, AND S.I. MARCUS. On supervisory control of sequential
behaviors.IEEE Transactions on Automatic Control, 37:1978–1985, 1992.

[KGM95] R. KUMAR, V.K. GARG, AND S.I. MARCUS. Finite buffer realization of input-output
discrete-event systems.IEEE Transactions on Automatic Control, 40(6):1042–1053,
1995.

[KvS04] J. KOMENDA AND J. H. VAN SCHUPPEN. Supremal Normal Sublanguages of Large
Distributed Discrete-Event Systems.Workshop on Discrete Event Systems, 2004.

[Led96] R.J. LEDUC. PLC Implementation of a DES Supervisor for a ManufacturingSystem
Testbed: an Implementation Perspective.Master’s Thesis, Department of Computer
and Electrical Engineering, University of Toronto, 1996.

[Led02] R.J. LEDUC. Hierarchical Interface Based Supervisory Control. PhD thesis, Depart-
ment of Electrical and Computer Engineering, University ofToronto, 2002.

101

[LT89] N. LYNCH AND M. TUTTLE. An introduction to Input/Output automata.CWI-
Quarterly, 2(3):219–246, 1989.

[LW90] F. LIN AND W.M. WONHAM. Decentralized Control and Coordination of Discrete-
Event Systems with Partial Observation.IEEE Transactions on Automatic Control,
35(12):1330–1337, 1990.

[LW91] F. LIN AND W.M. WONHAM. Verification of Nonblocking in Decentralized Supervi-
sion. Control-Theory and Advanced Technology, 7(1):19–29, 1991.

[LW97] S.-H. LEE AND K.C. WONG. Decentralised control of concurrent discrete-event sys-
tems with non-prefix closed local specification. InIEEE Proc. of the 36th International
Conference on Decision and Control, pages 2958–2963, 1997.

[LW02] S-H. LEE AND K.C. WONG. Structural Decentralised Control of Concurrent DES.
European Journal of Control, 35:1125–1134, October 2002.

[Ma04] C. MA. Nonblocking Supervisory Control of State Tree Structures. Ph.D. Dissertation,
Department of Electrical and Computer Engineering, University of Toronto, 2004.

[MF08] R. MALIK AND H. FLORDAL. Yet Another Approach to Compositional Synthesis of
Discrete Event Systems. InIEEE Proc. WODES’08 - 9th International Workshop on
Discrete Event Systems, Göteborg, Sweden, pages 16–21, 2008.

[MPS09] TH. MOOR, S. PERK, AND K. SCHMIDT. Extending the Discrete Event Systems Li-
brary libFAUDES. InMethoden und Anwendungen der Regelungstechnik – Erlangen-
Münchener Workshops 2007 und 2008, pages 121–134. Shaker-Verlag, 2009.

[MR99] TH. MOOR AND J. RAISCH. Supervisory control of hybrid systems within a be-
havioural framework.Systems and Control Letters, 38:157–166, 1999.

[MR05] TH. MOOR AND J. RAISCH. Hierarchical Hybrid Control of a Multiproduct Batch
Blant. InProc. 16th IFAC World Congress, Prague, 2005.

[MRD03] TH. MOOR, J. RAISCH, AND J.M. DAVOREN. Admissibility criteria for a hierarchical
design of hybrid control systems. InProc. IFAC Conference on the Analysis and Design
of Hybrid Systems (ADHS’03), pages 389–394, 2003.

[MSP08] TH. MOOR, K. SCHMIDT, AND S. PERK. libFAUDES – An Open Source C++ Library
for Discrete Event Systems. InIEEE Proc. WODES’08 - 9th International Workshop
on Discrete Event Systems, Göteborg, Sweden, pages 125–130, 2008.

[Ner58] A. NERODE. Linear Automaton Transformations.Proceedings of the American Math-
ematical Society, 9:541–544, 1958.

102 REFERENCES

[OW90] J. S. OSTROFF ANDW. M. WONHAM. A Framework for Real-Time Discrete Event
Control. IEEE Transactions on Automatic Control, 35, April 1990.

[Per04] S. PERK. Hierarchical Design of Discrete Event Controllers: An Automated Manu-
facturing System Case Study. 2004. Diploma Thesis, Lehrstuhl für Regelungstechnik,
Universität Erlangen-Nürnberg.

[PMS06] S. PERK, TH. MOOR, AND K. SCHMIDT. Hierarchical Discrete Event Systems with
Inputs and Outputs. InIEEE Proc. WODES’06 - 8th International Workshop on Dis-
crete Event Systems, Ann Arbor, USA, pages 427–432, 2006.

[PMS07a] S. PERK, TH. MOOR, AND K. SCHMIDT. Model Based Design of Hierarchical
Control Systems with Input/Output Structure. InMethoden und Anwendungen der
Regelungstechnik – Erlangen-Münchener Workshops 2005 und2006, pages 63–75.
Shaker-Verlag, 2007.

[PMS07b] S. PERK, TH. MOOR, AND K. SCHMIDT. Regelungstheorie für ereignisdiskrete Sys-
teme zur modellbasierten Berechnung von SPS-Programmen. In 3. Rexroth Doktoran-
den Kolloquium, Lohr am Main, Germany, 2007.

[PMS08] S. PERK, TH. MOOR, AND K. SCHMIDT. Controller Synthesis for an I/O-Based Hier-
archical System Architecture. InIEEE Proc. WODES’08 - 9th International Workshop
on Discrete Event Systems, Göteborg, Sweden, pages 474–479, 2008.

[QC00] M.H.DE QUERIOZ AND J.E.R. CURY. Modular Supervisory Control of Large Scale
Discrete Event Systems.Workshop on Discrete Event Systems, 2000.

[RO98] J. RAISCH AND S.D. O’YOUNG. Discrete approximation and supervisory control of
continuous systems.IEEE Transactions on Automatic Control, Special issue on hybrid
systems, 43:569–573, 1998.

[RW87a] P.J. RAMADGE AND W.M. WONHAM. Modular Feedback Logic for Discrete Event
Systems.SIAM Journal of Control and Optimization, 25:1202–1218, 1987.

[RW87b] P.J. RAMADGE AND W.M. WONHAM. Supervisory control of a class of discrete event
systems.SIAM J. Control and Optimization, 25:206–230, 1987.

[RW89] P.J. RAMADGE AND W.M. WONHAM. The control of discrete event systems.Pro-
ceedings of the IEEE, 77:81–98, 1989.

[SB08] K. SCHMIDT AND C. BREINDL. On Maximal Permissiveness of Hierarchical and
Modular Supervisory Control Approaches for Discrete EventSystems. InIEEE Proc.
WODES’08 - 9th International Workshop on Discrete Event Systems, Göteborg, Swe-
den, pages 462–467, 2008.

103

[Sch05] K. SCHMIDT. Hierarchical Control of Decentralized Discrete Event Sys-
tems: Theory and Application. PhD thesis, Lehrstuhl für Regelungstech-
nik, Universität Erlangen-Nürnberg, 2005. Download: http://www.rt.eei.uni-
erlangen.de/FGdes/publications.html.

[SMG06] K. SCHMIDT, H. MARCHAND, AND B. GAUDIN . Modular and decentralized su-
pervisory control of concurrent discrete event systems using reduced system models.
In IEEE Proc. WODES’08 - 9th International Workshop on Discrete Event Systems,
Göteborg, Sweden, pages 149–154, 2006.

[SMP08] K. SCHMIDT, TH. MOOR, AND S. PERK. Nonblocking Hierarchical Control of
Decentralized Discrete Event Systems.IEEE Transactions on Automatic Control,
53(10):2252–2265, Nov. 2008.

[SSZ07] K. SCHMIDT, E. SCHMIDT, AND J. ZADDACH. A Shared-Medium Communication
Architecture For Distributed Discrete Event Systems.Mediterranean Conference on
Control and Automation, 2007.

[TW94a] J.G. THISTLE AND W.M. WONHAM. Supervision of infinite behavior of discrete-
event systems.SIAM J. Control and Optimization, 32:1098–1113, 1994.

[TW94b] J.G. THISTLE AND W.M. WONHAM. Supervision of infinite behavior of finite au-
tomata.SIAM J. Control and Optimization, 32:1075–1097, 1994.

[Wen06] F. WENCK. Modellbildung, Analyse und Steuerungsentwurf für gekoppelte ereignis-
diskrete Systeme. PhD thesis, Lehrstuhl für Automatisierungstechnik und Prozessin-
formatik, Ruhr-Universität Bochum, 2006.

[WH91] Y. WILLNER AND M. HEYMANN . Supervisory Control of Concurrent Discrete-Event
Systems.International Journal of Control, 54(5):1143–1169, 1991.

[Wil91] J.C. WILLEMS. Paradigms and puzzles in the theory of dynamic systems.IEEE
Transactions on Automatic Control, 36:258–294, 1991.

[Won08] W.M. WONHAM. Supervisory control of discrete event systems. Technicalreport, De-
partment of Electrical & Computer Engineering, Universityof Toronto, 2008. Down-
load: http://www.control.toronto.edu/DES/.

[WR88] W.M. WONHAM AND P.J. RAMADGE. Modular Supervisory Control of Discrete
Event Systems.Mathematics of Control, Signals and Systems, 1(1):13–30, 1988.

[WW96] K.C. WONG AND W.M. WONHAM. Hierarchical Control of Discrete-Event Systems.
Discrete Event Dynamic Systems: Theory and Applications, 6(3):241–273, 1996.

104 REFERENCES

[ZW90] H. ZHONG AND W.M. WONHAM. On the Consistency of Hierarchical Supervision
in Discrete-Event Systems.IEEE Transactions on Automatic Control, 35:1125–1134,
October 1990.

Lebenslauf

Zur Person:

Sebastian Perk
geboren am 03. 09. 1978 in Gräfelfing
verheiratet, 1 Kind

Schulbildung:

1985–1989 Grundschule in Greifenberg
1989–1998 Rhabanus-Maurus-Gymnasium St. Ottilien
Juni 1998 Allgemeine Hochschulreife

Wehrdienst:

1998–1999 Grundwehrdienst bei der Drohnenbatterie 200 in München

Studium:

1999 Praktikum bei Infineon Technologies in Regensburg
1999–2004 Studium der Elektrotechnik, Elektronik und Informationstechnik

an der Friedrich-Alexander-Universität Erlangen-Nürnberg
2000, 2002 Studentische Hilfskraft am Lehrstuhl für Fertigungsautomatisierung

und Produktionssystematik der Universität Erlangen-Nürnberg,
2002 Werkstudent bei Framatome ANP (nunmehr AREVA) in Erlangen
2003 3-monatiger USA-Aufenthalt im Rahmen der Diplomarbeit

am Department of Electrical and Computer Engineering
der Carnegie Mellon University Pittsburgh

2003-2004 Studentische Hilfskraft am Lehrstuhl für Regelungstechnik
der Universität Erlangen-Nürnberg

Dez. 2004 Studienabschluss Dipl.-Ing.

Hochschultätigkeit:

seit 2005 Wissenschaftlicher Mitarbeiter am Lehrstuhl fürRegelungstechnik
der Universität Erlangen-Nürnberg

