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Abstract

In the late 1980’s, the Supervisory Control Theory (SCT) pragposed by P.J. Ramadge and W.M.
Wonham [RW87b], that provides a systematic method for aatethsynthesis of discrete event
controllers with guaranteed safety and liveness proeiet fails for systems of praxis-relevant
size due to extensive computational complexity. Since,thesearch has been aimed at design
methods that are based on the SCT, but scale better with shensgize by structural exploitation
of the problem and thus introduce access to practical agjics.

In this thesis, we propose an 1/0-based framework for thégdesf hierarchical controllers for
discrete event systems that addresses both safety anédw@noperties. Technically, we build
on J.C. Willems’ behavioural systems theory [Wil91], thasdribes fundamental properties of
dynamic systems like the characteristics of inputs anduwatpased on their behaviours. The
generality of the behavioural approach allows us to trartie notion of inputs and outputs to
discrete event systems. As a consequence, results fronopsavork on abstraction-based control
of hybrid systems in [MR99, MRDO03] could be elaborated faadete-event dynamics.

The 1/0-based approach is applied to systems that conseéshamber of interacting components
(local subsystems) and builds a hierarchy of superposeiiatiens and subordinate environment
models on the component models. The I/0O-based descriptidreccomponent models is inde-
pendent of their surroundings (i.e. neighbour componartsiairoller) to obtain reusability within
different configurations. Each model of the local subsystprovides two 1/O ports, one to inter-
act with a controller and the other one to interact with th@remment of the component. At first,
local controllers are designed for each component acogiiocal specifications that are inde-
pendent from the component’s environment. While the desigthod is based on the Supervisory
Control Theory, safety and liveness of the closed loop arenaequence of the 1/0 properties of
component model and controller.

On the next layer of the hierarchy, groups of several compisneach are formed, and their in-
teraction is described by a dynamic environment model. Vhéhesis of a superposed controller
for each group is not performed on the detailed descriptiahe locally controlled component
models, but on their abstractions in form of the local speaifons, which effectively limits the
computational complexity. The abstraction-based coletr®lare proven to correctly control also
the original system. By alternation of the abstraction step grouping of components via en-



vironment models and the design of superposed controbergyverall system is developed that
scales well with the number of system components. The eggeetiuction of complexity became

evident also by application to the conceptional exampletad@sport-unit chain that comes along
with this thesis.



Zusammenfassung

Hierarchische Steuerung von ereignisdiskreten Systemen
mit Ein- und Ausgangen

In den spaten 1980’er Jahren wurde mit der Supervisory Gbhireory (SCT) nach P.J. Ramadge
und W.M. Wonham [RW87b] ein systematisches Verfahren bggsiellt, welches die automati-
sche Synthese sicherer und lebendiger Steuerungen fgnediskrete Systeme ermdglicht, sich
aber aufgrund des erheblichen Rechenaufwands nicht filei®gspraxisrelevanter Grof3e eignet.
Seither wird nach Entwurfsverfahren geforscht, die auf®IeT aufbauen, jedoch durch Nutzung
der Prozessstruktur besser mit der Systemgréf3e skaliecesamit den Zugang zur praktischen
Anwendung ermdglichen, siehe [PMSO07b] fir einen deutsettspgen Uberblick.

In dieser Arbeit wird ein Ein-Ausgangs-(E/A-) basiertersatz zum Entwurf hierarchischer Steue-
rungen fur ereignisdiskrete Systeme vorgestellt, der fb®herheits- als auch Lebendigkeitsei-
genschaften bertcksichtigt. Dieser ist angelehnt an dgesannte Behavioural Systems Theory
nach J.C. Willems [Wil91], welche grundlegende Eigensimflynamischer Systeme, wie die
Charakteristik von Ein- und Ausgangen, verhaltensorghtind so allgemeingultig beschreibt,
dass sie auch zur E/A-basierten Beschreibung von ereigkisten Systemen herangezogen wer-
den konnte. Auf dieser Grundlage lassen sich Ergebnissabstraktionsbasierten Reglerentwurf
fur hybride Systeme aus [MR99, MRDO3] auf ereignisdisk&steme Ubertragen.

Beim E/A-basierten Ansatz wird auf einen aus Komponentsiteghenden Prozess eine Hierarchie
Uberlagerter Steuerungen und unterlagerter Umgebungdla@difgebaut. Die E/A-basierte Mo-
dellierung der einzelnen Prozesskomponenten erfolgtchst@mgebungsunabhangig (d.h. unab-
hangig von Nachbarkomponenten oder der Steuerung). Dieskbéhre Wiederverwendbarkeit
innerhalb unterschiedlicher Anordnungen. Jedes E/Aebi@sModell der lokalen Teilsysteme ver-
fugt tber zwei E/A-Ports, einer zum Anschluss einer Staugrder andere zum Anschluss eines
dynamischen Umgebungsmodells, welches jeweils die Iktieraeiner Gruppe von Teilsystemen
untereinander und mit der restlichen Umgebung beschr@dinal? lokaler von der Umgebung un-
abhangiger Spezifikationen werden fur die einzelnen Psmasponenten zunéchst lokale Steue-
rungen entworfen. Die Entwurfsmethodik baut dabei auf dipeBvisory Control Theory auf. Der



Nachweis von Sicherheit und Lebendigkeit des geschlosdRegelkreises gelingt infolge der ein-
/ausgangsbasierten Systembeschreibung.

Auf der nachsthoheren Stufe der Hierarchie werden jewedtrere Prozesskomponenten zu-
sammengefasst und ihre Interaktion durch ein dynamisctmegebungsmodell modelliert. Der
Entwurf Gberlagerter Steuerungen fur Gruppen von Komptamegreift nicht auf die detaillierte
Beschreibung der lokal gesteuerten Prozessmodelle, soadé eine Abstraktion derselben auf
Grundlage der lokalen Spezifikationen zuriick, was den Rexifevand wirkungsvoll begrenzt.
Die anhand der Abstraktion entworfene Steuerung steueht das tatsachliche System nachweis-
lich korrekt. Durch gezieltes Abwechseln der Abstraktgoisitte, der Beschreibung der Interakti-
on durch Umgebungsmodelle und der Uberlagerung von Stegendasst sich ein Gesamtsystem
entwickeln, welches mit der Anzahl der Prozesskomponegi¢iskaliert. Der erwartete geringe
Rechenaufwand ergab sich auch bei der Anwendung auf dagtiozelle Beispiel einer Kette
von Transporteinheiten, welches diese Arbeit begleitet.






... after all, salesmen continue to travel

W.M. Wonham
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Chapter 1

Introduction

When facing a complicated technical problem, a powerfulruimsent of successful engineering
practice is to exploit the structure of the problem untilahde cast to one or a number of simpler
problems whose solution applicably exists. Toatrol of discrete event systelfidES) is a com-
plicated problem. Though it has been formally solved in e 1980’s by the supervisory control
theory (SCT) of Ramadge and Wonham, which delivers comtr®lvith guaranteed correctness
and performance, the model-based approach did get onlielinaiccess to industrial deployment,
which is mainly due to the affinity of DES to intractable commpty of the plant model.

In contrast, engineers manage to automatize even lardge{3&S such as logistics, communica-
tion networks and manufacturing systems. By practical egpee and technologies like divide
and conquer strategies, measurement aggregation andutasvtleast the hiding of apparently
less relevant plant behaviour , the original problem isédrmto one with manageable complex-
ity. However, this inevitably limited view on the originatgblem has a number of unpleasant
consequences. As correctness of the controller softwameotde formally guaranteed, usually a
large number of trial and error runs is necessary for delmggdDepending on the existence and
accuracy of a simulation model, a considerable number alfstrun after sales on the real plant
involving safety problems and high costs. Further issuesaboptimal capacity utilization as well
as low configurability and low scalability. Hence the questarises how to avoid such shortcom-
ings when organizing the problem in an applicable manner.

Since the proposal of the SCT, considerable research @fstspent on incorporating the men-
tioned engineering skills in model-based discrete eventrotier design to reduce computational
complexity without the loss of the guarantees gained by tB&. et us introduce an example to
illustrate some of the challenges in control of DES.

Example 1.1
We consider a small manufacturing line as in Figure 1.1.
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Figure 1.1: Manufacturing line

From an always filled stack feeder, raw workpieces enter ehmacsia a conveyor belt and are
processedd). When the process in the machine is finished, the workpieaeepds to an inspec-
tion unit (). The inspection results are “pasg) Or “fail” ( f). After inspection, workpieces can
exit the manufacturing linecf or return to the machine). The discrete event behaviour of this
technical process can be represented by an automaton nfdtdelmachine and of the inspection
unit, see Figure 1.2 a) and b), respectively. The occurreh@vents is denoted by transitions,
which are visualized as arrows labeled with the triggerimgne that lead from the system state
(drawn as circle) before the transition to the state aftetidinsition. The initial system state (here:
states with label) is denoted by a sourceless arrow. The behaviour of the wimaes given by
the synchronous composition of both automata, see Fig@re)1.The composition of all plant
components is denotedonolithic plant model

2 1 (@)
al b |r

(a) machine (b) inspection (c) composed behaviour

Figure 1.2: Manufacturing line: automata models

As can be seen, the number of states of the monolithic modeéiproduct (rather than the sum)
of the state counts of the machine and the inspection maédekve face the general case, where



the complexity of the whole plant (counted in number of ate exponential in the number of
plant components.

The control objective for this example shall be the reprsices() of a workpiece in case it fails
inspection (). The according specification forbids the releageof those workpieces from the
manufacturing line that failed inspection but requiresoepssing instead,; it is easily formulated
as an automaton, see Figure 1.3 a). For the enforcement sp#utfication on the plant, the un-
controllability of the eventg andp has to be taken into account, as they cannot be directlyléidab
by a controller.

If this specification is applied directly to the plant, thém tresulting behaviour blocks: consider
state6 in Figure 1.2 c) and assume it was reached from $tate the eventf, i.e. a workpiece just
failed inspection. Then, the specification forbids ewertut at the same time the required repro-
cessing £) is not possible, as the machine is occupied by another iec&p Hence, no further
event is possible, and the system gets stuck in a deadlock.

Thesupervisory control theor(SCT, [RW87b]) provides an efficient algorithm to computeia-m
imally restrictive supervisor such that the closed-loopaweour of the plant under supervisory
control meets the given specificatiagafety and is nonblockinglivenes$.! The resulting closed-
loop behaviour of the manufacturing line is shown in Figu@H). As can be seen, the supervisor
avoids the aforementioned deadlock by allowing for only aekpiece in the line until the in-
spection result is positive: a second occurrence of theuénte is disabled until the occurrence

of the evenp.
C ()
(22> —4)

C
8&@
r (5)
Cc
(a) specification (b) closed-loop behaviour

Figure 1.3: Manufacturing line: supervisory control

Note that the closed loop-behaviour can indeed be achieyedsbipervisor, as only controllable
events are be disabled. This fundamental condition foressfal controller design is denoted

1The avoidance of blockings is achieved by the marking teldgyowhich, for simplicity, is not considered here.
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controllability. The model of the closed-loop behaviour serves as realizafithe supervisor and
can be implemented e.g. in the form of PLC code. ]

As the most appealing feature of a supervisor designeddiogpto the SCT and as a consequence
of the model-based approach, the closed-loop behaviogu#anteedto comply with the
specification, to be nonblocking and to be minimally restdlc On the downside of the SCT, the
supervisor has to be computed on the basis of the monolitait pnodel, whose complexity is
prohibitive in most practical applications. Example cétion: the monolithic model of a plant
consisting of 10 components with 10 states each can embpeaiel 0'° states.

The reason why, aside from the shortcomings mentioned abukset, engineers successfully
design controller software for e.g. large scale automadistems lies in the structural exploita-
tion of the design problem: usually, the software is modutaimposed of subroutines for
different control tasks and different functional systermpmnents. For superposed control tasks,
the view on the system is aggregated adequately by respectipthe features relevant to the task.

Since the supervisory control theory was proposed in tree1880’s, a major contingent of re-
search in the field of discrete event systems has aimstluattured approachdsased on the SCT
that reduce the complexity of controller design and at threestime preserve properties such as
guaranteed enforcement of the specification and nonblgckin

Modular approachesuch as [RW87a, WR88, RwW89, dQC00, QC00, GM04, MF08] areuligef
the overall control objective is given as a set of specifocatifor individual tasks. One supervisor
controlling the whole plant is designed for each specificgtsee Figure 1.4.

specification 1--- specification n

supervisor 1 -++ supervisor n

plant

Figure 1.4: modular control architecture

While still the composed plant has to be computed, complegduction results from the low com-
plexity of the individual specifications compared to themposition. The possibility of conflicts
(in case the interaction of the modular supervisors causeking) requires the test for nonblock-
ing closed-loop behaviour e.g. as in [FMO0G6] or structuradaions that avoid conflicts.

In decentralized approachgthe overall control task is performed by a set of supergigbrgure
1.5), each of which controls only one component of the pldatél control”) and thus is expected



to feature low complexity.
specification

supervisorl ... supervisor n

Figure 1.5: decentralized control architecture

Without further measures, the plant-wide enforcement efgecification is not guaranteed, and
the behaviour of the local supervisors within each other ibih wther plant components may be
conflicting. We reconsider the manufacturing line examepliastrate such conflict situation.

Example 1.2

We apply the specification for the manufacturing line (Fegglr3 a)) separately to the machine and
to the inspection unit. The resulting supervisor for the hivae does not restrict its behaviour and
may be omitted. The locally controlled behaviour of the gxgpn unit is shown in Figure 1.6 a).

rc

(a) locally controlled inspection (b) closed-loop behaviour

Figure 1.6: Manufacturing line: decentralized control

As can be seen, the locally controlled inspection unit is fsédeadlocks. When composed with
the machine, the resulting behaviour of the overall plaigufe 1.6 b)) meets the specification but,
however, is blocking - observe the deadlock in state 6b. ]
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Approaches like [CDFV88, LW90, BGO0] guarantee safety and liveness by requiring structural
conditions (see also [LW91]). However, computations séfjuire the detailed monolithic plant
model. In extended decentralized approaches ([WH91, LW@/)2, KvS04]), the composition

of the plant components and hence the exponential growtlraptexity is effectively avoided.
Additionally, [SMGO06] provides a method to exhibit modutardecentralized supervisor design
on reduced system models.

The idea of information hiding has leadh@rarchical approachege.g. based on [ZW90, WW96,
dCCKO02, HCO02]), that map the original plant to one or moreesppsed layers of less complex
high-level-models, where the degree of abstraction iswegktowards the according specification.
The complexity is reduced by designing the supervisor ferttigh-level model. From this super-
visor, that virtually controls the abstracted model, anlengentation for the original plant has to
be derived, see Figure 1.7.

specification
supervisor < high-level plant
. map
implementation plant

Figure 1.7: hierarchical control architecture

The monotonicity of the involved operators guaranteesrepefoent of the specification on the
original plant by the implementation. If, moreover, the tadstion of the closed loop of imple-
mentation and original plant exactly matches the closeg wicabstracted plant and supervisor,
the desirable property dfierarchical consistencis met. If not, then the implementation can be
conservative. Furthermore, measures have to be takenrsatdhe resulting closed-loop behaviour
is nonblocking. In [Led02], low- and high-level are conrextby a layer of particular interfaces,
and desired properties like nonblocking are achieved byjaast and answer structure of the in-
volved components. As this structure can be met indivigumjithe plant components, the detailed
monolithic plant model never needs to be computed. As onkeofitst approaches, applicability
has been proven by physical, industry-oriented exampées|Leed96, Wen06].

By combining the hierarchical and the decentralized methioelhierarchical-decentralize@p-
proach ([Sch05, SMPO08]) allows for a multi-level hieraraffysupervisory control by alternation
of decentralized control, hierarchical abstraction artletkgatem composition. The implementation
of each high-level supervisor restricts the behaviour efghbordinate supervisors, down to the
layer of plant components, in a way such that the whole achite is hierarchically consistent.



Moreover, reasonable structural conditions and reaser@iditions for the abstraction map are
identified that guarantee nonblocking closed-loop behavidhe applicability of the approach to
large-scale DES has been demonstrated with a laboratogystady, see also [Per04]. Extensions
cover the maximal permissiveness ([SB08]) and the dideibimplementation of the supervisors
over communication networks ([SSZ07]).

A method that has been extensively studied in supervisargraloof hybrid systems iabstraction
based contrglsee e.g. [CKN98, RO98, KASL00, MR99]. In such approachas ariginal plant
is replaced by an approximation that relates to the originyah simple subset relation: in the
abstraction, a less detailed likewise less complex desmnipf the system behaviour allows for
more possible system trajectories compared to the origiaat model, see Figure 1.8.

abstraction

supervisor plant

Figure 1.8: abstraction-based control

The supervisor is designed for the abstracted model andajyaired to the original plant. Similar
to the hierarchical approach, safety is guaranteed by noorety, while liveness has to be dealt
with separately.

Example 1.3

We replace the original plant model of the manufacturing lby an abstraction to show how
computational savings can be made. For the machine thatatdmbt more than one workpiece,
we introduce a half as complex model that ignores the lingegehcity, see Figure 1.9 a). Observe
that any sequence of events in the original model (Figur@)).B also possible in the abstraction,
i.e. the abstraction meets the required subset relaticga thle composition with the inspection unit
to an abstracted model of the plant (Figure 1.9 b)) is of laveenplexity and a valid abstraction due
to monotonicity of the composition operator. The realigatdf the abstraction-based supervisor is
depicted in Figure 1.9 c).
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(a) machine, abstracted  (b) plant, abstracted (c) closed-loop behaviour, abstracted

Figure 1.9: Manufacturing line: abstraction-based control

Observe that also the supervisor realization is less compglinfortunately, the closed loop of
the abstraction-based supervisor and the original planthea with the blocking behaviour in
Figure 1.6 b) that has also been achieved by decentraliz&dotoHence, as noticed before, the
enforcement of the specification is preserved, while ligsnan general, is not. ]

Usually, the liveness of the resulting closed loop is ersdbrestructural conditions on the original

plant and the supervisor only, such that the subset relegimains the only condition required for

the abstraction. Hence, its degree can be chosen freelyebatarbitrary and original behaviour

which can result in considerable computational savinggutddy, too coarse abstractions lead to
excessively restricted closed-loop behaviour.

Contribution and Outline of the Thesis

For discrete event controller design, the preservatiotf lcontrollability and liveness properties
are problems of primary concern in all approaches basedeo8aT. Interestingly, these problems
seem to be a specialty of the class of discrete event systerasnple: in the control of systems
with continuous dynamics described according to lineatesys theory, the violation of compa-
rable properties is not observed: in the closed loop of amgrobler and any plant, the controller
never directly changes measurement signals issued thg plardoes influence the plant output
only indirectly via the plant inputy controllability). Also, the trajectories in the closed oever
break up, as any system accepts arbitrary input signalslaays there exists an according out-
put signal £ no deadlocks). Hence, basic properties are given a priaféynput-/output-based
system description rather than by additional measuresntralter design.

This difference between the two fields of control theory doesslie solely in the different nature
of the considered dynamics, but also in the different vieviton



In the SCT, the plant model is interpreted as a system thasbif spontaneously generates con-
trollable events:. and uncontrollable events,.. The influence by a supervisor is passive, by
enabling or disabling the the occurrence of controllablenés. An input-/output based system
description differs from this paradigm in that systems qerf interaction by actively generating
output signals and passively accepting output signalsFgpee 1.10 b). In [BHP93, Wen06],
the former and the latter model interpretations are denasgdhmetriand symmetricfeedback,
respectively.

: input output
» supervisor event » controller
Y, U Dy enabling/
disabling
plant X output plant < input
(a) asymmetric feedback in the SCT (b) symmetric feedback with 1/O structure

Figure 1.10: Comparison of SCT- and I/O-feedback types [B19B]

Our approach develops an input-/output-based (I/O-batextription for DES aiming at a notion
of inputs and outputs for DES that

() legitimates a direction of cause and effect as in Figul® b).

(i) achieves controllability and basic liveness propestfor the closed loop adny controller
andanyplant as a consequence of the I/O structure.

(i) allows for abstraction-based controller synthesis.
(iv) enables hierarchical design of the plant model and dmgrol system.
(v) exploits the structure of composed systems similariyegcentralized approaches.

(vi) facilitates the description of a discrete event mode$é&paration from its surroundings via
its input and output such that the model is reusable withiroua configurations.

In references such as [LT89, BH®3, Bal94, KGM95, JMRTO08], discrete event models are pro-
vided with different notions of inputs and outputs, eachcadée to the considered problem. In our
approach and in contrast to the references, the notion afsrgnd outputs and relevant fundamen-
tal properties like the novel event-based notiorYgfliveness are derived from J.C. Willems’ be-
havioural systems theory [Wil91], which, due to its genigyatan in principle be directly adopted
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to DES to meet the above items (i) and (ii). This allows us titdban the core ideas of [MR99] on
abstraction-based control of hybrid systems and the Idei@al extension [MRDO3] (for items (iii)
and (iv)), as both are stated within the behavioural systbesry. To meet items (iv) and (v), we
introduce further extensions required for subsystem caitipa and a two-sided controller- and
environment hierarchy. Here, we refer to approaches likd(&, Led02, Ma04, Sch05] where the
vertical (de)-composition introduced by a hierarchicahatecture is complemented by a horizon-
tal (de)-composition of modular or decentralized sup@émis

In this contribution, we propose to alternate subsystempamition and controller synthesis re-
sulting in a hierarchical control system that complementseaarchical plant model; see Figure
1.11.

Controller 1-6

Controller 1-4

Contr. 5 Contr. 6

Environment 1-4

Environment 1-6

N

Figure 1.11: Hierarchical control system for a plant with 6 interactiwrgponents

On the innermost level of the hierarchy, all subsystems aréeted independently from their en-
vironment aiming at reusability within various configuoats. For each subsystem model, local
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controllers are designed to enforce local specificatioastiodel the desired external behaviour
of the closed loop. In the design step, additional assumgiim the external configuration can be
taken into account by well-defined constraints. Their ezgorent is passed on to the next level of
superposed control.

On the next level of the hierarchy, we use the specificatibtisegpreceding level as an abstraction
of the controlled subsystems. The admissibility of thistedusion follows directly from the I/O-
based system structure. We then synthesize controllegrdoips of abstracted low-level control
systems. The latter have been designed independentlynstraimts in interconnection of groups
of subsystems (e.g. shared resources) have not yet beaderaas Our framework accounts for
such constraints by a hierarchy of environment models tbatptements the hierarchy of con-
trollers: each dynamic environment model describes theraction within one group of locally
controlled subsystems.

The complexity of the compound group models is effectivelyuced by the preceding abstraction
step. As a benefit of our framework, the controllability aveéhess of each hierarchical layer di-
rectly result from the 1/0-based system structure. Supagaontrollers designed for each group
based on the abstractions solve the control problem prpwabb for the original groups of sub-
systems.

The alternation of system composition, controller synthesbstraction and environment inter-
connection is continued in a bottom-up fashion until a rigp-level controller is synthesized to
control an abstract overall model.

The outline of the thesis is as follows. In the following ctepwe introduce the notation and ter-
minology of the formal language framework which is used is thesis to elaborate and to express
theoretical results. The notion of an automaton is intreduo serve as graphical representation
of languages.

Chapter 3 proposes and explains the 1/0-based descriphtiDES and presents the definition of
the 1/0 plant that interacts with an operator and an enviemmThe desired liveness properties
are presented in an I/O-based formulation and in the presgfreonstraints on the plant’s external
configuration. The conceptional example of a transportignittroduced that goes along with the
whole thesis to illustrate the formal statements.

Then, the notion of an 1/O controller is defined as an opeiaittre plant. As the first main result,
an admissibility condition for the I/O controller is ideiigd that guarantees liveness for the closed
loop. Moreover, the external view on the closed loop fe& /@ plant properties and thus is ready
for further superposed control.

Next, the controller synthesis problem is formally defineiaducing the specification as a model
of the external view on the desired closed loop behaviouralRi, an important theorem is pro-
posed stating that the original synthesis problem is rgadilved based on an abstraction of the
I/O plant.

In Chapter 4, the synthesis of an admissible 1/0O controfieonsidered. The notion &t.-acyclic
sublanguages is introduced featuring a unique suprenrakgieto achieve the desiré@d-liveness
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property for the closed loop. As the controller has to meetlt®-structure and cannot directly
observe the plant’s interaction with the environment, caltgr synthesis involves the computation
of a complete, controllable and normal sublanguage. A oliatrsynthesis procedure is presented
and proven to deliver a solution to the synthesis probleenan admissible 1/0O controller.
Chapter 5 studies the design of a hierarchical control systein Figure 1.11. The first part con-
siders the description of a group of subsystems in a compmouel that is ready for controller
design. First a technical shuffle compound of the componsemputed by the I/0O shuffle oper-
ator. Then, the I/O environment model is formally defined daptures the concurrent behaviour
of the components and their interaction with the remainimgrenment. As the main results of
this chapter, I/O plant properties are proven for the exleview on the compound of I/0 shuffle
and 1/0 environment. Moreover, constraints for the extecoafiguration of the compound are
identified that preserve the liveness of the involved sulesys, such that an admissible controller
can be computed according to the previous chapters.

The second part of the chapter gives guidance to step by stegdagh a hierarchical control sys-
tem based on the presented results. The applicability téiHcamponent DES is shown by the
application to a chain of transport units and by evaluatibthe complexity that results for this
example.



Chapter 2

Formal Languages: Notation and
Terminology

The concept of formal languages originates from computenses and has been adopted to a
control theoretic context by the Supervisory Control Tlyeiororder to mathematically describe
the dynamical behaviour and the properties of discretetesyestems. Also in this framework,
formal languages are used as the standard tool to exprespramel formal statements, while
finite automata serve as a graphical representation of &gyegu In the following, we provide an
overview on the notation used in this text to describe discegent systems in a language-based
framework. For an elaborate introduction to discrete esgatems, we refer to [Won08, CL08].

Alphabet, Kleene-closure and stringset 3 be a finite set of distinct symbols, called finite alpha-
bet. The Kleene-closurg* is the set of finitestringsovery;; i.e.

Y={s|3neN,Vi<n:0,€eX%, s=01090,}U{e}

with theempty stringe € ¥*. Thelengthof a strings = o;---0,, is denoteds| = n, with |s| = 0 if
s =eandl|s| = kif s = 0104, With o; € X for i = 1..k. A stringr = st with s,¢ € 3 is called
concatenation of andt. If for two stringss, r € X* there existg € >* such thats = ¢, we sayr
is aprefixof s and writer < s; moreover, is calledstrict prefix of s if s # » and writer < s. A
prefix of s of lengthn € Ny is denoteds”.

Language.A language ovel is a subsefl ¢ ¥*. Note thatX itself and any of its subsets are
languages. A language potentially can contain an infinitalmer of strings.

Operations on languagesBesides the ordinary set operations union, intersectieh ddfer-
ence and complement w.rX>, the following language operations are common practice esg.
[CLO8]:

» Concatenation of,, Lo € 3*: L1Ly:={steX*|se LiAte Ly}
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* Kleene-closure of ¢ >*: Lr:={e}uLULLULLLU

« Prefix closure off ¢ ©*: L={r|3seL:r<s}cy*

A languagec is prefix closedf £ = £. The prefix closure distributes over unions, i.e.

£1U,C2 =£_1U£_2

CompletenesfKGM92]* The language is completaf
(VseL: JoeX) [soeLl] 2.1)

Technically, £ = {2} is complete. A languagé& is complete if and only ifC is complete
([KGM92)).

Regular expressions and regular languageway to represent languages over an alphabeat a

compact fashion is to use regular expressions, definedsigely as follows ([CLO8]):

1. The empty languagfz} is denoted by the regular expressionthe empty string language
{€¢} is denoted by the regular expressigando is a regular expression denoting the &e},
forall o € X..

2. If r ands are regular expressions, then soarg(r + s), 7*, s*, representing the concatena-
tion, union and Kleene-closure of the sets representeddng s, respectively.

3. An expression is not regular unless it is built by the fiwise application of the above rules
1land?2.

A language that can be represented by a regular expresstaliadregular language

Automaton.Automata serve as a compact graph-based representatiangefdges that is useful
for visualization, storage and algorithmic processingthis text, we consider only deterministic
finite automata.

Definition 2.1 (Automaton [HU79])
A deterministic finite automatas a 5-TupleG := (Q, %, 9, qo, Q. ) consisting of

* (). the finite set of states
> the finite alphabet

* 0:(Q x Y - @ the unique partial transition function

1This notion should not be confused with the notion of comghathaviours in [Wil91].



15

* qo: the initial state

* (Q,, € Q: the set of marked states

Chapter 1 provides several examples of automata graphsritéednfy;, o)! if ¢ is defined ay € @
ando € 3. We can extend to a partial function orf) x ¥* by defining recursively:

1. 0(q,€):=q, Yqe@Q

2. 9(q,s0) =0(6(q,s),0) whenever botli(q,s) = ¢ € Q andd(q’,0)!.

Theactive event saif a stateg € @ is defined as\(q) := {c|0(q,0)!}. A stateq with A(q) = @ is
calleddeadlock Moreover, a state is callagdachableor accessiblef there exists a path from the
initial state to this state. An automaton is reachable/ssibée if all states are reachable/accessible.
An automaton ishonblockingif from every reachable state there exists a path to a marte. s

A nonblocking and reachable automaton is dendtied. An automatorgenerates prefix-closed
languageC (G') andmarkg a languagel,,,(G) < £(G) as described in the subsequent definition.

Definition 2.2 (Generated and Marked Language, e.g. [CLO8, \6h08])
For an automatoty = (Q, %, 0, qo, @) the generated language is defined as

L(G):={seX*|(qo,s)!}
and the marked language is

Lin(G):={seX*|0(qo,$) € Qm}-

Hence, an automaton is nonblockingff{G) = £.,(G).

Minimal automaton and Nerode EquivalencA.deterministic automaton defines a partition of
L(G) and L,,,(G) into classes of strings leading to the same state. AccorifgiU79], for
each regular languagg there exists a (substantially) unique deterministicdiaitomaton, called
minimal automatonthat marksZ with a minimal number of state$. A minimal automaton
provides a partition oE* into strings leading to the same state that equals theipartf >* into
strings that ar@merode-equivalenw.r.t. £,,(G):

2In the DES literature, also the termacteptsand “recognize’are used adequately to the context.
3“substantially” means that the minimal automaton is unigxeept for isomorphisms like renaming of states.
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Definition 2.3 (Nerode Equivalence, e.g. [Won08], orig. [N&8])
TheNerode equivalenceslation onX* with respect tol ¢ >* is defined as follows. For,t € 3%,

szt < (VueX':suel < tuel). (2.2)

O

For £ c ¥*, two stringss, t € X* with s =, t are callednerode-equivalent w.r.L. Note that all
strings from the set* - £ are nerode-equivalent w.r£, as they have no extension to a string of
L. In the minimal automaton, these strings are representedsinygle state state, usually denoted
“dump-state”, from which there exists no path to a marketéstBhe dump-state usually is omitted,
as only the strings belonging are of interest.

Natural projection and inverse projectioiihe natural projection allows to erase those events from
strings whose observation is either impossible or undelgira

Definition 2.4 (Natural Projection, e.g. [CLO8, Won08])
Thenatural projectionp,: ¥* — X%, 3, € 3, is defined iteratively:

1. letpy(e) :=¢;

2. forse >, o€ 3, letp,(so) :=p,(s)oif o€, Or p,(so) = p.(s) otherwise.

The set valued inverse of is denoteg;!': X* — 2" and defined

pot(s) = {t e X*|po(t) = s} for s € 3%

As the above definition indicates, the projection dist@sutver concatenation, i.e.

Po(t) = po(8)po(t), s,t €.

The projection and its inverse are defined for languages by

Po(L) ={po(s)|s € L}

and
pgl(CO) = {slpo(s) € Lo}

for £ c ¥ andf, c X}, respectively.
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When extended to languages, the projection distributesswovens but, in general, not over inter-
section, i.e.

po(£1 U 52) = po(‘cl) Upo(’CQ)a (23)
Po(L1Nn L) S po(Ly) Nnpo(L2) (Appendix, Lemma A.2)

for £; € ¥*, 3, ¢ ¥, andp, as defined above. The inverse projection distributes oviensrand
intersection, i.e.

Pt (LiuLs) = pit(L1) upy'(Ls),
po (LN L2) = p(L1) npst(La).

Prefix closure commutes with projection and inverse pr@aect

Po(L) = po(L),

5! (L) = p51(L)
for £ c ¥, 3, ¢ X, andp, as defined above.
Synchronous compositioAn important operation on languages and automata is thensynous

composition, which is used to describe the interconneafdwo DES.

Definition 2.5 (Synchronous Composition, e.g. [CL0O8, Won(B
The synchronous compositibof two languageg’; < 3%, i € {1,2}, is defined

Ly || Lo:=pi" (L1) np3'(L2)

where the projectiong; are defined with domaif®; u 3;)* and range:;.

The synchronous product of two deterministic auton@Gi{a= (@1, %1,01,90,1,Qm,1) and Gy =
(Q2,%2,02,90,2, Qm,2) IS

G1||G2 = (Ql x Q2,1 U 22751\\2, (%,17%,2)7 Qm,1 x Qm,z)

with
(01(q1,0),02(q2,0)) if oeAi(q)nAa(gz)
(01(q1,0),q2) if oeli(q)-2
(q1,02(q2,0)) if oeNo(q2) %1
undefined else

Sup((a1,42),0) =

4Also denoted parallel composition or synchronous product
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The synchronous composition of two automata represensg/tichronous composition of the cor-
responding languages:(G, || Gz) = L(Gh) || L(G2) andLiw (G || G2) = Lin(G1) || Ln(G2).

Sequential behaviours anglanguagedKGM92, TW94b, TW94a] In order to describe and ana-
lyze the sequential (also called infinite) behaviour of DE®, notion of infinite-length, so-called
w-strings is useful. The set af-stringsover: c ¥ is denoted

Zw = {S|v Z € Noia'i € E’ S = 0’00'10'2...}.

If for two stringsw € >, r € ¥*, there exist® € X such thatv = rv, we sayr is astrict prefixof
w and writer < w. The strict prefix ofw with lengthn € N, is denotedv™. An w-languageover
Y is a subser c ¥«. Theprefixof anw-language’ c >« is defined

pr(L£)={r|3seL:r<s}cy*

For convenience, fasr(£) we adopt the notatiod from the domairt*, i.e. for £ ¢ ¥ we denote
L :=pr(L). For alanguagé& c ¥* thelimit is defined

L® = {’w € 2w| 3 (nl-)l-eNO,nHl >N, w™ € [,}5
We define thev-languages represented by an automator: (Q, X, 0, qo, @) as (cf. [KGM92])

LZ(G):= (L(G))> ={s]T(ni)ieng, nis1 > 1 : 0(qo,s™)!} and
L(G) = (Lu(G))™ = {s[3(ni)iews nis1 > 132 6(qo,8™) € Qun}-

It is easily verified that the limit operator is monotonic:

Lemma 2.1
Let £,, L, be regular languages ovEr. Then:

El c [Q = £1°° c EQOO (24)
O

Proof Pick an arbitrary stringv € £,°. Hence3 (n;)ien,, ix1 > 1 @ w™ € L1. AS Ly € Lo,
Vn;: w € Ly and thusw € £5,7°. |

In general, the reverse direction is false: consi@iet a*u{b}, L, = a*uc*, both over the alphabet
Y= {a, b, C}, Where£1°° c EQOO but£1 ¢_ Lo.

The completeness property has a strong impact on the melb¢itveen a language and its limit.
The following lemma states that a string that is prefix of a&ngtin a complete language at the
same time is a prefix of an infinite string in the limit of thistpuage, i.e. contributes to this limit.

SObserve thafn; ).y, denotes aimfinite sequence defining; for all 7 € No.
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Lemma 2.2
For a languagé& c Y*, the following equivalence holds:

Lis complete< L =L

Proof

“«<": Pickanys e £ c L. Thus,s € £, i.e. there exists € ¥+ such thatw € £>. Note thatw is
an infinite sequence. Hence, there existsy. such thato < sw and consequentlyo € £>.
Thus,so € L, i.e. L is complete.

“=" L 2L~ is obvious. We show c £=. Pick an arbitrary string, ¢ £ and proceed with the
following algorithm:

(i) i=1

(i) As s; € L there exists; € ¥* such thats;r; € L.
(i) As L is complete, there exists such thats;r;o; € L.
(iv) Saves;, = s;r;0;, seti =i+ 1 and proceed with step (ii).
By n-wise iteration of the above algorithm, a sequergg < s;ry < ... < s,r, can be
constructed, where ¢ N is arbitrary. Thus, there exists an infinite stringe >« with
w" = s,r, € L for infinitely manyn € N. Hence,w € £L>*. As s; < sir; < w, it holds that

sp € L~ and thusC c £~
0

By the above lemma, the prefix-closure of a complete langaqgals the prefix of its limit. Hence,
we receive the following statement, if the language is aola#ly prefix-closed.

Lemma 2.3 ([KGM92])
For a languagé& c >*, the following equivalence holds:

L is complete and prefix-closed> £ = £~

The natural projection fow-strings carries over from finite strings in a straightfordvavay, see
Definition 2.6. The range, however, is the union of finite ansitrings. In contrast, the set valued
inverse projection maps-strings taw-languages.



20 CHAPTER 2 — FORMAL LANGUAGES. NOTATION AND TERMINOLOGY

Definition 2.6
Thenatural projection of infinite stringg,: X« — ¥ u ¥, ¥, c 3, is defined:

for s = 010903+ € 3¢ 1 po(8) := Po(01)Po(02)Po(03) .
The set valued invergg!: ¥} u ¥v — 22" is defined

pot(s) = {te X UX¥p,(t) = s} for s e XF u ¥

The projection and its inverse are defineddelanguages by
Po(L) ={po(s) € By U X|s € L}

and

Pt (L) = {5 e X" UX¥|po(s) € Lo}
for £ c¥*uX«andl, c ¥ uXy, respectively. Accordingly, the Definition 2.5 of the synmhous
product is extended to-languages. For prefix-closed languaggsand L, we have

L7 L2% ¢ (L1 || L),

see Appendix, Lemma A.3, where equality does not hold, iregdrfsee Appendix, Lemma A.4).

This chapter introduced the notation, terminology, repngstion and properties of formal lan-
guages to an amount that provides a technical basis for pfug-output based description of dis-
crete event systems in the following chapter.



Chapter 3

Discrete Event Systems with Inputs and
Outputs

In systems theory and especially in control theory, a majtarest lies in how a system is influ-

enced by its surroundings and how, in return, the systemendes its surroundings. The input-
output-based (I/0O-based) representation of systems sisvitlely used in control theory evolved

from that perception. In this chapter, an 1/0-based viemisoduced for discrete event systems.
First, we extend the language-based description of dsenetnt systems (Section 3.1) by the no-
tion of I/O ports in Section 3.2 to describe the interactibrma®ystem with its surroundings via

inputs and outputs. The I/0O based representation of a pladehand its liveness properties under
external influence in Sections 3.3 to 3.5 is followed by ant&3ed view of a controller (Section

3.6). The main ideas of this chapter have been publishedWs[F] and [PMS07a].

3.1 System Description

We use formal languages to describe the dynamical behaviautiscrete-event process as a math-
ematical system model. In our frameworksystenctonsists of an alphabet that carries the totality
of all possible events and a language over that alphabetibiegcall possible event sequences.

Definition 3.1 (System)
A systemis a tupleS = (X, £) with the alphabeE and the languagé c >~. o

This definition strongly corresponds to Willems’ definitioh a mathematical modedf a phe-
nomenon. Moreover, Definition 3.1 leaves room for a separate defimitbthe terms input and

IFor discrete-event processes, the mathematical moderdiagoto Willems’ definition could be chosen as
(2*, £), with the universe_*.
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output.

We say the system completeffis complete, the system is regulardfis regular, the system is
prefix-closed ifL is prefix-closed etc.

Remark 3.1

Our notion of liveness is not expressed by marked strings,imihis thesis, we consider prefix-
closed systems only. Ongoing research includes the caasioie of non-prefix-closed systeisis-
(2, £) with the instantaneous behaviogrand the infinite (i.e. long-term) behaviogre (rather
than (£)*>). An according automaton representation generafeand marksC. Such system,

if complete, additionally features the property of “eveditty” in that it provides a persistent
guarantedrather than a chance) for strings @ to be extended to a marked string 6f This
extended system description (including the prefix-closse)augments the expressiveness of the
system models and allows to specify a wider range of corasist. ]

We introduce inputs and outputs for discrete event systgntedonotion of I/O ports, via which
systems perform interaction.

3.2 1/0O Ports

The interaction of a plant model with its surroundings vipuhand output is described by the
following notion of a plant-1/O port.
Y T lU @W

System

Figure 3.1: Plant-1/O port

Definition 3.2 (Plant-1/0 Port)
A pair (U,Y") is aplant-1/0 portof the systen(%, £) if
(i) X=WuUuY,U+a+Y,

(i) L (YU+W)"; and
(i) (VseX*Y, pelU)[seL=>sucl].

By item (i), we separate input evenis U from output events € Y. Note that the partition into
input and output alphabet does not coincide with the colatsdity of events: e.g. a sensor event
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may at the same time be an output of one system and an inpubtifarsystem. By item (ii), we
require alternation of output and input events aiming at@eddence between cause and effect.
Remaining dynamics (e.g. dynamics performed on anothepd@®) is captured byl *. When
the systengeneratesome output event € Y on the plant-1/O port it willacceptany input event

w1 € U as an immediate successor (item (iii)) respecting thatrthetican be imposed freely by the
systems surroundings. Consistent with the definition, tleeming arrow in Figure 3.1 denotes
thatU is accepted, while the emanating arrow denotesthiatgenerated.

The following definition of a controller-1/0 port is complentary in the sense that it requires the
system to accept any evemte Y as input and to reply by some evant U as output, after an
optional negotiation with some other system via the alph#@besee Figure 3.2. A controller-1/0
port can be connected with a plant-1/O port, see Proposiitelow.

System

v [w

Figure 3.2: Controller-1/0 port

Definition 3.3 (Controller-1/0 Port)

A pair (U,Y") is acontroller-1/0O portof the system(X, £) if
(i) X=WuUuY,U+a+Y,

(i) L<(YW*U)*; and

(i) (VseX*Uu{e},veY)[selL=>sveLl].

The above notion of a I/O ports relates to Willems’ descoiptof I/O behaviours with free input
and an output that does not anticipate the input. In contivassiy. [Wil91], we do not require the
output to process the input and thereby account for norsaatestic external behaviour.

A controller-1/0 port of one system can be connected withanpl/O of another system port to
achieve a simple feedback structure as in Figure 1.10 bptieserves completeness:

Proposition 3.1
Let (U,Y") be a plant-1/0 port of the complete systéin= (3, £, ), and let(U, Y') be a controller-
I/O port of the complete systey = (X, L) with X =U uY.

Then the feedback structufe » = (X, L, || £2) is a complete system. o

Proof Note thatl, and., are languages over the same alphabeind the compositios, ; :=
Ly || L evaluates tdC; n L. Hence S, » is complete whenevet, = @ or £, = @. Now consider



24 CHAPTER 3 — DISCRETEEVENT SYSTEMS WITH INPUTS AND OUTPUTS

L, # @ # Ly and pick an arbitrary stringe £, 5. Observe that € £,, s € £, and that the language
format(Y'U)" is met by both £, and£,. We distinguish the following possible cases:

() s=eors=s"u, ueU: assS; iscomplete and due to its language structuses £, for some
oeY.Also,svely,VveY,as(UY)is acontroller-/O port 0of5,. In particular,so € L.
Henceso € L 5.

(i) s =s'v, v €Y then, asS; is complete and due to its language structuees L, for some
oeU. Also,su e Ly Yu e U, as(U,Y) is a plant-1/O port ofS;. In particular,so € L;.
Henceso € L 5.

Together, for alls € £, , it holds that there exists € X such thatso € £, 5, i.e. £, 5 iS complete
and thusS, , is complete. |

The setting of Proposition 3.1 already enables the resmicif some physical plant behaviour
given as a plant I/O port using a controller 1/0O port that éxisi actuating events in reaction to
measurement events, see Figure 3.3 a). However, a staratdrdldoop is usually equipped with
an interface to some operator (e.g. by the reference vajiabd a variable describing the effect of
control to the environment of the plant (e.g. the controlalale that is usually a system output).
Based on this consideration, we aim at a control loop thareldd the simple feedback structure
by an interface of the controller to the operator (indéxand an interface of the plant to the
environment (indext), see Figure 3.3 b).

operator
Ye JUC
| controller-1/0 port] controller
Y U Yp Up

| plant-/O port | plan'g
.

environment
(a) simple feedback structure (b) additional interface to operator and environment

Figure 3.3: from simple feedback to control loop
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3.3 1/O Plant

In order to achieve a high degree of modularity in our appnpage aim for a plant model de-
scription that is reusable within various configurations tfiis end, we explicitly separate the
plant model from its surroundings, which we identify as aerapor and an environment. From
the perspective of the operator, the plant models the méxhdyy which the environment can be
manipulated. Hence, an I/O plant is defined as a system eggligjth two distinguished plant-1/0
ports, see Figure 34 One port models the interaction of the plant with an oper@iocontroller)
via eventsp, the other port models the interaction of the plant with thdr@nment via the events
Yk that are not directly observable to the operator (or coletrpl

operator

Yp

JUP

plantSpg

T T

environment

Figure 3.4: 1/0O plant

Definition 3.4 (/0 Plant)
An 1/O plantis a tupleSpg, = (Up, Yp, Ug, Yg, Lpg), Where

(|) (EPEa »CPE) is a system WltmpE = EPOEE, Yp = UPOYP, g = UEUYE, and

(i) (Up,Yp) and(Ug,Yy) are plant-1/0 ports of pg, Lpr).

Note that an I/O plant always possesses the language fdimpat (YpUp + YeUg)*. To illustrate
the above definition we introduce the following conceptiaample.

2In this thesis the relationship between systems, alphatmetsanguages is consequently indicated by matching
subscripts; e.g. the systefiapc always refers to the languadge g over the alphabetapc. FurthermoreYapc
denotes the disjoint union af 5, 35 andX¢, and when inputs and outputs are relevant we used&yg= UpUYa.
Similarly, the natural projection t&’; ; is denoteda; the natural projection t& is denotegya.
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Example 3.1

Transport Unit. Consider a simple transport unit (TU) as depicted in Figusea3. Its behaviour
can be modeled as an I/O plasig, := (Up, Yp, Ug, Y&, Lpg) With Lpr marked by the correspond-
ing automaton model depicted in Figure 3.58)x is a prefix-closed system and hence, all states
are marked, which is denoted by double-lined circles.

pack

(a) physical layout (b) 1/0 plant model

Figure 3.5: Conceptional example: Transport Unit

The TU consists of a conveyor belt carrying a box that can boédvorkpiece to be transported.
A spring sensor inside the box detects the absence or peeséra workpiece dmpty, full).
The initial state (state 1 in Fig. 3.5 b)) is defined such thatgensor reportanpty. The op-
erator can choose between three different commands (statafter the no_op (no operation)
command, the TU does not move, and the system remains in itied state. The command
del_tr (deliver to right) leads to an error state as there is culgrard workpiece present to de-
liver. Choosing the commanthke_fI (take from left) prompts the TU to move the box to its
left border (state 3). Now it depends on the environment ifakpiece is provided from the
left, which is modeled by the eventq I unobservable to the operator. For a plant description
that is independent from the environment, we introduce ther@nment-eventgack andnack
(positive/negative acknowledge) respecting that therenment may or may not comply with the
requests of the plant. If the environment is not in the coodito provide a workpiecenfck),

the request is repeated. When a workpiece is provided frenetivironment, the sensor reports
full. Now (state 6), the commantdke_f1 leads to an error behaviour (the box can carry only
one workpiece), and aftero_op the plant still reportsfull. By the commandiel_tr, the belt
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moves the box to the right border. The evenj_tr models the need for the workpiece to be with-
drawn to the right by the environment. In casepatk, the system returns to its initial state. By
(Up,Yp) = ({no_op,take_fl,del_tr},{empty, full}), we identify the interaction with the op-
erator,(Ug, Yi) := ({pack,nack},{req_fl,req_tr}) describes interaction with the environment.
Note that(Up, Yp, Ug, Y, Lpr ) features all I/O-plant properties of Definition 3.4. O

Clearly, an automato& = (X, @, 6, g0, @) that represents an 1/O plant must itself have a certain
structure such as an I/O plant has, see e.g. Figure 3.5 bknidvdedge of this structure is helpful
e.g. for the graph-based design of an 1/0 plant model, thehgbased test for I/O plant properties
or a structured graph-based visualization of an I/O plake (the hierarchical arrangement of
the states in Figure 3.5 b)). The following definition prasdsuch an automata structure that
corresponds to an I/O plant.

Definition 3.5 (I/O-Plant Form)
A generatoid := (3, Q, 0, qo, Q) 1S in I/O-plant formif

() X = UpUYpUUgRUYE with nonempty alphabetsp, Yr, Uy, Yy
(i) Q=QyVQurLQur
(i) g0 € Qy
(iv) [VaeQy,0eX](6(q,0)! = (0 €Ypnd(q,0)€Qup)V(0eYpni(go)eQue))
(V) [VgeQup,oeX](6(q,0)! = (0 €Up Ad(q,0) € Qy))
(Vi) [VqeQue,0€X](6(q,0)! = (0 €Us A d(q,0) € Qy))
(vii) [Vgq e Qup,peUp](d(q,0)!)
(viii) [Vq e Qur,peUr](d(q,0)!)
(iX) Qum=0Q

(x) G'is accessible.

]
Remark 3.2
Property (ix) guarantees thét represents a prefix-closed system. Properties (ix) andgyi
thatG is trim. O
Lemma 3.1

If a generatoiG := (X, Q, 9, qo, Qm) IS in I/O-plant form, then the syste(xt, £,,(G)) is an 1/0
plant. ]
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Proof Preliminary note: Note that property (ix) implies ¢ Q... Hence,L,,(G) + @. We now
prove that(¥, £,,(G)) provides all I/O-plant properties.

(i) (3, Ln(G)) is a system: by definition; recognizes the languadg, (G) overX. Property
(i) requiresy. = UpUYpUUEUYE, and we identifypy = XpUXg := X with Xp := UpUYp and
EE = UEUYE

(i) (Up,Yp) and(Ug, Yg) are plant-1/0 ports of ¥, £,,(G)). Proof: we show thatUp, Yp)
provides all plant-1/0 port properties. The plant-1/0O pproperty of(Up, Yp) carries over
to (Ug, Yg) by uniform substitution.

(ii.i) From property (i) in Definition 3.5 we directly conalie > = WuUpUYp (with W =

(ii.ii)

X-Up-Yp= UEUYE) andUp ++ Yp.

Ln(G) ¢ (W*(YpUp)*)* with W* = (YgUE)*. Proof: If £,,(G) = {e}, obviously
L,(G) e (W*(YpUp)*)*. For L,,(G) > {e}, we continue with induction: Pick arbi-
traryo € L,(G)nX. Hencep(qo,0)!. As property (iii) requiregq € Qy, property (iv)
implieso € Yp or o € Yi. Both cases prove € (W*(YpUp)*)*.

Now consider a nonempty string,,.1 = 0103 ...0,0p41, 0; € 2, i = 1..n, n € Nwith
S0p+1 € Lin(G). Assumes € (W*(YpUp)*)*. We show thako,,.; € (W*(YpUp)*)*.
Note that there exists some Q such thati(q, 0, )! andi(q, 0,0,.1)! and distinguish
two cases:

(@) 0, € Yg U Yp. In this case, properties (v) and (vi) rule aut Qup U Qug. Be-
cause of property (ii), we can conclugec Qvy. If o, € Yg, property (iv) re-
quiresd(q,o,) € Que. Consequently, property (vi) implies,,; € Ug. Hence,
sop1 € (W*(YpUp)*)*YgUg € (W*(YpUp)*)*.

If 0, € Yp, property (iv) require9(q,o,) € Qup. Consequently, property (vii)
implieso,,1 € Up. Henceso,.1 € (W*(YpUp)*)*YpUp € (W*(YpUp)*)*.

(b) 0, € Up uUg. Then, property (iv) rules ouj € (Qy. Because of property (ii),
we can conclude € Qup U Qug. Hence, properties (v) and (vi) imp(q,0,,) €
Qvy. Consequentlyy,.; € Y U Yp follows from property (iv). Henceso,,.q €
[(W*(YpUp)*)*(Up v Ug) n (W*(YpUp)*)*](Yp v Yi) € (W*(YpUp)*)*.

Thus,so,.1 € (W*(YpUp)*)* whenevers € (W*(YpUp)*)*, which proves the induc-

tion step.

(Vs eX*Yp,ueUp)[se Ln(G) = spe L,(G)]. Proof:

Pick arbitrarysv € L£,,(G), v € Yp. Write ¢ := §(qo,s) and observeéi(q,v)!. As
v ¢ Up u Ug, properties (v) and (vi) rule oute Qup U Qug. Because of property (ii),
q € Qy. Thus, as € Yp, property (iv) implies thay’ := §(q,v) € Qup. Consequently,
property (vii) implies that for alj, € Up it holds thatd(¢’, 1)!. Hence,svpu € L,(G)
for all i € Up.
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Thus,(Up, Yp) and(Ug, Yg) are plant-1/0 ports of%, £,,(G)).

Consequently X, £,,(G)) is an I/O plant. o

With a given plant model, we now can approach the problem afrotier design. In the field
of discrete event systems, the usual design objectivesampl@nce with a desired behaviour
that is expressed as a safety specification and compliartbeceitain liveness properties such
that the desired behaviour is not only passively complieith Wut also exhibited actively. Safety
properties can be expressed as a language inclusion, ghbeeéiveness properties of the plant
strongly depend on its actual external configuration. Ferdiscussion of the plant in a variety of
different external configurations, we introduce the notboonstraints.

3.4 Constraints

Considering its definition, an 1/0 plant may be subject tostmaints on the operator and/or the
environment; e.g. the operator may or may not comply to thexaipr’s guidelines and the envi-
ronment may or may not provide resources.

Example 3.2

Transport Unit. Consider the transport unit that allows for transportatidrworkpieces. Its
ability to continuallytransport workpieces depends a) on the operator, as he lgetate the
eventsdel_tr andtake_fI in a reasonable order, and b) on the environment, as it hasvale or

accept workpieces from time to time. m]

In this framework, we describe those constraints as thetyaof controller-I/O ports that can be
connected to the I/O plant to obtain the desired livenesgapties.

Definition 3.6 (Constraint)
A constraintis a tuple(U, Y, £) if

(i) (3,L£) is asystem withE = UUY ;
(i) (U,Y) is a controller-1/0 port of ¥, £) ;

(ii) L is complete.
i

By item (iii), we rule out constraints that preclude livea@$ any I/O plant under such constraint.
We refer to theminimal constraint(U, Y, £) with £ = (YU)*, if actually no constraint is con-
sidered, and thenaximal constraintU,Y, £) with £ = @. The operator and the environment
constraint are denote$h = (Up, Yp, Lp) andSg = (Ug, Yg, Lk ), respectively.
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The following definition provides an automata structurd tmresponds to a constraint.

Definition 3.7 (Constraint Form)
A generatoiG := (2, Q, 6, qo, Qwm ) is in constraint formif

(i) © = UUY with nonempty alphabefs, Y
(i) @=0Qv\Qu
(ii)) qo € Qv
(V) [VgeQy,0€X](6(q,0)! = (0 €Y And(q,0) € Qu)
(V) [VgeQu,0eX](6(q,0)! = (0 €Uni(qg0)eQy))
(Vi) [VqeQy,veY](d(q,0)!)
(vii) [Vqe@Q](3o€X:0(q,0)!)
(Vi) Qum=Q

(iX) G is accessible.

]
Lemma 3.2
If a generatoiGG := (X, Q, d, g, Q) IS in constraint form, then the systefi, £,,(G)) is a con-
straint. O
Proof See Appendix A.2. ]

In our framework, the notion of liveness is consistentlyriatated as liveness under constraints.

3.5 Liveness

A majority of the approaches to control of DES that regardriess use the technique of marking
particular strings of plant and/or specification to expréssired liveness properties. In most of
these approaches, the respective objective of contradggd is to achieve or preserve the perma-
nent chance for any string of the closed loop to be extendadrarked string.

Our notion of liveness is different in that it requires outpuents to occur persistently rather than
strings/states to be reachable and thus is not based onngarkirst, we define the notion of a
Yp-live language and then identify two coupled liveness pripe adequate for our setting.
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Definition 3.8 (Yp-Liveness)
Let £ be a regular language an@ be an alphabet. If

(Yw e L2 )[pyp(w) e Y5 ],

then/ is said to b&¥p-live.3 O

Apparently, any subset of &--live language is als®p-live:

Lemma 3.3
Let £ be a regular language ang@ be an alphabet. I is Yp-live, then so is any sublanguage of
L. O

Proof Let K be an arbitrary sublanguage 6f Because of Lemma 2.1, it holds that> c
L. Thus, for allw € K> we havew € £ and, asC is Yp-live, it holds thatpyp(w) € Y.
ConsequentlyiC is Yp-live.

]

The above statement is important for a) discussing the déisgof an I/O plant within different
external configurations (modularity) and b) abstractiasdnd control. Usinp-liveness, we can
describe the liveness properties of an 1/0 plant as follows.

Definition 3.9 (I/O Plant: Liveness Properties)
Let Spg = (Up, Yp, Ug, Y&, Lpr) be an I/O plant and le$p = (Up, Yp, Lp) andSg = (Ug, Yz, L)
be constraints.

() If Lp || Lpg || Lk is complete, thedpy said to becomplete w.r.t. the constraing andSg.

(i) If
(Ywe (Lp || Log | L)) [pyp(w) e Y ],* (3.1)

then the plant said to bg--live w.r.t. the constraintsp and Sg. 5

Completeness requires the plant to persistently issudésg\ven prohibits deadlocks. Moreover, the
completeness property guarantees that each sequencents ewatributes to amfinite sequence

of events in the language limit considered¥yp¢liveness, see Proposition 2.2. The second liveness
property,Yp-liveness, requires that any infinite sequence of events imclsde an infinite number

of measurement events reported to the operator (no livelbekveen any twdp-events). Hence,
properties (i) and (ii) when put together indedaranteehat an infinite sequence of measurement
eventsv € Yp is generated by the plant under constraints and, in retofilaeince by the operator

is persistently possible. Technicaly || Lpg || L = @ provokes both liveness conditions to be
met trivially.

3|f different alphabets such &% or Y are concerned, we speakXif,- or Yc-liveness, respectively.
4i.e. if Lp || Lprg || Lg is Yp-live



32 CHAPTER 3 — DISCRETEEVENT SYSTEMS WITH INPUTS AND OUTPUTS

Example 3.3

Transport Unit. Temporarily, assume minimal (i.e. no) constraiits,;,, andSg,,,;,, for the model
of the TU which corresponds to arbitrary external configoret. Note thaSSpg is neither complete
nor Yp-live with respect to these constraints. As seen in Figuse3.completeness is violated in
the error state because no further event is possible. Obviouslydéasllockis avoided by any
operator that meets a constrafizton the correct alternation of the commandse_f1 anddel_tr,
see Figure 3.6.

Figure 3.6: Operator constraint for the TU

Moreover, as the TU plant model is designed independentiiyeoénvironment, the extremal case
that the environmenhevercomplies with requests of the plant is included in the modehe
resultinglivelock violates theYp-liveness and is represented by(r&q_fI nack)-loop between
states 3 and 4 and(aeq_tr nack)-loop between states 7 and 8 in Figure 3.5 b).

The environment constraid := (Xg, ((req_f1 + req_tr) pack)*) models the prohibition of the
eventnack, i.e., the assumption that requests of the planbbsaysaccepted by the environment;
see Figure 3.7.

@

req_fl, pack
req_tr

@

Figure 3.7: Environment constraint for the TU

The liveness properties of the plant are preserved if a cbb@trconnected to the plant complies
with the operator constraint and if the external configoratneets the environment constraint, see
Proposition 3.2. The resulting behaviour of the TU undercti@sen constraints is shown in Figure
3.8.
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take_fl

pack

Figure 3.8: Transport Unit under constraints

As can be seen, the TU is complete arigdlive w.r.t. the chosen constraints, as a) there is no
deadlock state (state with empty active event set) and @ istnever visited twice unless at least
oneYp-event occurs. m]

The following proposition shows that constraints can inlee used asonditiongor liveness of an
I/O plant, as its liveness is guaranteed whenever its sndiogs pose a subset of the constraints.
Note that this result is a consequence of the I/O structudethe Yp-liveness-property that is
preserved in any subset.

Proposition 3.2

Let Spr = (Up, Yp, Ug, Yg, Lpr) be an 1/O plant that is complete afi@-live w.r.t. the constraints
Sp = (UP,YP,EP) andSE: (UE,YE,EE) . . . .
Then,Spg is complete and’s-live w.r.t. any constraintsp = (Up, Yp, Lp) andSg = (Ug, Yg, Lk)
with £p ¢ Lp andLg € Lg. O

Proof We show thatp || Lpg || Lg is complete and/p-live. Recall that, technicallg is
complete and’p-live. Now, we consideLy || Lpg | Lk + @. Observe thalp || Lpg || Lr < Lp ||
ﬁpE H E'E c EPE-

Completenes®ick an arbitrary string € Lp || Lok || Lk, i.€.5 € Lpg, pp(s) € Lp andpg(s) € L.
Observing the language formés || Lpg || £x € (YeUp + YUs)* we distinguish:

* s=¢€,0rs=s"pwith y e Ug u Up:
As Lp | Lpg || L is complete, there existse Yp U Yi such thato € Lp || Lpg || Lk.

If o € Yp, thenpg(so) = pr(s) € Lg. Forpp(s), it holds that eithepp(s) = € or pp(s) =
s" up with up € Up because of the language format&yfz. As (Up, Yp) is a controller-1/0
port of Sp, it holds thatpp (s)v € Lp Vv € Yp. In particularpp(s)o € Lp.
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Analogously:lf o € Yz, thenpp(so) = pp(s) € Lp. Forpg(s), it holds that eithepg(s) = ¢
or pe(s) = s"ug with ug € Ug because of the language format@fz. As (Ug,Yr) is a
controller-1/0 port ofS, it holds thatpg(s)v € L Vv € Y. In particularpg(s)o € L.

Togetherso € Lp || Lpg || L.

e s = s'vwith v e Yp: As pp(s) = pp(s')v € Lp and Lp is complete per definition of 1/0
constraints, there existse Up such thapp(s)o in Lp. As (Up, Yp) is a plant-1/0O port of
Spg, it holds thatsy € LpgVu € Up. In particular,so € Lpg. Moreover,pg(so) = pg(s) €
Ly. Togetherso € Lp || Lpg || L.

« Analogously: s = s'v with v € Yi: As pp(s) = pe(s')v € Ly and Ly is complete per
definition of 1/0 constraints, there existse Ug such thapg(s)o in Lr. As (Ug,Yg) isa
plant-1/0 port ofSpg, it holds thatsy € LpgVp € Ug. In particular,so € Lpg. Moreover,
pp(s0) = pp(s) € Lp. Togetherso € Lp || Lok || L.

Observe that the above items cover all possible cases fbhus, for an arbitrary string e Lp ||
Lpg || Lk, there exist € Ypg such thatso € Lp || Lpg || Lk, i.e.Spg is complete w.r.tSp and
Sk

Yp-liveness. As Lp | Lpg | Lg is Yp-live and aslp | Lpe || Lr € Lp | Lpe || Lg, also
Lp || Lk || Lk is Yp-live, see Lemma 3.3. i

Note that, in practice, the chosen constraifitsand Si usually are not fulfilled a priori by the
surroundings of the plant and thus must be respected by gr@tmp/controller or else be passed
on asrequirementso superposed operators/controllers.

Remark 3.3

Regarding the Definition 3.8 dfp-liveness, it is interesting to note that, in the framew@k\94]

for supervisory control ofimed DES, a state-based, but effectively identical propertysisduto
postulate persistent passage of time (as stated in [OW@€i})g a (clock-}Yick-event representing
the passage of one unit of time, a finite-state model of a tidiscrete event system (TDES) is
supposed to bactivity-loop-free meaning that, starting from a state of the TDES, there must
be no loop (sequence of transitions leading back to the saate) shat is free ofick-events.
Consequently, as stated in [BW94], any infinite string gatext by the TDES must include the
occurrence of infinitely manirick-events. O

In the following section, we define the term of an 1/0O con&oknforcing a safety specification
and identify admissibility conditions for a complete arigtlive closed loop.
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3.6 1/O Controller

The task of the 1/O controller is to assist the operator in imalating the environment according
to a given specification; see Figure 3.10 a) and c¢). We projpodeft the specification as an 1/O-
plant modelSy,eccr = (Xcr, Lspeccr) Of the desiredexternal closed loop, see Figure 3.10 c): by
its plant-1/0 port(Uc, Y ) we introduce a sét of abstract desired tasks (modes of operation) for
the closed loop and a skt of desired responses of the closed loop to the operator. debr task

u € Ug, the specification expresses the desired behaviour of tisedlloop w.r.t. the environment
via sequences on th@/g, Yg)-port and one or more associated responses denoting Statuse

or completion of the task. To take into account and to excladaehaviour by the operafpran
operator constrainf: := (X, Lc) can be introduced. The original constradf for liveness of
the plantSpr, may also be assumed f6,..cr such that all in allSy,..cr is reasonably designed
to be complete antl-live w.r.t. S¢c andSg.

Example 3.4
Transport Unit. For the TU, a specification can be designed by the systemcr =
(EcUZE, Lepeccr ) With 3¢ = UcUY( = {stby, (2r}U{idle} and Lqpeccr @S Seen in Figure 3.9.

Figure 3.9: Specification for the TU

By the measurement eveitle we introduce a feedback to the operator notifying that thei§U
ready for transport of the next workpiece. We specify thatdperator can choose between two
operational modes. After the commastby (standby), no interaction with the environment is
desired. With the comman@r (left to right) we specify that a workpiece from left is regted
from the environmentq_fI). In case of positive acknowledge, the workpiece shall logiged

Se.g. operator tries to trigger a final task before a respeatitial task
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to the right ¢eq_tr). Note that the specification is complete arigtlive w.r.t. aminimal S and
the givenSg, i.e. we allow the operator for arbitrary orders of the comdsstby andi2r and may
assume the same constraints on the environment as for tisaplant. Now, it is the controller’s
task to enforce appropriatép-sequences on the plant to achieve the specified behavidlr wi
respect to the environment. O

In order to provide the operator with the desired view on tlesed loop, the controller must
provide the plant-1/0 portUc, Y) to the operator. Evenis € U issued by the operator trigger
more or less complex tasks to be performed by the controfidrthe plant. Occasionally, an
abstract measurement event Y has to be issued by the controller to indicate the status of
the current task. Hence, the controller performs both,roband measurement aggregation and
thereby provides an abstract external vi8w; = (Xcg, Lcg) Of the closed loop between operator
and environment.

Formally, we define the I/O controller as a system with a adlr-1/0 port and a plant-1/0 port
that interact with the plant and the operator, respectively

operator
ol e Vs w |w
controllerScp
YP UP ﬁ SP SspeCCE
plantSpg
YEI Ug T S YEl IUE
environment
(a) Closed loop (b) Constraints (c) Specification

Figure 3.10: I/0 Controller Synthesis Problem

Definition 3.10 (I/O Controller)
An 1/O controlleris a tupleScp = (Uc, Ye, Up, Yp, Lcp ), Where

(i) (3cp,Lcp) is asystem withEcp = XcUYp, Y := UcUY, Xp := UpUYp ;

(i) (Uc,Ye) and(Up, Yp) are a plant- and a controller-1/0 port f0Ccp, Lcp ), respectively;

(III) Lcp € ((YpUp)*(YpYCUcUP)*)* ;

(iv) Lcp is complete.
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Items (i) and (ii) enforce the language form&tp < ((YpUp)*(Yp(YcUc)*Up)*)*. Thus, item
(iii) forbids the loop(Y-Uc)* and hence ensures that each command Uq from the operator

is actually applied to the plant beginning with a controlmver € Up . Operator commands
without effect on the plant being controlled are therebyid®d. Note that controller and plant
synchronize only via the alphabEt; from the perspective of the plant, the controller conforms
with the alternatio{(YrUp )" and, in particular, the controller cannot observe envirentevents.

When connecting a controllécp and a plantSpr, we obtain thefull closed loop(Xcpg, LcpE)
and theexternal closed loofXcg, Lcg) with the full closed-loop behavioufcpg := Lop || Lpg
and the external closed-loop behavidii = pce(Lcp || Lpr), respectively. For the language
format of the full closed loop under constraints, we obtain

Lc || Lcp || Ly || LrC ((YpUp)*(YPYCUcUp)*(YEUE)*)*.

As an important result of the 1/O structure, the externasetbloop behaviour itself can be seen to
be an 1/0O plant:

Proposition 3.3

Let Spg, = (Up, Yp, Ug, Yi, Lpe) be an 1/0 plant, and le$cp = (Uc, Yo, Up, Yp, Lop) be an 110
controller.

Then, the external closed-loop systél:; := Scp ||ex Spr = (Uc, Y, Ug, Yi, Log) With Leg =
pce(Lep || Ler) is an /O plant. O

Proof We show thatScg provides all I/O-plant properties.
() Lcg € pee[((YeUp)*(YpYcUcUp)*(YeUr)*)*] = (YcUc)*(YeUE)*)* € Xce”
= (Xcg,Lcg) IS a system.

(i) ¢ (Ug,Yg) is plant-1/O port of(Xcg, Lcg ). Proof:
ObViOUSly,ECE = WUUEUYE with W = UcL:JYC =Yce - Yg - Ug.

As shown in (i),Lcg € (W*(YgUg)*)*.

YenYcep =2 = (VseLcp || Lo, Yur € Ug) [ppe(s)ur € Lrp = sup € Lcp |
Lpg]. Hencepcg(sug) = pee(s)ug € Leg. Thus, the free input property éf; of
I/O-plant(3pg, Lpr ) is retained under control and projection.

* (Uc,Ye) is plant-1/0 port of(Scg, Leg): as above. .
Moreover, persistent feedback to the operator has to beeqwess$ in the closed loop, i.6-

liveness is required. We observe that the 1/O structurdf iisanot sufficiently strong to imply
completeness ant-liveness for the full or external closed loop under arbjtreontrol action.
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As, for example, the controller may not comply with the operaconstraintSp identified for
liveness of the plant, the closed-loop system may run inteaalocksituation, which is considered
undesirable. More subtle is the fact that arbitrary lengrings s € (Xp UXg)* may occur between
each pair of control and measurement eventsl/ andv € Y, which amounts to measurement
aggregation. For the considered prefix-closed languagesntiplies that the closed-loop could
also evolve on an infinite length stringe (Xp U Xg)~. In thislivelock situation the operator no
longer receives measurement eventsY and, hence, can not issue further control events.

The following admissibility condition addresses both essun that it implies completeness and
Yc-liveness for the closed-loop system; see Propositioni3d4Taeorem 3.1.

Definition 3.11 (Admissibility)

Let Spg = (Up, Yp,Ug, Y&, Lpr) be an I/O plant and leSc = (Uc, Yo, Lc), Sp = (Up, Yp, Lp)
andSg = (Ug, Yg, Lg) be constraints. Then, an I/O controll§gp = (Uc, Yo, Up, Yp, Lcop) IS
admissibleo the plantSpr w.r.t. the constraint§c, Sp, andSg, if

() pp(Lc || Lep || Leg || Le) € Lp;

(II) »CCP H Lpg is Yc-”VG W.r.t.SC andSE .

O
Remark 3.4

Note that item (i) in the above definition impliess(Lc || Lep || Lok | L&) € Lp || Lok || L,
I.e. the plant sees the controller as a subset of the comisfai |

The above definition provides each constraint depictedgn Bil0 b) with a certain role. While
Sc andSg must be fulfilled by the external configuration in both iter)sagd (ii), condition (i)
requires that the settingc | Lcp complies with the constraifp. HenceSp has to be met by
the controller. This condition already ensures completséthe full and the external closed loop
behaviour, see Proposition 3.4. As a technical consequéinesset(Lc | Lcp || Lpk || Lg)*°

is non-empty, which is relevant to condition (ii) that derdai-liveness of the full closed loop
behaviour. For the full closed, we obtain the following riésu

Proposition 3.4
Let Scp = (Uc, Yo, Up, Yp, Lep) be an 1/O controller, leSpg = (Up, Yp, Ug, Yz, Lpr) be an /O
plant, and letS¢ = (U, Yo, L¢), Sp = (Up, Yp, Lp) andSg = (Ug, Yi, Lg) be constraints.
(i) If Spg is complete w.r.tSp andSg, andScp meets the admissibility condition (i), thedy: ||
Lcp || Leg || Lg is complete.

(i) Ifin addition Scp meets the admissibility condition (ii), thefy || pce(Lcp || Lrr) || Lr IS

complete.
]

Proof See Appendix A.2 0
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Note that, in general, the natural projection of a languagebnth, artificially produce complete-
ness of the result by hiding deadlocks or abolish compls®péthe original language by hiding
all extensions of some string. Hence, Proposition 3.4 aises that both is not the case for the
full and external closed loop.

For the external closed loop, obtain the following impottasult.

Theorem 3.1 (External Closed Loop)

Let the I/O plantSpg, = (Up, Yp, Ug, Y, Lpr ) be complete andlp-live w.r.t. the constraintSp and
Sg, and letScp = (Uc, Yo, Up, Yp, Lcp) be admissible t&pg, w.r.t. the constraintS, Sp, andSg.
Then the external closed-loop systé; = (Uc, Yo, Ug, Yi, Lcg), Lo = pee(Lep || Lpg), iS

(i) an 1/O plant;
(i) complete w.r.tSc andSg;

(i) Yg-live wert. S¢ andSg.

Proof
() Scg is an /O plant according to Proposition 3.3.

(i) Scg is complete w.r.tSc andSg according to Proposition 3.4, item (ii).

(ii) Scg is Yo-live wert. S and Sg. Proof: Note that the full closed loop behaviaS¢py is
Yc-live w.rt. S¢ and Sg. This meangyc(w’) € Y for all w’ € (Lo || Lepe || Lr)™.
Observe also that for alb € (Lc || Leg || Lr)™ it holds thatw = pceg(w’) for some
w' e (Le || Lepr || Le)*, andpyc(w) = pyc(pee(w’)) = pyc(w’). Hencepyc(w) € Y for
allwe Le || Lepr || Le.

O

According to this result, the admissibility condition ings that the external closed lodpyg, is an
I/O plant that is complete anx-live with respect to the given constraints. Thus, in a highecal
control architecture, the closed loop can serve as a pladehfor the design of the next layer of
control and measurement aggregation.

Hence, the problem to be solved is the synthesis of an adit@d$D controller. The controller
synthesis problem is given by the setting depicted in Fidui®, with the 1/0O controller as the
desired solution.

Definition 3.12 (I/O Controller Synthesis Problem)
An /O controller synthesis problems a tuple (Spg,Sc,Sp, Sk, Sspecce) Where Spg =
(UP,YP,UE,YE,EPE) is an I/O pIant,Sc = (UC,YC,E(]), Sp = (UP,YP,EP) and SE =
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(Ug, Yz, Lg) are constraints, anfl,c.cr = (Uc, Yc, Ug, Yi, Lspeccr ) IS asafety specificatian

A solution for the I/O controller synthesis problésan 1/0O controlleScp = (Uc, Ye, Up, Yp, Lcp)
that is admissible t&pr W.r.t. Sc, Sp, andSg and that enforces the safety specificaff..cx on
Spg W.I.t. Sc andSg, i.e.ch([,c H Lcp H LpE H EE) c EspecCE- O

Example 3.5

Transport Unit. The I/O-plant modelSp;, of the TU as in Figure 3.5 b), the constraidis and
Sk as in Figures 3.6 and 3.7, a minimal constrdigtand the specificatioS,..cr as in Figure 3.9
pose an I/O controller synthesis problem. O

As the environment evenisg are not observable by the controller, the above problem atsda

a controller synthesis problem under partial observatiaagain refer to [MR99, KGM92] where
related problems are addressed. Note that the trivial abat(with empty language) solves the
synthesis problem. Hence, the following theorem estaidisimique existence of a least restrictive
solution within afinite family of solutions.

Theorem 3.2

Given an 1/O controller synthesis problen{Spg,Sc,Sp, Sk, Sspeccr ), 1€ Scpa
(Uc,Ye,Up,Yp,Lopa), a € A, denote a finite family of solutions. Thedcp =
(Uc,Ye,Up,Yp, Lcp), Lcop = UaeaLcpa, also solves the problem. o

Proof We show thatScp is admissible and enforcek,..ce. We begin with proving thabcp is
a controller that provides all admissibility properties.

* Scp is an I/O-controller. Proof:

() Itis obvious thatScp is a system.

(ila) (Uc,Ye) is a plant-1/0 port. Proof: pick an arbitrasy € Lcp, v € Yo and an arbitrary
1 € Uc. Thus, there exists somesuch thatv € Lcp,,. Consequentlysyup € Leop, and
thussvu € Lop.

(ila) (Up,Yp) is a controller-I/O port. Proof: pick an arbitrary. € Lcp, 1 € Up and
an arbitraryr € Yp. Thus, there exists some such thatsy € Lcp,. Consequently,
Suv € ,Ccpa and thUS‘SluV € Ecp.

(i) Lepo € ((YpUp)*(YpYcUcUp)*)*, Vae A.

= UpaLcpo € ((YeUp)* (YpYcUcUp)*)*.

(iv) Scp is complete. Proof: pick an arbitrarye Lcp. Thus, there exists some such
thats € Lcp,- AS (Zcp, Lop,) IS complete, there existse Ycp such thatso € Lep,,.
Consequentlyso € Lcp.
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* pp(Lc || Lep || Leg || L) € Lp.
Proof:
pp(Le || Va[Lepa] || Lpg || L) =Hemmail
pp(Ual(Le || Lepa || Lo || Lr)]) =
Uapp(Le | Lepa || Leg || Le) € Lp.

* Lcp || Lpg is Yc-live w.rt. Lo andLg. Proof:

Pickw € (Lc || Ua[Lepa] || Lpg || Lg)* =temmaAl
(UalLc | Lepa || Lpg || Le])o =temmaAs
Ual(Lc |l Lepa || Leg || L&) ]

Thus, there exists somesuch thatw € (Lc || Lopa || Lee || LE)®. AS Lcp,, IS @admissible
to Spg W.I.t. Lo andLg, it holds thatpyc(w) € Y.

Finally, Scp enforcesSpeccr W.I.t. S andSg. Proof:

pce(Le || Ya(Lepas) || Lpg || L) =temmaAl

pCE(Ua(EC || Lcp,, || Lpg || EE)) _Equation 2.3

Ua(pCE(EC ” Lcp,, H Lpg ” EE)) c EspecCE O

Note that this result does not hold for the union of an infisgeof solutions, a¥.-liveness is not
necessarily preserved under infinite union.

Proposition 3.5

Given an /O controller synthesis problefi := (Spg,Sc,Sp,Sk,Sspeccr), €1 Scpa =
(Uc,Ye,Up, Yp, Lcopa), a € N, denote an infinite family of solutions &f.

ThenScp = (U, Yo, Up, Yp, Lcp ), Lop = Uaen, Lopa, May Not be a solution di, in general. o

Proof Given all entities of the above proposition, we show thatrghexist I/O controller
synthesis problems such thétp || Lpg is not Y-live w.r.t. Lo and Lg.

Consider a simple counterexamplell := (Spg,Sc,Sp,Sk,Sspecce) With  Spg =
{yp,up,yr,up}, (ypup)*), Sspecce = ({yo,uc,yr,ur}, (ycuc)*) and all constraints mini-
mal. From the following infinite family of controller§Scp, = (Xcp, (yp(upyp)*ycucup)*),

a € Ny, obviously each single member is a solution. However, tfiaite union of all solutions
leads toScp = (Xcp, (ye(upyp)*ycucup)*). When attached to the plant, the full closed loop
behaviour isCcpe = Lep || Lee = (yp(upyp)*ycucup)*). One can see that the limitcpr™
contains the string = yp(upyp )~ With pyc(w) = € ¢ Y¢. Hence,Lcpg IS NotYc-live w.r.t. Lp
andLg, and consequentl§cp is not a solution ofI. |

5This example is constructed for simplicity of the proof. Téalso exist praxis relevant examples.
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Note that the above proposition does not affect any of theltsepresented in this framework.
However, the controller design has to be implemented withtexhal requirements such thig-
liveness is achieved also under infinite unions of solutmmthe set of all solutions is finite. The
shape of these requirements depends on the respectiveampli A possible elaboration of these
requirements respecting the application point of view tbgewith a respective controller design
algorithm are proposed in Chapter 4.

Example 3.6
Transport Unit. For the 1/0O controller synthesis problem of the TU, our swsil algorithm
returns the controllefcp with Lcp as depicted in Figure 3.11.

Figure 3.11: Controller for the TU

Formally, the I/O controller accepts all measurement essehthe plant, even those that can ac-
tually not occur; the respective transitions are denotedrhy arrows leading to error states that
represent an error behaviokigi; (see Chapter 4) and are never reached. It is verified thagif th
environment constrainfy, is fulfilled, the closed loop is complete an@-live and features the
external behaviour specified B¢, c.cE. O

We arrive at one of the central statements of this contoutOur framework makes similar use
of the I/O structure as [MR99] and thereby allows &trstraction based controller synthesis.
solutions obtained for a plant abstraction are guaranteedlve the original problem.

Theorem 3.3 (Abstraction-Based Control)
Given an I/O plantng = (Up,Yp, UE7YE7£’PE); let SPE = (UP,YP, UE7YE7£~PE) be a plant ab-
straction, i.eLp, € Lpg. If the plantSpg is complete and’s-live w.r.t. the constraintSp andSg
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and if Scp solves the 1/O controller synthesis probIQLﬁDE,SC,SP,SE,SSpeCcE), thenScp also
solves(Spg, Sc, Sp, Sk, SspecCE ) - O

Proof

() Scp is admissible t&Spg W.r.t. Sc andSg. Proof:

— As Scp is admissible taSpr W.I.L. Sc and Sg, it holds thatScp is a controller by
definition of admissibility.

— As Scp is admissible t&pg W.r.t. S¢ andSg, it holds thatpp (L || Lep || Lrr | Lg) <
Lp. Note that, withCpg, € Lpg, it follows that

pe(Le || Lep | Lok | L&) € pp(Le || Lop | Les || Le) < Lp.

— As (Scpg, Lep || Lpg) is Ye-live wert. £ and Lg,” for all w € (L¢ || Lep || Lok |
Lg)> it holds thatpyc(w) € Y¥. In particular, this holds for allv € (Lc || Lcp |
EPE ” EE)oo c (Ec H Ecp ” EPE ” EE)Oo Hence(ECpE,Ecp H EPE) is YC-”VE W.I.t.
EC andEE.

(1) Scp enforcesLqpeccr ONSpg W.ILL. Sc andSg. Proof: AsLqp enforcesly,c.cr 0N Spr W.I.L.
Sc andSg, it holds thatpCE(£C~|| Lep || Leg || Lg) € Lopeccr. Note thatpep(Le || Lep |
Lpg || L&) € pee(Le || Lep || Lok || Li) € Lepeccr. HeNce Scp enforcesly,cccr 0N Spi
w.r.t. Sc andSk.

m]

If the abstraction is of less complexity (humber of statbg) tcomputational effort for controller
synthesis is reduced accordingly. However, as a well-kndamnside of abstraction-based con-
trol, there is no guarantee that there exists a non-trivatroller for the plant abstraction even if
there does exist one for the original plant. Hence the questiow to obtain a "good" abstraction,
I.e. an abstraction that can be realized on a state spacks gratll in comparison to the original
plant while still allowing for successful controller syettis. We propose the safety specification
Sspeccr Of the preceding design step as a plant abstraction of tlegrettclosed-loop behaviour
Scr, as, by being enforced on the plant, it meets the abstractodition Lo € Lopeccr @and
represents those aspects of the preceding design stepr¢hagl@vant for subsequent controller
design. Consequently, we expect to obtain a non-trivialtsmh based on that abstraction. This
line of thought has been further elaborated in the contekibfid systems [MR05, MRDO3].

Example 3.7
Transport Unit. For the design of superposed controllers fahain of TU’sexplained in Chapter
5, we do not compute the external closed-loop behaviourdf ezcally controlled TU, but rather

Follows from admissibility ofScp to Spr, W.r.t. Sc andSg.



44 CHAPTER 3 — DISCRETEEVENT SYSTEMS WITH INPUTS AND OUTPUTS

use the specification as seen in Figure 3.9 as an abstraetednpbdel of the locally controlled
behaviour. O

The following definition provides an automata structure tmresponds to an 1/O controller.

Definition 3.13 (I/O Controller Form)
A generatoid := (3, Q, 0, qo, Q) 1S in I/O-controller formif

() X =UcUYcuUpUYp with nonempty alphabetsq, Yo, Up, Yp

(i) @ =QucVQyc,urLQurlQyp

(ii}) o € Qvp

(V) [VqeQyp,0eX](d(q,0)! = (0 €YpAd(g0)€QvcupuQup))

(V) [VgeQup,0€X](d(q,0)! = (0 € Up Ad(g,0) € Qvr))

(Vi) [VgeQvcur,o€X](6(q,0)! = (0 eUpnd(qg,0)eQyp))V(0eYenrd(g,o)e€Que))
(Vi) [Vq e Quc,0 €X](6(g,0)! = (0 € Ucnd(g,0) € Qup))
(vili) [Vq e Quc,peUc](6(q,0)!)

(iX) [VqeQyp,peYp](6(g,0)!)

x) @m=0C

(X)) [VgeQ](3oeX:6(q,0)!)

(xii) G is accessible.

[
[
[
[
[
[

m]
Lemma 3.4

If a generatoiGG := (X, Q, d,qo, Qm) is in 1/O-controller form, then the syste(i, £,,(G)) is an
I/O controller. O

Proof See appendix, Proof A.2. m]



Chapter 4

Controller Synthesis

It is an approved method of discrete event controller sysithi® first reduce the possible plant
behaviour to a desired (but maybe infeasible) behaviourdmgposition with the specification.
From the desired behaviour, the closed-loop behaviouraileehaviour that features the desired
liveness properties and that can be achieved by a confrdldeduced by subset construction.
From this result, the solution, i.e. the controller thatiaebs the closed-loop behaviour is then
extracted. Our synthesis procedure, which is presentdddrchapter, conforms with this method.
The basic ideas of the procedure have also been publishB#i8(08]. Thereby, a major aspect is
to restrict a given language toYga-live sublanguage, see admissibility condition (ii) in Ddtfon
3.11.

4.1 Yc-Acyclic Sublanguage

The calculation of &-live sublanguage involves the detection of strings in thegosition of
plant and specification that compromige-liveness. In the automata representation of the consid-
ered language, such a string is indicated by a so-calleliss cycle of states, within which each
state can be visited arbitrarily often without the occucesnf anyY-event.

Example 4.1
Consider the generator of the languadm Figure 4.1 a) oveE = {a, b, ¢, yc } with Y¢ = {yc}.
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(a) Languagel (b) Sublanguag&, (c) Sublanguagf,

Figure 4.1: Y-live andY-acyclic sublanguage

The indicated cycle of the statésand?2 is aY-less cycle, as they can be visited infinitely often
without the occurrence of the evept. ]

We observe that a string that violatgs-liveness features two properties:

a) Nerode-equivalence to at least one of its own strict pgef(ke., a cycle is closed)

b) The extension from each Nerode-equivalent prefix to tmsickered string does not contain
any Yc-event.

Example 4.2

The stated and2 in Figure 4.1 a) represent e.g. the strirtg and its nerode-equivalent prefix
where the continuatiobu from a to aba does not contain the event (i.e. items a) and b) above
are met). Due to the nerode-equivalence, we can appetal: arbitrarily often to obtain a string
of £, i.e.a(ba)* c L. Consequentlyg(ba)* € L= with pyc(a(ba)~) = € ¢ Y&, i.e. L is notYc-
live. ]

A language that does not contain such stringgiive. This can be shown by the following propo-
sition introducing an equivalent formulation of the-liveness property based on the above items
a) and b). From this property, we will deduce the family ofcadled Y-Acyclic sublanguages
featuring a unique supremal element.

Proposition 4.1
Let K be a regular language over the alphabet Y. K is Yo-live if and only if

Vse: (Vt+e€)[st =¢ s = pyc(t) #€] (4.1)

where=y denotes the Nerode equivalence oxerw.r.t. K.



SECTION 4.1 —Y-ACYCLIC SUBLANGUAGE 47

Proof Both directions of the equivalence are shown separately:

Part A) Let K be a regular language over the alphabiet Y with the limit X>. The following
implication is true:

K meets Property (4.1) of Proposition 41K is Y-live.

Proof: Pick some arbitraryv ¢ K. Observe according to the definition of the limit:
3 (14)ieng, Mir1 > i 2 w™ € K, i€, infinitely many finite prefixes ab are element of.

As K is regular, we can partitioft into a finite set of Nerode cells. Consequently, at least one
Nerode cell has to hold an infinite number of (but not necdgsalt) prefixesw”:, and we can
conclude:

(1) jengs P41 > 1y - W+t = w, where, for eachy, w™ = w™ for somei. With w™ we start
the following procedure:

As w™ < w™, we can writew™ = w™t, for somet, € ¥.* — {¢}. Note that, asC meets Property
(4.1) and asv™ =, w™, it holds thatpyc(tg) # €. Accordingly,w™ = wmotyt; with pyc(t1) # e.
Repeating this procedure for eaghwe obtaimu™tyt ts--- = w. As pyc(t;) # € for all 7, it holds
thatpyc(w) = pyc(w™tots ... ) = pyc(w™)pyc(to)pyc(t) - € Y.

Part B) Let KC be a regular language over the alphabet Y with the limit . The following
implication is true:

K is Yc-live = K meets Property (4.1) of Proposition 4.1.

Proof: For arbitrary € K, consider the following set of extensionssoh '

Tics :={t # ¢|st =¢ s}

For all s € K with T ; = @, Property (4.1) of Proposition 4.1 is obviously met. Forsadl IC with
Tk.s # @, pick arbitraryt € T" and observet = s. As s can be extended bysuch thatst €
andst is Nerode equivalent te, alsost can be extended hysuch thatstt € K. Following up this
deliberation we obtair(¢)* ¢ K. Hence, for thev-stringw = s(t)«, we have:3 (n;) ey, nir1 >
n; s wni = s(t)’ € K. Hencew e K> and, as is Yc-live, pyc(w) = pyc(s)pyc((t)+) e Y. As s
is of finite length, it has to hold thak,«((¢)~) € Y, which impliespyc(t) # €. As s was chosen
arbitrarily,  meets Property (4.1). ]

Note that any sublanguage ofta-live language i'--live, too (Lemma 3.3). Due to the equiv-
alence toY-liveness, this equally holds for the above property (4A)Y-live sublanguage of
an arbitrary language is achieved by allowing only finiteusetges of transitions between states
within aY-less cycle. Unfortunately, in general, th@premalY-live sublanguage of a given lan-
guage does not exist. Given the family of }J-live sublanguages of some language,shpremal
Yc-live sublanguage isot automatically given by their union, which we have shown ind?13.6
and can also be seen in the example in Figure 4.1.

Example 4.3
Again, we examine the automaton representatiod of Figure 4.1 a). A solution for avoid an
infinite repetition of the indicated loop is to cancel thens#iona or b closing the loop after an
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arbitrary but finite numben of repetitions. For each fixed e N, such a solutioilC c £ can easily
be determined (see Figure 4.1 b) and c), for example). Inrashtthe infinite union of all these
solutions would lead to a language in which thwavise repetition of all loops is turned into an
arbitrary repetition (cf. definition of the Kleene-Closure). Thusg thfinite union of allY-live
sublanguages results in the original langudg®/hich is known to be nonz-live. O

But, along with the problem, this example also makes evitdentto resolve it. From an applica-
tion point of view, even thénite iteration ofY--less cycles is undesirable, as it poses a back step
on the path to the next--event. Hence, we propose to derive a so-callgéicyclic sublanguage
that guarantees thatla-less cycle of the original languagensverclosed.

Definition 4.1 (Y-Acyclic Sublanguage)
Let £ be a regular language ovEr and letY c 3 be an alphabet. A stringe >* is Y-Acyclic
w.r.t. L, if

Vr,seX, r<t: (rs=tars=gr)=pyc(s) +¢

where=, denotes the Nerode equivalence oxem.r.t. L.

The languagéC is aY-Acyclic sublanguage of if

e KL

* VseK: sisYq-Acyclicw.rt L

Note that in the above definition, different from Propositéal, nerode equivalence w.r.t. another
languagel but not w.r.t.XC itself is checked. This slight but important difference gudees that
IC contains only strings that do not closg@&free cycle inZ, which is important for the existence
of a supremalY-Acyclic sublanguage. It is readily shown thatg-Acyclic sublanguage w.r.t.
some other language is alwaysg-live, see Proposition 4.2. In general, the reverse doebkaidt
i.e. Definition 4.1 indeed confines the family 4if-live languages.

Proposition 4.2
Let K be aY-Acyclic sublanguage of a languageover the alphabet > Y. Then,K is Yc-live.
]

Proof

To prove thatC is Y-live, we use Proposition 4.1 and show that property (4.1d$for K:

pick arbitrarys € K ande < t € ¥* such thatst = s. Note that, inkC, s can be extended by
As st =k s, alsost can be extended bysuch thatstt € K. Following up this deliberation, we get
st € K for arbitraryn € Ny, i.e. st* € K. AsK c L, it holds thatst* € £. As L is regular,L can
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be partitioned into a finite set of nerode cells. Herite; € Ny, ny € N such thatst™1¢72 =, st™.
As K is aY-Acyclic sublanguage of, it holds thatpyc(t"2) + e. Consequentlypyc(t) # e.
Summing up, as andt were chosen arbitrarily, we conclude:

VselC: (Vt#ewith st € K)[st =¢ s = pyc(t) #€].

l.e. property (4.1) is met fofC. Hence, according to Proposition (4.X) s Y-live. O
Example 4.4

Consider the sublanguagks and X, in Figure 4.1 b) and c) of the languagein Figure 4.1 a).
While both,K; and/C, areYc-live, only K5 is aY-Acyclic sublanguage of. O

The least restrictive way to achieveYa-Acyclic sublanguage of some languagec ¥* is to
remove only those stringsr € £, o € 3, that just close &-less cycle, i.es is Y-Acyclic w.r.t.
L, but notso. As a result, thsupremalY-Acyclic sublanguage of a languagec > is the set of
all strings of that areY--Acyclic w.r.t. L.

Proposition 4.3
Let K be a regular language over the alphabetY.. Then,

YoAcyclic(K) :=={te K| (Vr,seX*)[rs=t Ars=xr = s=€Vpyc(s) # €]} (4.2)
is thesupremalY-Acyclic sublanguage w.r.kC. m]

Proof Let K be a regular language over the alphabet Y and Ky, := YcAcyclic(K). We
show that (a)Cy,, is aY-Acyclic sublanguage w.r.fC and (b) anyY-Acyclic sublanguage w.r.t.
K is contained inCy,..

(a) Ky, is aYc-Acyclic sublanguage w.r.tC. Proof: Obviously,Cy., ¢ K by definition of
the operatol--Acyclic(). We show

Vs ey, o (Vt#ewith st e Ky, )[st =c s = pyc(t) #€]}.
Pick some arbitrary € Xy, and consider the following set of extensionssof Cy,.:
Tiy,,s = A{t # €[st € Ky, A st =¢ s}

W.l.o.g. assume thﬂfKYC s IS nonempty and pick some arbitrary Tiy,,.s- Hence,st € Ky, and
st =y, S. Consequently, property (4.2) has to hold forand thuspyc(t) # €. As s was chosen
arbitrarily, we have:

Vs e Ky, : (Vt#ewith st e Ky, )[st = s = pyc(t) # €]},
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l.e. Ky, is aY-Acyclic sublanguage w.r.iC.

(b) Let K" be aY--Acyclic sublanguage w.r.fC. We showK'’ ¢ Ky, i.e. t e K’ = t € Ky,. So,
pick arbitraryt € X’. Consider an arbitrary concatenation of strimgand s such thats = t. We
show that the property

rsr=s=€eVpyc(s)#e (4.3)

is fulfilled. Property (4.3) obviously holds ifs #, r or s = e. Now consider the nontrivial case
rs = r ands # e. Note thatl’’ is aY-Acyclic sublanguage w.r.iC andr € K’, asr < t. Thus, for
all extensiong with r§ € X/, it holds thatrs = r = pyc(8) # €. In particularpyc(s) + e.

Hence, property (4.3) is fulfilled for arbitrary concateénasrs with rs = ¢, and we have € Cy,..
Ast e K’ was chosen arbitrarily, it holds th&t c £y,.. |

The supremal-Acyclic sublanguage of a languageis computed according to Proposition 4.3
by separating’c-Acyclic strings of £ from those that are not. As this partition need not be as
coarse as the Nerode-Equivalence ag@gthe state space (and thus the complexity) of the canon-
ical recognizer oftAcyclic(£) may be greater than that @f respectively. As a consequence,
YcAcyclic(£) cannot be achieved by simply erasing transitions the caabrécognizer of, in
general.

Example 4.5

Reconsider Example 4.1. Indedd; is the supremal--Acyclic sublanguage of. As can be
seen,C; is not retrieved by just canceling the transition labeledubyin the generator oL, as
this transition represents the last eveni¥gfAcyclic strings as well as noi-Acyclic strings. In

order to achieve the supremial-Acyclic sublanguage of, state2 has to be split in statesand4,
where state is reached only from statieand statel is reached from stateéonly, see Figure 4.2.

©

@ @

@

Figure 4.2: Transformation of the generator 6f
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After this transformation introducing equivalent statiéng result can now be obviously obtained
by canceling the transition from staido statel. ]

A graph based algorithmic construction of the supreimalAcyclic sublanguage is presented in
section 4.2. Note that, as an obvious but useful propeitgubisets of the supremal-Acyclic
sublanguage are al3®@-Acyclic andY-live. Our I/O controller synthesis procedure computes the
supremal’-Acyclic sublanguage to yield an 1/O controller that fulliithe admissibility condition
(i) in Definition 3.11.

4.2 SupremalYc-Acyclic Sublanguage: Graph-Based Compu-
tation

Let I be aregular language ai@ be an alphabet. In this section, we provide a method to coenput
the finite automata representation of the supreriahcyclic sublanguagé’; := YcAcyclic(K).
Recall that a non4--live string features nerode equivalence to at least onis ofwn strict prefixes
and that the extension from this prefix to the string is fre&@®vents. To identify such strings,
we refine the informal notion of B-less cycle to the following definition, which has been dediv
from the notion of strongly connected components in [AHU75]

Definition 4.2 (Yc-less Strongly Connected Components)

Let G := (X,Q,0,q0,Qwm) be afinite state automaton. We can partitipinto equivalence classes
Qi, 1 <i <|Q|, such that stateg € Q andg, € @ are equivalent if and only if there is a path
with §(q1,s1) = g2 andpyc(s1) = € and a pathsy with 0(qq, s2) = ¢ andpyc(sz2) = e.

A stateg; € Q; is denotecentry state of); if §(¢,0) = ¢; for someg e Q — Q;, o € 2.

A class@); of the above partition is callet--less strongly connected componerit{ess SCC)f
either|Q;| > 1, or Q; = ¢; andd(g;,0) = ¢; for somes € ¥ - Y.

Such class); is calledstrictly Y-less SCC if additionally

VseX™ qeQj: 6(q,5) €Q; = pyc(s) =«

The absence of-less SCC’s in an automaton G coincides with ¥zeliveness of the language
generated by-.
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Theorem 4.1

LetG = (X,Q,9,q, Q) be a (deterministic) finite state automaton afdbe an alphabetl (G)
is Yc-live if and only if G is free ofY-less SCC’s. O
Proof See Appendix A.2 O

Our procedure for finding the supremél-Acyclic sublanguage requires that ai-less SCC’s

in the generator of the original language are strigflyless. This can be achieved by a simple
transformation of the generator that does not change thergesd and the marked language. We
explain the transformation by a simple but representatreegple, see Figure 4.3.

Ycu

Yco

(a) G1: ambiguousg/c-less SCC (b) G2: ambiguity resolved by state-
splitting transformation

Figure 4.3: Transformation to achieve strictlj--less SCC'’s

In automaton’z; in Figure 4.3 a), the states 1 and 2 posg-dess SCC. However, the SCC can
be traversed by the executionif-transitions without leaving the SCC. The automaton in Fegu
4.3 b) generates the same language as the automaton in Biguag Now, the SCG1b,2b} is
strictly Yo-less and is left whenevena-event occurs. This transformation is necessary whenever
Yc-transitions are in parallel to noYi--transitions within a¥--less SCC. In the worst case, the
state space is doubled by this transformation. Howeverumapproach, such transformation is
never necessary because of the involved language stracture
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To achieve the supremal.-Acyclic sublanguage of some given languagaccording to Propo-
sition 4.3, we proceed according to the following informalf vivid description. An illustrating
example is provided below.

Procedure: YCACYCLIC (G)

(1)

(2)

3)

(4)

The procedure starts with a state minimal automatdhat generates the languakje We
require a minimal state space such that any two paths ledgetgsame state iff the co
responding strings are nerode equivalent wit,twhich is helpful to examine all nerog
equivalent strings in order to verify property (4.2).

Identify all Y-less SCC’s of~. Technically, this is achieved by an efficient variant ofithe
first search algorithm for finding SCC'’s presented in [AHU A5} --less SCC’s were foun
proceed with (3). Elsé&? is the result.

If not all Y-less SCC'’s are strictly-less, transfornds as above. If there afg;-less SCC’s

with more than one entry state, transfofrby duplicating the affectetl--less SCC's, suc
that each duplicate has a unique entry state, see also the brmple. The idea for su
transformation is provided in [JMRTO8]. Note that the réisigl automaton still generatés

For eachY-less SCC, cancel transitions leading from a state of Yaidess SCC to it
own entry state (denotdshck transition}, unless the transition is triggered by a-Event.
Each string inC corresponding to a path ending with the canceled transitolates thé
property required for the elementsdfAcyclic(K). However, in the resulting transform

automatonG’ generating a sublanguad@ c £, there still might remaints-less SCC’s

as subsets of th&-less SCC’s found in this iteration step. Hence, weGet G’ and
proceed with Step (2). At this point, it is interesting to edihat, as transitions have be
deleted, some strings ik’ may now be nerode equivalent w.rit! thoughnot w.r.t. .
However, as the corresponding automafenis still defined over the same state spég
of the automaton, the states of+’ still refer to the nerode cells of the original languz
IC, which is of interest. Hence it would be unwise to exhibit atstspace minimizatig
on G’ before proceeding with step (2), as the result of the proeediould deviate fron
YcAcyclic(K).
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We illustrate the above steps by the following example.

Example 4.6
Consider the automatdr that generates a langualjeas depicted in Figure 4.4 a). The-events
areYc = {a, 5}.

(a) Automaton G withY-eventsy andg. (b) Transformation:Ys-less SCC’s with unique entry
states

Figure 4.4: Example for computation of the supreni@-Acyclic sublanguage

Note thatXC is not Yc-live. E.g. the strings = a(ab)* is contained inC. Hence,w = a(ab)“ «
IC= with pyc(w) = o ¢ Y¢. An automaton generating the suprerigtAcyclic sublanguage is
constructed by the procedure YCACYCL(KE):

Step (1).GG is a state minimal realization &f.

Step (2).TheY-less SCC's of are highlighted in Figure 4.4 a) by gray dashed margins. &hes
SCC'’s have to be broken by canceling transitions. Constuelg-less SCC{2,3}. It can be
entered via the patfil, «, 2) or via the path(1,1,5)(5,¢,3). Hence, the states 2 and 3 are entry
states of the SC@2, 3}, and(1, «,2) and(5, e, 3) are called entry transitions. The least restrictive
way to break the SCC {2,3} is to cancel the transitipafter the occurrence of the string: or

to cancela after the occurrence dfeb. |.e. depending on the past string, the transitiorzdb
have to be either canceled or not. This means that the atied3 have to be split to be able to
distinguish the respective cases. This motivates step (3).

Step (3).1f a Y-less SCC has > 1 entry states, then this SCC is replacedrbgiuplicates with
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one unique entry state each, see Figure 4.4 b). E.g. the{8C with the entry stateg and3

is replaced by an SCQ2a, 3a} with the entry stat®aq and an SCC {2b,3b} with the entry state
3b. Entry transitions are shifted to the duplicate of the cgpmnding entry state, i.€.1,«,2) is
replaced by(1, «, 2a), and(5, e, 3) is replaced by(5, ¢,3b). All transitions having their origin in
a state of thé--less SCC are replaced byduplicates. Note that also the SG€, 5} has to be
duplicated. Note that those states whose label only diffetise suffix “a” or “b” are equivalent,
and the generated language is ill

Step (4). After the transformation in step (3), transitions that défiy have to be canceled are
easily identified by transitions starting from a state of edfp-less SCC and leading back to the
(unique) entry state of the sarig-less SCC. These transitions are highlighted in Figure 3by/b
bold edges. The resulting automatGhafter cancellation is shown in the figure below. To check
if G’ still containsY-less SCC'’s, we return to:

Step(2) As can also be seen in the figure belé¥,does not contaifv--less SCC’s. Moreover, it
Is readily observed that’ generates the supremial-Acyclic sublanguage.

Figure 4.5: Result: automaton generating the supreialAcyclic sublanguage

We informally show that the procedure YCACYCL(G) indeed leads to the supremal-acyclic
sublanguage.

Proposition 4.4
If G generates the languagjeand marks the languadg,,, then the resul’’ := YCACYCLIC(G)
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of the above procedure generates and marks the supieratyclic sublanguage of and/C,,,
respectively. m]

Proof (informal)

» The resultG’ is obtained after a finite number of steds. step (3), theY-less SCC’s are
duplicated according to their number of entry states. Ip $4¢, however, the size of each
Yc-less SCC is reduced by at least one state, as the formerstateg loose membership in
the according SCC by the canceling of back transitions. EealtY--less SCC’s and their
duplicates have to vanish after a finite number of iterations

» The resultG’ generates and marks ¥--Acyclic sublanguage of and C,,, respectively.
Note thatG’ is free of Y-less SCC’s and hence, the language generated’liyg a Y-
Acyclic sublanguage ok according to Theorem 4.1. Fdéi,, consider Definition 4.1 and
observe thdts; =, s» = s1 =¢ s2 to conclude thatz’ marks aY-Acyclic sublanguage of
K-

e L(G") and L,(G") are the supremal-Acyclic sublanguages df and C,,,, respectively.
Note that, by step (3), alf-less SCC’s considered in step (4) are stridtlyless. Hence
it is ensured that, by canceling of the back transitionsy ooin-Y-Acyclic strings w.r.t..C
and/C,, are removed fronf(G’) andL,,,(G").

]

Accordingly, during 1/0O controller synthesis, the suprérfig-Acyclic sublanguage can be com-
puted by the procedure YCACYCLIE) to account for admissibility condition (ii) in Definition
3.11.

Moreover, the controller synthesis procedure has to atdclmuradmissibility condition (i), for
the I/O structure required in Definition 3.10 of the I/O catigr and for the problem of partial
observation, as the controller cannot directly observestivironment eventsy. These issues are
treated by the next section.

4.3 Complete, Controllable and Normal Sublanguage

As mentioned before, the 1/0O controller synthesis procediist computes full the closed-loop
behaviourLepr = Lo || Lep | Lee | L achieved by the solution (i.e. the controller to be

This property holds for the generated and marked languag@yfutomaton. The reverse direction need not
hold, in general.
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synthesized) and then extracts the 1/0 controller from iherEfore, the closed-loop behaviour
must meet the conditiormpleteness, controllabiligndnormality.

Completenessf the closed-loop is a direct consequence of admissilafithe I/O controller, see
Proposition 3.4.

Language controllabilityis a property that has been introduced by the SCT to desdnibeet
closed-loop languages that can be enforced on the planshpldig only controllable events and
Is defined as follows.

Definition 4.3 (Controllability [RW87b])
Let £ c ¥* be a prefix-closed language, andigt. ¢ X be the set of uncontrollable events. The
languagéeC c L is said to becontrollablew.r.t. £ and the set of uncontrollable evenis. if

KEwenLcK.
i
This means that the occurrence of uncontrollable evenits lnras to be accepted bg. In our
framework, the I/O controller has to accept the inpiigsandYp and has no direct access at all to

the environment eventsSg. For the language of the full closed loop, this implies thahust be
controllable w.r.tLc || Lpg || £ and the set of uncontrollable eveits. := Uc u Yp U Y.

Language normalitys a property that guarantees that a closed-loop behaviachgeved by a
controller also in the case of partial observation and ddfasefollows:

Definition 4.4 (Normality (e.g. [Won08]))
Let £ c £ be prefix-closed languages over the alphabeand letp,:>* — ¥* be the natural
projection, withX:, c .. Then,K is said to be normal w.r..C andp, if

K =p;'(po(K))n L

O

This property can be rewritten &S = p,(K) || £. The following proposition states that an 1/0
controller can only enforce normal sublanguages on the l&@tp

Proposition 4.5
Let I ¢ £ be languages over the alphabgtand letp,: ¥* — > be the natural projection to the
alphabet:, c >. A languagé(C, c 3} such that

Kol L=K (4.4)

exists if and only ifC is normal w.r.tp, and L. m]
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Proof

if. If K is normal w.r.tp, and., then/C, is obviously given by, ().

only if. We show thatC, does not exist ifC is not normal w.r.tp, and L. First observe that
Ko |l £=p;'(K,)n L and, asC is not normal w.r.tp, and £, the following inequality holds:

Po (po(K))nLoK (4.5)

We distinguish the casés, 2 p,(K) andkC, c p,(K):

* Ko 2 po(K): then,ps1(K,) n L > K follows directly from the above inequality (4.5)

* Ko cpo(K):
Proof by contradiction: Assumk, | £ = K. Note that here Definition 2.5 of the syn-
chronous composition evaluateskg || £ = p;!(X,) n £ and observe

P (Ko)nL = K
I
Polps (Ko) N L)] = po(K)
U Lemma A.2
Po(5 (Ko)) npo(L) 2 po(K)
I
Konpo(L) 2 po(K)
U (0 po() € po(2))
Ko 2 po(K).

As the last consequence contradictsc p, (), we havel, || £ # K.

ConsequentlylC, does not exist. 0

Hence, an 1/O controller with the languadgep over Xcp enforcing the closed-loop behaviour
Lcpg onLe || Leg || Lg (both overSepg) does not exist unlesBepy, is normal w.rt.Le | Lpg ||
Lg andeP:E;gPE — ZEP'

Remark 4.1
In particular, also observable languages (see e.g. [Wdo@8Efinition) cannot be enforced by an
I/O controller unless they are normal languages as above. O

According to the above considerations, during 1/O congrodlynthesis, a complete, controllable
and normal sublanguage has to be calculated. Unfortunagslyits on the existence and computa-
tion of thesupremakomplete, controllable and normal sublanguage have not@sented up to
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now in DES literature. On the other hand, the supremal cofmpled controllable sublanguage as
well as an efficient algorithm for its computation are preésdnn [KGM92]. Moreover, the supre-
mal normal sublanguage is presented in [BOGHB] as a compact formula that can be evaluated
without iteration. In the 1/0 controller synthesis algbrit presented in the next section, a com-
plete, controllable and normal sublanguage is deriveddmation of (I) computing the supremal
complete and controllable sublanguage according to [KGN®2 (I1) computing the supremal
normal sublanguage according to [B&¥0] until a fixpoint is reached. Hence, the resulting sub-

language is guaranteed to be complete, controllable ammalorlt is denoted by the operator
(,)CC’N_

Remark 4.2

In the TU example and all examples considered during theloreent of this framework, this
procedure led to nontrivial results after a small numberteps. However, neither finite-step
conversion nor supremality of the result are consideretdighdontribution. ]

4.4 1/0O Controller Synthesis Procedure

LetIl := (Spg, Sc, Sp, Sk, Sspeccr) b€ an 1/0 controller synthesis problem according to Debiniti
3.12. Toillustrate the details of each step of the contrelmthesis, we introduce the conceptional
example of a simple machine.

Example 4.7

Simple Machine. We consider a production cell, whose complex tasks arenaligrcontrolled,
such that a very simple view from the outside is provided tgresposed logic control: whenever
not busy, the machine reporntdy, and the operator can start or stop the machine. Aftexthe
command, the machine remains ready. After¢tiet command, the machine starts some process,
during which a shared resource is requested. If the resaaiprevided, the machine successfully
finishes the process and reports; again. This logical behaviour can directly be modeled as an
I/O plantSpg := (Up, Yp, Uk, YE, Lpg ). We identify the plant-1/0 port that models interactiontwit
the operator witiUp, Yp) := ({stp, start},{rdy}), interaction with the environment is captured
by (Ug, Yg) := ({pack,nack},{req}). By the unobservable environment-evesi, we model the
machines requirement for the shared resource. For a plaatiggon that is independent from the
environment, we introduce the unobservable environmeemsnack (negative acknowledge) in
case of unavailable shared resource paxtk denoting that the resource is provided. The possible
behaviourCpg can be modeled as depicted in the following automaton model.
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start
rdy
) -
nac pack

Figure 4.6: 1/0 plant model of a simple machine

Liveness and constraints:

Temporarily, assume minimal constraigis andSg, which corresponds to arbitrary external con-
figurations. Note thafpg is complete but noYp-live w.r.t. these constraints; as the plant model is
designed independently from the environment and the ainsSg is minimal, the extreme case
that the shared resourcensverprovided when requested is included. The resulting livelisc
represented by @req nack) loop between states 3 and 4 in the automaton model. It camelsp
to the nonempty set of strings;, (req nack)* n Lpr. Hence, the limi( Lpg)> containsyv-strings

of the sortw := s(req nack)®, s € i, with pyp(w) ¢ Y.

Thus liveness has to be discussed by the introduction obnedde constraints. One approach is
to restrictSp to a guideline for the operator or controller such that; is Yp-live w.r.t. Sp and an
arbitrary i.e. minimal environmental configuratién. The least restrictive constrai§p that can
be found is given bysp = (Xp, (rdy stp)*), i.e. start is never enabled.

A more reasonable approach is to relax the requiremekpdifveness to configurations in which
a shared resource is provided after a finite amount of regudstis configuration is given by a
minimal constraintSp and any environment constraif¥y, £x) with X% (req nack)” n Lg™ = @

. For this example, we choos®; := (X, (req pack)*), which means that shared resources are
always provided when requested. Note that in practice,dhisstraint usually is not fulfilled a
priori. Our approach addresses this fact by passing on th&ti@ntsSp andSg asrequirements
to the hierarchy of superposed controllers. This can be seEquations 5.1 and 5.2 in Theorem
5.1.

Safety Specification:

Assume that a standby for maintenance has to be possibleaftertain amount of. pro-
cesses. To formulate a respective specification for theredtéehaviour, we introduce the set
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Uc = {operate, stby} of desired modes of operation and the desired feedback= {idle}.
The desired effect of the modes on the environment can beideddy the systen§,c.cr =
(Uc, Yo, Ug, Yi, Lspeccr ), S€€ Figure 4.7 a). From now on, for a better illustratiorhef¢computa-
tion of Y-live sublanguages, we discuss the specification depiotejure 4.7 b), which requires
the possibility for a standby after an unspecified amountrof@sses.

operate

operate

(a) Standby aften processes (b) Standby after undefined number of processes

Figure 4.7: SpecificationS,..cr, for a simple machine

This specificatiorS,,..cr, together with the 1/0 plant modépr, minimal constraintssc, Sp and
the exclusion ohack by the above constraidt; completes the I/O controller synthesis problem
of this examplell := (Spg, Sc, Sp, Sk, SspecCE)- O

For being a solution fofl, the systemScp has to be an admissible 1/0O controller that enforces
Sspecce ONSpg W.I.L. Sc andSg. In the following, we propose an algorithmic procedure tmpate
the minimal restrictive solutio§cp to IT within the family of so-called’--Acyclic sublanguages.
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I/O Controller Synthesis Algorithm (I/O CSA)

Let IT := (Spg,Sc, Sp, Sk, Sspeccr) be an 1/O controller synthesis problem, whég..cx is an
I/0 plant model of the desired external closed-loop behavidhe systenScp = (Xcp, Lcop) IS
computed as follows.

() Restrict the behaviour of the full closed loop:

Ko = Leg. || Lp || (Ye(e+YeUc)Up)* || Lopeccr
whereLpy, is the plant under constraing,. := L¢ || Lpg || L.

(1) Compute the supremal--Acyclic sublanguage:

K1 == YcAcyclic(Ky)

(ll1) Define the event&,.. := Uc U Yp U X uncontrollable and the eventy := Ycp observable
Compute a complete, controllable and normal sublanguadjg wfr.t. Lpg,., 3. and>l,:

Ky = (JCy)(CN)

(IV) Compute the projection to the controller alphabet:
Kcp = pep(Ky)

(V) Add error behaviour to mak&: andU( free in Lcp:

Lcp = Kcp U KR

with K& = (K&, u K08) (UpYp) ™, see Definition 4.5.

We consider the first step of the presented algorithm.

Step (I): Desired behaviour of the full closed loop

By parallel composition, we restrict the possible plantdwebur Lpi. to the language format
(Ye(e +YcUc)Up) (required by Definition 3.10 of the 1/O controller), to thenstraintCp (re-
quired by the admissibility condition (i) in Definition 3.1dnd to the safety specificatidh,c.ck.
Note that, conversely, any superlanguagé&ginevitably leads to violation of one of these prop-
erties.
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Example 4.8
Simple Machine. The result of this step for the probleiis depicted in the following figure.

operate

Figure 4.8: Desired closed loop behaviour of a simple machine

Observe the livelocks indicated by the dashed grey cycleack), this candidate for the full closed
loop behaviour violates thes-liveness property required by admissibility in Definitidril. ©

The next step of the synthesis algorithm addre3geliveness.

Step 1) Computation of Y-live sublanguages The supremal’s-Acyclic sublanguage ok

is computed according to Definition 4.3. Note that any suipl@ge ofY-Acyclic(£) is also a
Yc-Acyclic (and thusY-live) sublanguage of. Hence, the restriction in the following step does
not compromise this property.

Example 4.9
Simple Machine. The supremal’--Acyclic sublanguage of the desired behaviour as seen in
Figure 4.8 is shown in the following figure.



64 CHAPTER 4 — CONTROLLER SYNTHESIS

operate

Figure 4.9: Simple machine: supremat:-Acyclic sublanguage of the desired behaviour

In this intermediate result, completeness is violated byd#adlock stateld) and11. Additionally,
controllability fails in statel0 due to a missingdy-transition. Moreover both, the normality and
the controllability condition require a transition withettuncontrollable and unobservable event
req in statell. O

Step IIl) Computation of a complete, controllable and normd sublanguage By this step, a
full closed-loop behaviouk’, is obtained, that can be realized by an admissible I/O cthetrsee
Section 4.3.

Example 4.10
Simple Machine. The full closed-loop behaviour that is achieved for the dempachine is repre-
sented by the automaton in the subsequent figure.
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Figure 4.10: Simple machine: full closed-loop behaviour

The following steps are concerned with educing the I/O adletr from £C,.

Step IV) Compute the projection to Xcp. By this, the unobservability of the environment al-
phabet for the controller is taken into account. The norypalthieved by step Ill) guarantees that
the I/O controller will enforceC, in the closed loop.

Example 4.11
Simple Machine. For the simple machine example, the projectioxtg yields the result shown
in Figure 4.11
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Figure 4.11: Simple machine: projection t8¢p

Step V) Make Yp and Uc, free. Note thatYp is not necessarily free ikcp, as a strings of Kcp
can only be extended by an evente Y5 if there exists a corresponding strintyp in the plant
behaviourCpg With pcp(s’) = s, i.e. if s'vp is possible plant behaviour. Similarly- need not be
free in Ccp, as the constrainf-, whose language is a component®fs,., might here and there
exclude the occurrence 6f--events by its controller-1/O port property. To formallycacint for
theseYp- andUc-events that do not occur in the closed-loop behavior, wertrie strategic error
behaviorCg that does not contribute to the closed-loop behaviourKig&. || (Lcp || Ler.) = 2.
The construction oK’¢} is based on the following definition.

Definition 4.5
Given a languag& and an alphabet, the languagéC*> is defined as follows:

K*:={s0, ceX| (30’ eX)[s0’ e Knso¢ K]},

O

Note that'’* ¢ £¥ andC* n K = . Inin the error behaviouCg) in Step V) of the I/O controller
synthesis algorithmiC¥® identifies all strings irkC that can be extended by at least one butamt
yp-event without leavingC and adds the missing--events not accepted ii. The role ofKCl¢c is
analogous.

Example 4.12
For the simple machine, we obtaltf;; = @, as already in the automaton in Figure 4.11 eEgh
event, i.e. the onlyp-eventrdy, is accepted after the--eventsstp andstart. Also, eachuc-event
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(stby, operate) is accepted after the--eventidle. Hence, Step V) preserves the result shown in
Figure 4.11.

The Transport Unit, however, provides an example with noypty error-behaviour, see Figure
3.11. O

The following important lemma shows that the extensiorki§y, does not affect the closed-loop
behaviour under constraints:

Lemma 4.1

Let IT := (Spg, Sc., Sp, Sk, Sspeccr) b€ an 1/0 controller synthesis problem according to Defini-
tion 3.12 and lefCcp and Lcp be constructed according to Steps IV and V of the 1/0 Coreroll
Synthesis Algorithm, respectively. Then, it holds that

Lcp || Lege = Kep || Lrge-

Interestingly, for the proof of this lemma, the normalityoperty of £, (I/O CSA, Step Ill) is
needed.

Proof See Appendix A.2. O

By the above lemma, it is ensured that the extensionpyand Us-events does not extend the
closed-loop behaviour, in particular no undesired behavi® added. This is an important fact,
needed to prove the following statement, which is one of tagmesults of our work. We are now
able to state that the above algorithm leads to a solutidh of

Theorem 4.2 (Solution for the 1/0 Controller Synthesis Prollem)

LetIl := (Spg, Sc, Sp, Sk, Sspeccr) b€ @an 1/0 controller synthesis problem according to Debiniti
3.12, whereS,..cr is an 1/0O plant (describing the desired external closeg-loehaviour). If the
languagelcp is constructed according to the 1/0O controller Synthesigofthm applied tall,
then:

Scp = (Xcp, Lcp) IS a solution forl.

Proof (outline)
At this place, we provide an outline on the items that haveetstiown. The complete proof is
found in the appendix, see Appendix A.2. We have to show the¥og items:

1) Scp is an 1/O controller:
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() Scp is asystem withcp = XcUYp, X = UcUY(, Xp := UpUYp

(i) (Ug,Yc) and(Up,Yp) are a plant- and a controller-1/0 port f8¢p, respectively;

(III) »CCP c ((Yi:)[]}:))*(Yibyrcl/vcl/vp)*)’r ;

(iv) Lcp is complete.
2) Scp is admissible t&Spg W.r.t. Sc, Sp andSg:

() pp(Lc || Lep || Lok || Lr) € Lp

(II) ,Ccp ” EPE is Yc-”VE w.r.t. SC andSE
3) Scp enforcesSgpeccr ON Spk... O

Example 4.13
Simple Machine.By Theorem 4.2, it is shown that the automaton in Figure Atléed represents
an admissible 1/0 controller that enforces the specificesioown in Figure 4.7 O



Chapter 5

Hierarchical Control System

Suppose we are provided an overall system consistingptdnt components that in their particular
configuration interact via shared resources. Accordingegtevious chapters, the individual plant
components can be modeled independently (no shared e@snt&) plants with corresponding
constraints, see Chapter 3. This step leads to one I/O pantgmponent and corresponding
constraints; i.e. foi = 1..n, Spg; = (Upi, Ypi, Ui, YEi, LPri), Spi = (Ups, Ypi, Lpi) and Sg; =
(Ugi, Ygi, Lri ) Where each I/O plan$pg; is complete and’p;-live w.r.t. the constraintsp; and
Sg;. As at this stage all components are regarded as indepeauiigies with no synchronization
built in, all alphabetsp; := Up;UYp; andXg; := Uy, UYy; are disjunct.

For each component, a local 1/0O controller can be designéa @sapter 4 according to an indi-
vidual specificatiorS,pe.ck, -

Example 5.1

Transport Unit. Consider a chain of an arbitrary number of TU’s as in Figule Each single TU
can be provided with a local I/O controller as in Figure 3.&kigned according to the previous
chapters.

Figure 5.1: Chain of transport units

By Theorem 3.1, the overall system is still given as a setldD plants, where the I/O-plant model
of eachcontrolledcomponent is given as the external closed loop of the unaltedrl/O plant and
its 1/0 controller.
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However, due to their particular configuration, the compaseaisually interact via shared re-
sources, and most control objectives explicitly involve ttooperation of plant components. By
the next section, we enable control of the concurrent belawf a group of interacting compo-
nents. Based on this result, Section 5.2 provides a guidamweo alternate hierarchical control
and subsystem composition to achieve an overall hierarshiy Bigure 1.11. The core results of
this chapter have been published in [PMS06] and [PMS07a].

5.1 Control of Composed Systems

For convenience, we consider groups of only two componépts = (Up;, Ypi, Ui, Yii, LpEi),
i € {1,2}; the behaviour of each group is described by a system acthiteas seen in Figure 5.2
a).

operator operator
Yol Un Y| |Un vl U
plantSpg, plantSpg, SpEt o Spe2
YEI‘ UEl YEQ‘ UE2 YE‘ UE
environmentSg;, environmentSg;,
wl T wl o
external environment external environment
(a) interaction via I/O environment (b) compound I/O shuffle model

Figure 5.2: Group of I/O plants with 1/0O environment

First, the individual and independently designed 1/O @afiz; are composed by a shuffle com-
position to technically form a compound model as in Figuely, see Section 5.1.1. Then, the
restrictions due to interaction of the components with eztbler and with the external configura-
tion are described in a subordinate environment model, sedd 5.1.2. We show that controller
design for the resulting compound of the group and the inteEna model can be conducted ac-
cording to the previous chapters with liveness of the irgiial interacting components preserved.
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5.1.1 1/O Shuffle

To technically capture the behaviour of both plafts; in one mathematical model, we intro-
duce thd/O shuffleoperationSpg; ||io Spre. It is based on the ordinary shuffle product (parallel
composition under absence of shared events), but restigtéhe additional conditiol;, on the
ordering of input-output event-pairs and extended by a-defined error behaviouf.,,. The
latter accounts for situations whefg, is violated, i.e. a measurement event from the one plant
component is replied to by a control event to the other plantmonent.

Definition 5.1 (I/0O shuffle)
Given two /O p|antSSpEi = (UPZ‘,YPZ-, UEiaYEia»CPEi)a 1€ {1,2}, thel/O SthﬂGSpE = Spg1 ||io
Spro Is defined as a tupl€pr = (Up, Yp, Ug, Y&, Lpr ), Where:

(|) Up = UploUpg, Yp = Yp1QYp2, UE = UEloUEQ, YE = YE10YE2 ;

(“) Lpg = [(['PEI ” EPE2) N Eio] U Loy 1= ['H U Lerr, with

(iii) Lio = (XpE1YpE1 + Lpr2XpE2)* @nd

(Vi) Loy == Uk L; with
Ly:=(LyYp1nLy)Ups,
Ly :=(LyYp2n Ly)Upr,
Ls:= (LY 0 Ly)Ug2,
£4 = (;CHYE2 N E”)UEl ;

Observe that the 1/0O shuffle of prefix-closed syst&ips is prefix-closed (without any effect, the
languages; in item (vi) can be replaced bg;). It is readily shown that the 1/O shuffle indeed is
a shuffle composition in the sense that the behaviour of eefifant is restricted, i.e.

fori = 1,2: Lpg; € EPE,
see Appendix, Lemma A.7. Moreover, the I/O shuffle retaiesit® structure of its arguments:

Proposition 5.1
If SPEi’ 1€ {1, 2} are /O plantS, SO |§pE = Spr1 ||io Spwa. O

Proof We show thatSpg, provides all I/O-plant properties.

(i) Itis obvious thatSpg is a system.

(i) (Up,Yp) is plant-1/0 port forSpg:
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- Y= WUUPUYP with W = Ype-Up-Yp = UEUYE
— Lpg € (W*(YPUP)*)*

— (Vs e X*Yp, weUp) [s € Lpg = spu € Lpg]. Proof: Picks = ryp; € Lpg With yp; €
Yp1. Consider two cases: (k) L., — L. Then,spu € L, Y € Up by construction of
Lo (2)se Ly Ass=r1ypr,se L)Ypn L. Hencesp € L1 € Loy € Lpg Vi € Ups.
Note furthermore thappg;(s) = ppr1(r)yp1 € Lpr1. AS Up; is a free input ofSpg;,
it holds thatppg; (r)ypipe € Lpg; for all u € Upy. AS Lpg; and Lpgs do not share
eventspprs(si) = ppr2(s) € Lpge and consequentlyyu € Lpg; || Lpro. Note also that
sp=rypijt € Lio and thussp € £ ¢ Lpg
In summaryys = ryp; € Lpg With yp; € Yp; andV u € Up, it holds thatsy € Lpg.

Note that the same holds = ryp, € Lpg With yps € Yp, fOr symmetry reasons.

(Ug, Yg) is plant-1/0O port forSpg: as above.

Accordingly, the constraintSp; andSg; of the individual I/O plants have to be composed such that
the liveness properties are represented correctly by@hsHuffle under the compound constraints.
We merge the constraints of the individual plants by theddesh shuffle product restricted to the
I/O structureL;, of Definition 5.1. This way, the resulting constraint (thaishito be met by the
superposed controller) also includes the avoidance ofrtioe-behaviourZ,.,,.

Proposition 5.2

Let Spr; andSpgs be 1/0-plants, and le€p;, Lg;, i € {1,2} be constraints. Then, for the 1/O-
shuffleSpg = (XpE, Lrr1 |lio Lrr2) @and the constraintSp := (Lp; || Lp2) N Li, andLg := (L1 ||
Lg2) N L;o, it holds that

Lp || Lee || Le=Lp || £y || Lk,

i.e. the error behaviout,,, is avoided under the compound constraints. |

Proof Note thatlpg = £ U Ly, Thus
Lo || Log || L =" (Lo || Ly || L&) 0 (Lp || Lew || L)

Note that, in the above synchronous compositions we have ¢ Ypg, i.e. all events are shared
events and hence

'CP || Eerr || EE = EP n Eerr n EE
As Lp € L, andLg € L;,, We get

EP N Eerr N EE = ([’P N Eio) N Eerr N (EE N ['io) = EP N Eerr N Eio N EE
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Observe the language structure &f,: Lo S Eip(Yp1Ups + YpoUpy + Yii1Ups + YioUry) tO
conclude that,, n £, = @. Thus,

EP ﬁEerr ﬁ'C'io ﬁ'C'E = EP ” Eerr ” EE =g

and finally
(Le 1 Ly [l Le)u (Lp || Lax || Lr)=Le || Ly || Li-

O

The following proposition states that the constraints efitidividual plants indeed can be lifted to
the compound plant by the (standard) shuffle product.

Proposition 5.3

Let Spr1 andSpgs be 1/O-plants, and lefp;, Lg;, ¢ € {1,2} be constraints. I8pg; is complete
andYp-live w.r.t. Lp; and Lg;, and if Spgs is complete and’p-live w.r.t. Lp, and Lgs, then the
I/O-shuffleSpr = (Xpg, Lre1 [lio Lre2) IS COMplete and’p-live w.rt. Lp := (Lpy || Lp2) N L, @and
Lg = (Lg1 || Lg2) N Lio- |

Proof

Spe = (Xpg, Lre1 |lio Lpre) IS cOmplete w.r.tLp and Lg:

Pick some arbitrary € Lp || Lpg || Lg. Regarding Proposition 5.Zp || Lpg | L = Lp ||
Ly || Lg. Thus,ppri(s) € ppri(L)) = Lrr1 andppra(s) € ppr2(Ly) = Lpr2. AS Lp1 € Lp and
Lg1 € Lg, prei(s) € Lpy || Legr || Le1 andppra(s) € Lpa || Legz || Lre2. Consider the following
two cases:

(1) seXiYpi: As Lpg is an I/O-plantsu € Lpg for all 1 € Up. In particular, this holds for all
w € Upy. AS ppr1(s) € Lprr andLpg; is complete w.r.tLpy, there existg: € Up; such that

ppl(ppEl(S)ﬂ) € Epl. As Sﬂ € »CPE; aSpE(su) = pE(S) € EE and asop(su) = pp(S),LL € £p
(because’p; € Lp), it follows thatsji € Lp || Lpg || L.

(i) s € ¥5:YR1: analogous to case (i): ASpg is an I/O-plant,sp € Lpg for all € Ug. In
particular, this holds for alls € Ug;. AS ppri(s) € Lpg; and Lpg; is complete w.r.tLp,,
there existgi € Ug; such thapg; (ppe1(s)ft) € Lgi. AS st € Lpg, aSpp(sp) = pp(s) € Lp
and apge(sp) = pe(s)u € Lg (because&y; < L), it follows thatsji € Lp || Lpg || Lk.

(i) s € X5 (Upi uUpr): As Lpg, is complete w.r.tLp; andLyg,, there exist® € Yg; U Yp; such
that ppgi(sv) € Lpg1. AS Lpg; and Lpg, do not share eventpprs(sv) = ppra(s) € Lpgo
and thussv € Lpg; || Lpre. Note that alsov € Li,. Thus,sv € L € Lpg. As Lp; € Lp,
Lps € Lp, Lg1 € L andLgs € Ly, it holds thatsy € Lp H Lpr ” Lg.

(iv) The cases € 3}, Ypo, s € X5, Yee ands € X5 (Urg U Ups) are included due to symmetry
reasons.
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Hence, for alls € Lp || Lpg || Lg, there exists € Ypr such thatso € Lp || Lpg || LE.

SPE = (EPEa »CPEl ||io EPEQ) is Yp-live W.TI.t. ,Cp and,CE:
Pickw € (Lp || Lpk || Lr)*° and observe:

(Lp || Lok || Le]® =PP52[Lp || £y || Le]™ =
(Lp || ((Lpe1 || Lpr2) N Lio) || Le]™ € [Lp || Ler1 || Lo || L] =
[(Lp1 || Leer | Le1) | (Lp2 || Lege || LE2)]™

According to Lemma A.5, it holds thabg, (w) € (Lp1 || Lpg1 || Lr1)™ and/orppgs (w) € (Lps ||

£pE2 H ,CEQ)OO. Hence,pypl(ppEl (w)) = PyYP1 (w) € Yl_f;dl andlorpypz(ppEg(w)) = pypg(w) € YF‘,‘JQ
In generalpyp(w) € Y. O

Hence, a compound I/O plant model for the independent bebeawaif the two plant components
is established, together with constraints that properptw the conditions for liveness of the
individual plant components.

Remark 5.1

In this thesis, we consider an 1/0O-shuffle that leads to aybsed result in case of prefix-closed
arguments. In practice, composed plants often feature ¢éhgigient guarantee of its components
to (sooner or laterplternatelyissue events — a property that usually cannot be enforcedyal
action but, instead, is naturally given by the composed tplamparticular in the case of control
tasks that require thalternateoperation of the involved plant components, a composed pladel
based on the above I/O-shuffle can lead to over-restricegeilts for the superposed controller.
Hence, ongoing research includes an 1/0-shuffle that folyredpresses the ability of alternation
by a non-prefix-closed resupr = Spg1 ||io Spr2 SUch that

we Lpg™ = pPE1(w) € Lpp1 ™ A pPEQ(w) € Lppa™

We proceed with modeling the interaction of the plants coseplan the 1/0O-shuffle via a common
environment model, calleldO environment

5.1.2 1/0 Environment

Technically, the 1/0 environment is a system, that is cotetto an I/O plant via the po(Ug, Yz),
see Figure 5.2 b). Therefor@/g, Yr) has to be a controller-1/0 port of the I/O environment. The
I/0 environment is used to describe two distinct kinds oéiattion.
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Internal interaction. The port(Ug, Yg) has to be a controller-1/0 port of the I/O environment,
as it is connected to the plant-1/O pdif’s, Yz) of the respective 1/O plant. Via this port, the
environment model can disable sequences of environmentsetieat are not possible due to the
concurrent behaviour of both plants, e.g. if both plantsehasources among each other. Interact-
ing discrete event systems often feature concurrent bebameaning that the liveness property
of the individual plant components is lost in the compoundawsour due to conflicts in the in-
teraction. In our framework, such situations (that haveg@boided by control) are captured by
the I/O environment: seen from the 1/O plant, the environhp&ises a constraint that is able and
likely to violate the environment constrain®s; necessary for liveness of the plagis;;.

External interaction Furthermore, the I/O environment forwards those sequenfoesvironment
events that concern the interaction of one or both plants thie remainingenvironment to the
plant-1/0 port(Y1,, Uy,) that is connected with the external configuration. Thisésdhse if e.g. the
compound shares a resource with another group of plant coempe.

As a technical consequence of these considerations, weedb&renvironment model to be of the
same 1/O structure as a controller.

Definition 5.2 (I/O environment)
An /O environments a tupleSgy, = (Ug, Yg, U, Y1, LEL), Where:
(|) (EELa »CEL) isa system WIthEL = UEUYEUULUYL ;

(i) (Ug,Yr) and(Uy, Y1) are a controller- and a plant-1/0O port, respectively ;

(III) »CEL c ((YEUE)*(YEYLULUE)*)* ;

(iv) Lgg is complete.

Example 5.2

Transport Unit. Consider a chain of an arbitrary number of TU's, numberetiaetically from
left to right. To design a control hierarchy, we begin withmgmounding groups of two TU's, e.g.
TU A and TU B. Note that the two plant models do not share eyéimesmembership of each event
to the respective component is indicated by the suffieand B in the event labels, e.gdle_A
andidle_B. As indicated above, each locally controlled TU is abs#&ddty its specification (e.qg.
as in Figure 3.9), so first the I/O shuffle of the specificatiohtsvo transport units is computed.

The environment mod&fz;, = (Xgr, Lrr) for the resulting module AB is designed in two steps,
see Figure 5.3.
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nack A,
nack

6 00 O o —B& o

TUA TUB TUA TUB
Figure 5.3: Environment model of two transport units TU A and B

First, we consider thmternalinteraction between TU A and B, namely the propagation of gkwo
piece from TU A to TU B, see right half of the automaton modefFigure 5.3. Initially, due to its
I/O-controller structure, the environment has to accdptialevents (all events labeledq_...) is-
sued by TU A or TU B and may respond by thig-eventsiack_A, pack_A ornack_B, pack_B,
depending on the correct order of requests. The eventf|_B is responded byack_B (state 7)

as TU A has not provided a workpiece yet. Instead, tr_A is followed bypack_A, after which
only the appropriate requestq_fI_B leads to positive acknowledge (state 8), as TU B has to take
over the workpiece provided by TU A.

The second step is the description of #dernalinteraction (left part of Figure 5.3) of mod-
ule AB with the remaining environment. To this end, we introd the alphabetd; :=
{req_fIl_AB,req_tr_AB} andUy, := {nack_AB,pack_AB} as the plant-1/O port o8g;. As
req_fl_A represents a request of the entire module AB, it is “trapdlato the remaining envi-
ronment byreq fI_AB (state 2). Now, the plant-1/0 port &1, has to accept all; -events. Both
acknowledges from the remaining environmenisk__AB andpack_AB are reported to TU A by
nack_A andpack_A, respectively (states 4, 5 and 6). In the same way, the requesr_B is
“translated” to the remaining environment (state 3).

Note that the environment constraids; as depicted in Figure 3.7 are violated in states 6, 7 and
11, because the shared resource is not provided as requilgtece, in the compound of module
AB and gy, the liveness of TU A and B is not preserved. O
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Analogously to the I/O controller form, an I/O environmeotrh can be defined for an automaton
graph to represent an I/O environment.

The I/O-shuffle and the environment model are composed torael of the interacting plants.
Its external behaviou$p;, (see Proposition 5.4) is an I/0O plant: comparing the 1/Ocitme of
controller and environment, Proposition 3.3 carries owéiné compound of plant and environment
by uniform substitution as in Figure 5.4.

IO environment: I/O controller:
S <« Se
Spr, < Scp
I/O port (Yg,Ug) < /O port(Yp,Up)
Spe < Spr
I/O port(Yp,Up) < /O port (Y, Ug)
Sp < Sp
Figure 5.4: Analogy between I/O environment and 1/O controller
Proposition 5.4

Let Spy = (Up,Yp,UE,YE,ﬁpE) be an I/O plant and IQSEL = (UE,YE,UL,YL,EEL) be an I/O
environment. Then the external behavidif, := (Up, Yp, UL, Y1, Lpr) With Lpp, := ppr.(Lpg ||

Lgr,) is an 1/0 plant. O
Proof
See proof of Proposition 3.3 with the analogies shown in l&gu4. O

In Proposition 5.3, suitable compound operator- and enwirent constraints describing the live-
ness of the individual plant components have been idenfibietthe 1/0 shuffle. Now, the environ-
ment constrainsg, is replaced by the 1/0 environment. Hence, suitable comé&&r andS;, are
required to enforce the original environment constrairdriber to guarantee liveness of the com-
pound plant. The following theorem characterizes suchtcaings. TypicallySy, is given from an
application context, and the below condition is solved fer variableSp.

Theorem 5.1 (Compound Plant Model)
Fori e {1,2}, let Spg; = (Upy, Ypi, Ugi, Yi, Lpg;) be an 1/O plant, that is complete and
Yp;-live w.r.t. the constraintsSg; = (Ug;, Ygi, Lri) and Sp; = (Upy, Ypi, Lpi).  Let Sgr, =
(Ug, Y&, UL, YL, Lgr) be an 1/0O environment and consider the compound sysfem =
(Up,Yp, U, Y1,,Lp1), Lr = per.((Lee1 o Lpr2) || Ler). Let Sp = (Up,Yp,Lp) and
St = (U, Y1, L1) be constraints with

pe(Lp || (Lret llio Lre2) | Lev || £1) € (Le1 || Lr2) N Lo, (5.1)

per(Le || (Lert llio Ler2) || Lev || L1) € (Le1 || Lr2) N Lio - (5.2)
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with £;, as defined in Definition 5.1. The$py, is
(i) an I/O plant;

(i) complete w.r.tSp andSy, ,

(ii) Yp-live w.r.t. Sp andS;, .

Proof

(I) Lpy, is an I/O-plant. Proof: this follows from Proposition 5.4.

(1) Lpy, is complete w.rtLp and £;. Proof: Picks € £p | Lpr || £1; hence there exists
reLp || Leg || LuL || L1 such thatpr(r) = s. As Lpg || Lgi iS complete and’p-live
w.rt. Lp and Ly, there exists’v, v € Yp such thatr'v € Lp || Lpg || L || Lr. AS
prL(r'v) = ppL(r')v # €, ppr(r")v = or” with someo € Ypp, andr € X5 .1 Observing
peL(rr'v) = ppL(r)peL(r')v = sor”, it holds that there exists € Ypp, such thatso € Lp ||
Lpy, || Ly

() Lpy, is Yp-live w.r.t. Lp andLy,. Proof: Pickw € (Lp || Lpg || Lev || £1)°°. AS Spg iS Yp-
live w.r.t. Lp and Ly, it holds thatpyp(w) € Y;¥. Note that for alkw’ € (Lp || Lpr, || L£1)>,
it holds thatpyp(w’) = pyp(ppL(w)) = pyp(w) for somew € (Lp || Lpg || LeL || L1)>.
Hencepyp(w’) € Y for all w’ e (Lp || Lot || L£1.)*°.

i

Hence, liveness of the compound plant is achieved whenkeesxternal constraints, and Sy,
enforce the internal constraing;; and Sp;. Then, we end up with an I/O plant as discussed
in Chapter 4 and, hence, can approach the control probleordingly. In particular, we can
substitute the actual plant modefsg; by an abstraction: due to monotonicity of the applied
language operations, this leads to an abstraction of thgpocond plant and to a conservative
constraintSp. As we are now in the position to design controllers also fougs of components,
we can approach the design of a hierarchical control systemdilti-component DES.

5.2 Stepwise Hierarchical System Design

In order to design a hierarchical control architecture fo@ tomposed system as illustrated in
Figure 1.11, we suggest the following recurring sequenctegfs:

Note that not necessarity = v.
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1. Component-wise controller desigii-or each component a local I/O controller can be de-
signed as in Chapter 4 according to an individual specitoafi;,..cx,. By Theorem 3.1,
the overall system is still given as a setrof/O plants, where the I/O-plant model of each
controlledcomponent is given as the external closed loop of the unalbedr/O plant and
its 1/0O controller.

2. Abstraction stepFor the next hierarchical level, the original I/O plant campnts (uncon-
trolled plants or external closed loops) are replaced bybatraction that captures only the
behaviour that is relevant for superposed control actian.tlre controlled components, as
mentioned earlier in this text, we propose to use the spatiitsS;,..cx, as an abstraction
for the external closed loop.

3. Subsystem compositiokVe suggest that groups of a comparatively small number aitpla
components shall be described by a compound model and eglvpith control and mea-
surement aggregation by one superposed I/O controller neeipg At this point, the com-
plexity of the compound model of each group (that is expaakimt the number of compo-
nents) is effectively reduced by the use of abstractionbenpreceding step. We formally
obtain a compound model of the group bglauffle productomposition and model the in-
teraction of the plant components by an environment mogeésents the limited amount of
resources available and thus, in general, da#sneet the original environment constraints
necessary for liveness of the individual plant components.

4. Superposed controlFor each group and a specification for each group, we syathesi
superposed controller that respects Theorem 5.1 and thets e operator constraints and
enforces the original environment constraints by only esgjmg resources when available.
We end up with a new level af < n plant components, one per group. By replacement with
the corresponding specifications, we proceed with step 2.

This procedure is iterated until one controller for the edugtoverall plant model is designed. The
exponential growth of complexity in the number of plant caments observed in the monolithic
approach is effectively avoided.

5.3 Complexity of the Transport Unit Example

For the subsystem composition step, the complexity of theltieg compound model is exponen-
tial in the number of subcomponents. However, the expoakgitowth has no effect on the next
hierarchical level, as the controlled group is replacedngydpecification model. As a result, as-
suming a fixed upper bound for the complexity of the specibecet, the complexity of the overall
control system is linear in the number of plant componenkss @eliberation is supported by the
TU example.
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Example 5.3

Transport Unit. Again, we consider the chain of an arbitrary number of TU'tie Bbove se-
guence of hierarchical design steps is accomplished asnsll

Controller design:A local controller for each TU is designed for the specificat,..cr accord-
ing to the previous sections. The local plant models and lowatrollers comprise 9 states each.
Abstraction stepAs proposed above, the external closed 10Bpg, Lc) of each TU is replaced
by Sspeccr-

Subsystem compositioifthe abstractions of each two neighbored TU’s are composed tise
I/0 shufflecomposition. For each pair, the interaction of the two TUeag themselves and with
the remaining environment is captured by a subordifi@teenvironmenimodel, which counts 14
states. The compound model of any two TU’s is built of two $jgeations as in Figure 3.9 with
6 states each and the 14-state environment model. Henceoitingosed result is of the order of
6 x 6 x 14 = 504 states.

Design of superposed controllergor the resulting compound models of two TU’s, we require
that the controlled module behaves as if it were one singlesport unit. Accordingly, we keep
up the specification in Fig. 3.9 also for the compounds of twiisTby copy and paste and correct
renaming of the events. The controller for two TU’s and thpecification counts 28 states. Now,
the compound of any two controlled TU's is replaced by thecdmation with only 6 states - a
considerable reduction compared to 504 states which wénglokabove.

Overall hierarchy: Keeping up this specification for all levels, until a topééeontroller for an
abstract model of the whole chain of TU’s is synthesizedddad hierarchy of identical 1/0 con-
trollers and 1/O environments. Hence, the overall compyesan easily be predicted for a chain
counting an arbitrary number of TU’s.

Table 5.1 shows the sum of states for a chain of up to 16 TUth,libe plant model hierarchy
(comprising all I/O plants and the environment hierarchyg ehe controller hierarchy feature lin-
ear complexity compared to the exponential growth of a mimolplant model (see third column
in Table 5.1. The according model is found in Appendix A.3).

Table 5.1: Transport Unit: Sum of States

No. plant controller monolithic
of TU'’s hierarchy hierarchy plant model
1 9 9 6
2 2:9+414=322-9+28 =46 36
4 78 120 1296
8 170 278 7776
16 354 594 approx.2,8- 102




Chapter 6

Conclusions

In this contribution, we provide an input/output-base®(lased) system theoretic framework
of hierarchical abstraction-based control system desigdiEcrete event systems. The 1/0O-based
description of discrete event models is adopted to forrmguages from J.C. Willems’ behavioural
systems theory and is the key ingredient that allows forabsbn-based controller synthesis under
preservation of safety- and liveness-properties.

First, a notational basis for th@ncept of formal languageas established in Chapter 2, includ-
ing the graph-based representation by automata and thennaiftiv-languages used to describe
sequential behaviour.

With the formal language framework as a basis,l/@based modeling framework for DES
developed in Chapter 3. As a mathematical plant model, @@lént is proposed as an entity that
interacts with an operator and an environment via well-@efiliO ports. The notion of liveness
is reformulated in the context of inputs and outputs in fofra conditional liveness that depends
on constraints on the external configuration of the plant.itBy/O structure, the corresponding
I/O controller preserves controllability and basic livea@roperties in the closed loop. As a main
result, any controller that solves the control problem forabstraction of the plant, is provably
also a solution for the genuine control problem for the odiplant.

In Chapter 4, an algorithmicontroller design proceduris established that respects admissibility
conditions and yields a solution to the controller desigobpem. Liveness of the closed loop is

realized in form a an acyclic language that is algorithniycathieved via a cycle-free topology of

the corresponding automata graph.

An extension of the results to a multi-layeontrol hierarchyis proposed in Chapter 5. First, a
compound model for a group of plant components is develogeatid I/O shuffle operation and
by the notion of the I/O environment. The latter describesititeraction within the group of
subplants and the interaction of the group with the remgipilant configuration. The presented
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results show, that the resulting compound model readilyeseas an 1/O plant model for the next
layer of superposed control, and constraints on livenetiseahdividual plant components can be
passed on to be met by the superposed controller.

Next, a hierarchy of superposed controllers is develogdeat, is complemented by a hierarchy
of environment models. At each layer of controller desidne, plant models can be replaced by
the specifications of the preceding design step due to thdtsesn abstraction-based control.
By repeated alternation of abstraction, subsystem coriposvith an environment model and

superposed control, an overall control hierarchy is ewtiabtl that scales well in the number of
plant components.

In parallel to this thesis, the I/O based approach has bepiemented as the plug-HioSysof the
open-source C++ library libFAUDES (see [FAU, MSP08, MP309]he HioSys plug-in imple-
ments suitable data structures such as the class HioFHahgxtends the libFAUDE®Generator
class (which implements an automaton) by state- and evgititsies according to the I/O-plant
form (Definition 3.5). Moreover, the plug-in offers a comgleset of functions to step-by-step
support the I/O-based design method as well as compreleermgitines such adioSynthHierar-
chical(), which computes an I/O controller for a composed system.thédibFAUDES interface
to the scripting language LUA, the 1/0-based design can Ipelected by writing scripts that run
without compiling. For a complete documentation, see [FAU]

The computational savings of the 1/0 based hierarchicalaggth compared to the monolithic ap-
proach to discrete event controller design are presentegjplycation to the conceptional example
of a chain of transport units that accompanies the thesalugted on this example, our approach
features linear complexity in the number of plant composeihaving turned a complicated prob-
lem into a manageable one.



Appendix A

Proofs

This appendix provides some lemmas and proofs for statemesde in the body of the thesis.

A.1 Languages and According Properties

Lemma A.1l
Let Z,, £, andL. be languages. It holds that

(['a U»Cb) H 'C'c = ('C'a H Ec) U ('Cb H Ec)

Proof

(@) (L ULy) || LcS(La || L)U(Ly || Le). Proof: Picks € (L,uLy,) || L.. Hencep.y,(s) € L,ULy,
andp.(s) € L.. W.l.o.g. assume,;,(s) € L,. Thus,p.,(s) = pa(s). Since we have,(s) € £, and
pe(s) € Le,itholdsthats e £, || Lo € (Lo || Le) U (Ly || Le)-

(b) (LouLly) || Le2(La ]l Lo)u(Ly || £L:). Proof: Note that it obviously holds thd}, || £. ¢
(LauLy) || Loandly || Le € (Lo Ly) || Lo Thus,(La || L) v (Lo || L) € (Lau Ly) || Leo O

Lemma A.2
Let £, ¢ X7, £y ¢ X% be languages over the alphabgts X, and letp, : (3, uX.)* - X} be the
natural projection to the alphabgt c >, n X,. Then,

Po(L1) Npo(L2) 2 po(L1 N L)

where equality does not hold, in general. ]



84 APPENDIX A. PROOFS

Proof Pick an arbitrary string, € p,(£1 n £2). Hence,3s € £ n L, such thatp,(s) = s,.
Note thats € £, ands € L, and, consequently),(s) € p,(L£1) andp,(s) € p.(L2). Hence,
po(s) =S¢ po(ﬁl) mpo('CQ)' Thus we hav@o(ﬁl N £2) S po(ﬁl) ﬂpo(ﬁz).
In general, equality does not hold - example: Let= {ac} overy; = a, ¢, Lo = {bc} overy; =b,c
andX, = c. Then

Po(L11 Ls) =po(D) = @ € po(L1) N po(L2) = {c}.

]
Lemma A.3
Let £; and£, be prefix-closed languages. Then,
(L) N (L2)™ < (Ly || L2)= (A1)
]

Proof Pickw € (£1)* || (£2)*®. Thus,p;(w) € (£1)*® andpy(w) € (L3)*. Consequently,
(p1(w))™ € Ly and(pa(w))™ € Lo for all n € Ny, asL; and L, are prefix-closed. Obviously, there
exists an infinite sequende; )cy, «,,,>k such thatp; (wk) = (p;(w))™ € L, for eachn; € Ny.
For eachk;, with the lengthn, of py(w*), we havepy(w*) = (pa(w))™ € L. So, for allk;, it
holds thafp, (w*:) € £, andpy(w*i) € Lo, i.e.w* € Ly || L, for all k; of the infinite sequencgk;).
Hencew e (£; || £2)*°. Asw was chosen arbitrarily,C1)> || (L2)>® < (£ || L2)*.

Lemma A.4
For the subset relation A.1 (Lemma A.3), equality does ndd,hio general. O

Proof Counterexample: Consider the prefix-closed languafies {e,a} over the alphabet
Y1 = {a} andL, = b* over the alphabet, = {b}. With L || Ly = b*ab*, we have(L; || L2)™ =
b~ + b*ab~. On the other hand, withiZ,)> = g and (L) = b~, we get(L,)> || (£2)> = @ and
thus(L1)* || (£L2)® c (Ly || L2)*. i

Lemma A.5
Let £, and£, be regular languages over the alphabétsnd?,, respectively. Then,

Vwe (Ly || L2)7: pi(w) € (£1)™ or pa(w) € (£L2)* (or both).

Proof Pickw € (£ || £2)*° and observev = o105+ With o; € 31 U 3, for all 7 € N. Thus,

o; € ¥ for infinitely manyi € N,or o; € ¥, for infinitely manyi € N (or both). (*)
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Observe also thal(n),.y : w™ € Ly || Lo, i.€.p1(w™) € L1 andpy(w™) € Lo. Consequently,
because of (*),
A(n1)nyen = (pr(w))™ € L1,0r I(n2)npen: (p2(w))"™ € L (or both).

As a consequence,
pr(w) € (L1)™ or pa(w) € (L) (or both).

Lemma A.6
Let £, and£, be regular languages. It holds that

([,1 @] [,Q)Oo = (,Cl)oo @] (Eg)m

Proof
(i) (L1UL3)> 2 (L1)*uU(Ly)*>. Proof: Pickw € (£1)*°u(L2)* and w.l.0.g. assume € (L1)*.
Hence, there exists an infinite sequelige);cy, n,,,>n, SUch thatwl,, € £, for all n;, where
£1 c El U EQ. ThUS,w € (,Cl @] ,Cg)oo.

(i) (L1ULy)® c (L) u(Ly)>. Proof: Pickw € (£ U L3)>~. Hence, there exists an infinite
SequeNnCEn; ) vy n,.,>n; SUCh thatwl,, € £, u L, for all n;. Thus, for alln;, w|,, € £, or
w|n, € Lo (Or both). As(n;) is infinite, there exists an infinite sSequen@e; );1eng ni1, 5
such thatw|,,,, € £;, or there exists an infinite SequUenEe. )izen, nis.1>n SUCh thatw|,,, € Lo

(or both). Thusw € (£1)> orw € (£3)* (or both), i.e.w € (L£1) u (Ly)*. 5

A.2 Input/Output-Based Results

Lemma A.7
Given two I/0O plantsngi = (Upi, Ypi, UE@'; YEi7 EPE@) and their I/O SthﬂépE = SpEl ”10 SPEQ, it
holds that

Lpp1 € Lpg andLpgs € Lpg

i
Proof For symmetry reasons, it is obviously sufficient to show tiiving relationship only.
Ler1 € L) € Lpg

Proof: Note thai := (Lpg1 || Lrr2) N Lio. Lrr1 andLpp, do not share events. Thus, it holds that
Lrr1 € Lpr; H Lpro. Moreover,

Lpr1 € [(Ye1Up1)*(Ye1Ug1)*]* € Lio.

Hence,EPEl c [,H c E” U Eerr = EPE' o




86

APPENDIX A. PROOFS

Proof Proof of Lemma 3.2
Preliminary note: Note that property (viii) in DefinitionBimpliesq, € Q... Hence L.(G) + @.
We now prove thaf>>, £,,(G)) provides all Constraint properties.

(i) (3, Ln(G)) is a system with = UJY: by definition,G recognizes the languadg, (G)
over, and Property (i) requires = UUY'.

(i) (U,Y) is a controller-1/O port of(3, £,,(G)). Proof: we show thatU,Y") provides all
controller-1/0O port properties.

(ii.i) From property (i) in Definition 3.7 we directly conalie > = WuoUUY with W = &

andU # o+ Y.

(iLi)) Ln(G) = (YU)*. Proof: If £,,(G) = {e}, obviouslyL,,(G) = (YU)*. ForL,(G) >

{€e}, we continue with induction: Pick arbitrasye £,,(G) n ¥. W.l.0o.g. assume such
o exists (completeness is shown in the next item). Hedigg, o)!. As property (iii)
requiresy, € Qv, property (iv) impliess € Y. Henceg € (YU)*.

Now consider a nonempty string,,.1 = 0103 ...0,0,41, 0; € 2, i = 1..n, n € Nwith
Son+1 € Ln(G). Assumes € (YU)*. We show that alseo,,.; € (YU)*. Note that
there exists somge Q such thabt(q, 0,,)! andi(q, ,,0,.1)! and consider the following

cases.:

(@) o, €Y. Inthis case, property (v) rules ogt Q. Because of property (ii), we can
concludeqg € Qy and, with property (iv)p(q,0,) € Qu. Consequently, property
(v) implieso,,,; € U. Henceso,,1 € (YU)*.

(b) 0, € U. In this case, property (iv) rules oyte )yv. Because of property (ii),
we can conclude € Qy and, with property (vV)§(q,0,) € Qy. Consequently,
property (iv) implieso,.; € Y. Hence,so,,; € (YU)* whenevers ¢ (YU)*,
which proves the induction step.

(VseX*Uu{e}l,veY)[seLn(G)= svely(G)]. Proof:

First consides = € € £,,(G) and observé(qo, s) = qo € Qy by property (iii). Conse-
quently, property (vi) implies that for all € Y it holds that (¢, sv)!. Hence, ifs = ¢,
sveLy(G)forallveY.

Now pick arbitrarysyu € £,,(G), € U.X Write q := §(qo, s) and observé(q, u1)!. As

1 ¢ Y, property (iv) rules oug € Q)y. Because of property (ii); € Qu. Thus, ast € U,
property (v) implies thay’ := (¢, ) € Qy. Consequently, property (vi) implies that
forall v € Y it holds thaté(¢’, v)!. Hencessuv € L£,,(G) forall v e Y.

(i) £.,(G) is complete. Proof: We have to shdWws € £,,(G): 3o €X) [so € L,,(G)]. Note
that due to property (viii)£,,(G) = L£,,(G). Now pick arbitrarys € £,,(G). Hence there

INote that due to the I/O structure proven in (ii.é)z e.
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exists some € () such that(q, s) = q. Because of property (vii) there exists X, ¢’ € @
such thay’ = §(q,0) = d(qo, so). Property (viii) impliesq’ € Q... Thus,so € L,(G).

Consequently( >, £,,(G)) is an /O constraint. o

Proof Proof of Lemma 3.4
Preliminary note: Note that property (x) in Definition 3.18pliesq, € Q... Hence,L,(G) # @.
We now prove that>, £,,(G)) provides all I/O-controller properties.

(i) (3, L (G)) is a system: by definition; recognizes the languadg, (G) overXx. Property
(i) requiresy = UcUYUUpUYp, and we identifycp = XcUXp := X with X¢ := UcUY and
Ep = UPUYP.

(i) (Ug,Yc) and(Up,Yp) are a plant-1/O and a controller-1/0O port 0F, £,,(G)). Proof: we
first show thai Uc, Y) provides all plant-1/0 port properties.

(ii.i) From property (i) in Definition 3.13 we directly conglleY = WUuUUY (with W =
YX-Uc-Yc= UpUYp) andUc +@+ Y.

(ii.i)) Lwm(G) = (W*(YeUc)*)* with W+ = (YgUy)*. Proof: We show(,,(G) <

((YeUp)*(YpYcUcUp)*)*, which is a subset of W*(YcUc)*)*. If Li(G) = {€},
obviouslyL,,(G) = ((YeUp)*(YpYcUcUp)*)*. For L, (G) o {e}, we continue with
induction: Pick arbitraryr € £,,(G) n X. Hence,d(qo,0)!. As property (iii) requires
qo € Qvyp, property (iv) impliess € Yp. Henceg € ((YpUp)* (YpYcUcUp)*)*.
Now consider a nonempty stringr,,.; = 0103...0,0,41, 0; € X, i = L.n, n € N
with so,,.1 € L, (G). Assumes € ((YpUp)*(YpYcUcUp)*)*. We show thako,,,; €
((YpUp)*(YpYcUcUp)*)*. Note that there exists somes ) such that(q,o,,)! and
d(q,0n,0,,1)! @and consider the following cases:

(a) o, € Yp. In this case, properties (v), (vi) and (vii) rule apt Quc U Qyc,up U
Qup. Because of property (ii), we can conclugle Qvp and, with property (vi),
d(q,0n) € Qvcup. Consequently, property (vii) implies,.; € Yo u Up. Hence,
s0n+1 € (YpUp)* (YpYcUcUp)*)*.

(b) o, € Up. In this case, properties (iv) and (vii) rule opk Quc U Qyp. Because
of property (i), we can conclude € Qvc up U Qup and, with properties (v) and
(vi), 0(q,0,) € Qyp. Consequently, property (iv) implies,.; € Yp. Hence,
son1 € ((YpUp)* (YpYcUcUp )*)*.

(c) o, € Yc. In this case, properties (iv), (v) and (vii) rule aut Quc U Qup U Qvp.
Because of property (i), we can concludes Qycup and, with property (vi),
d(q,0,) € Quc. Consequently, property (vii) implies,.; € Us. Hence,so,,,1 €
((YpUp)*(YpYcUcUp)*)*.
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(d) o, € Uc. In this case, properties (iv), (v) and (vi) rule aut uQyc up U Qup U
Qvp. Because of property (ii), we can concludes QQuc and, with property
(vii), d(q,0,) € Qup. Consequently, property (v) implies,,; € Up. Hence,
son1 € (YpUp)*(YpYcUcUp )*)*.

Hence,so,,,1 € (W*(YcUc)*)* whenevers € (W*(YoUc)*)*, which proves the in-
duction step.

(VseX*Yo,ueUc)[s € Ln(G) = spue L,(G)]. Proof:

Pick arbitrarysv € £,,(G), v € Yo. Write ¢ := §(qo,s) and observé(q,v)!. As
v ¢ UcuUp U Yp, properties (iv), (v) and (vii) rule out e Quc u Qup U Qvp. Because
of property (ii),q € Qyc,up. Thus, as € Y, property (vi) implies that' := 6(q,v) €
Quc- Consequently, property (viii) implies that for alle U it holds thatd(q’, i)!.
Hence,svp e £,,(G) for all e Ue.

Thus,(Ug, Yc) is a plant-1/O port of &, £,,(G)). We now show thaUp, Yp) provides all
controller-1/0 port properties.

(ii.iv) From property (i) in Definition 3.13 we directly cohme Y = W/UUpUYp (With W' =

(ii.v)

(ii.vi)

X-Up-Yp= UcLJYC) andUp +J#+ Yp.

Ln(G) = (YpW"Up)* with W = (Y3U¢)*. Proof: with item (ii.ii), we have shown
Ln(G) € ((YpUp)*(YpYcUcUp)*)*, which is a subset ofYp W’ Up )*.

(VseX*Upu{e},veYp)[s e Lwn(G) = sveLl,(G)]. Proof:

First consides = € € £L,,(G) and observé(qo, s) = qo € Qyp by property (iii). Conse-
quently, property (ix) implies that for all € Yp it holds thaty(qo, sp)!. Hence, ifs = e,
sp € Lo (G) forall pe Ue.

Now pick arbitrarysyu € £,,(G), € Up.2 Write ¢ := §(qo, s) and observé(q, u)!. As
i ¢ Ug u Yp, properties (iv) and (vii) rule ouy € Quc u Qyp. Because of prop-
erty (i), ¢ € Qycup U Qup. Thus, asv € Up, properties (v) and (vi) imply that
q' = 0(q,v) € Qyp. Consequently, property (ix) implies that for alle U it holds
thaté(q’, iu)!. Hencesvp e £,,(G) for all e Uc.

(iii)y As shown initem (ii.ii), £, (G) < ((YpUp )*(YpYcUcUp)*)*.

(iv) L£,(G)is complete. Proof: We have to sh@ws € £,,(G) : 30 €X) [so € L,,(G)]. Note

that due to property (X)£..(G) = L,(G). Now pick arbitrarys € £,,(G). Hence there
exists some ¢ ) such thav(qo, s) = ¢q. Because of property (xi) there existe X, ¢’ € @
such thay’ = §(q,0) = d(qo, so). Property (X) implieg’ € Q... Thus,so € L,,,(G).

Consequently( >, £,,(G)) is an I/O controller. o

2Note that due to the 1/O structure proven in (ii.#)¢ e.
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Proof Proof of Proposition 3.4

(i) If Spg is complete w.r.tSp andSg, thenlc || Lep || Lrg || Lk is complete. Proof:
Pick an arbitrarys € L¢ || Lep || Ler || Le. We will show that there always existssuch
thatppi(so) € Leg || Le andpep(so) € Le || Lep (0F pe(so) € Lo andpep(so) € Lep), i.€.
soe Lo || Lep | Lg || Lr. Observe that, sincScp fulfills condition (i) of Definition 3.11,
pre(s) € Lp || Leg || Le.

First considers = ¢. Sincelp || Lpg || L& € ((YpUp)*(YeUr)*)* @andLp || Lpg || L&

is complete, we can pick € Yp U Yg With ppg(so) = 0 € Lp || Lpg || Le. In partic-
ular, ppe(so) € Lpg | Lg. Consider the following two cases: (a) df € Yp, we have
pep(so) =o€ Lop, asLep € ((YpUp)*(YpYcUcUp)*)* andYp is free inScp. Furthermore,
pc(so) =ee Lo. (b) If 0 € Yi, we havepcp(so) =€ € Lop || Le.

For the cases # ¢, write s = ro for some(r € Y&, 0 € Ycpp). Thus, we have
pe(ro) € L, pep(ro) € Leop, ppr(ro) € Lpg and pg(ro) € Lg. Now, we need to
establish the existence 6fe Y.cpg such thappr(rod) € Lpg || Lg, pcp(rod) € Lop and
pc(rod) € Lo. We distinguish the following cases.
(@) o € Y: sinceSc is complete and sincéq < (YcUc)*, we can pickuc € U with
pc(rouc) € Lo. As Ug is free inScp, pop(rouc) € Lep. Obviously, ppe(rouc) =
ppe(ro) € Lpg || Li.

(b) o € Yg: sincelp || Lpg || Le € ((YpUp)*(YeUg)*)* is complete, we can pickg € Ug
with ppE(rauE) € EP ” EPE ” EE c EPE ” EE ObViOUS|y,pCP(TO',uE) = pcp('r’a) €
EC H ECP-

(c) o€ Uc: sinceScp is complete and sincéep € ((YpUp)*(YpYcUcUp)*)*, we can pick
pp € Up With pep(ropup) € Lep. Observero = tvpv With ¢ € ¢, vp € Yp andu € 3¢,
In particular,ppg(ro) = ppe(t)ve € Lpg. As Lpg € ((YpUp)*(YeUg)*)* andUp is free
in Spg, we haveppg(ro)up = pre(t)vpup € Lpg. Furthermorepe(roup) = pe(ro) €
Lo andpg(ropp) = pp(ro) € Lg.

(d) 0 €e Us uUp: asLpg € ((YpUp)*(YeUg)*)* and asSpg is complete w.r.tSp and

Sk, there exists somé ¢ Yp u Y with ppr(rod) € Lp || Lpr | Lg. In partic-
ular, ppe(rod) € Lpg || Lg. If 6 € Yg, we havepcp(rod) = pep(ro) € Lcp and
pc(roc) =pe(ro) € Le.
Elses ¢ Yp. Observe that either (a)o € X or b) ro = tupv with t € Xcpg,
pp € Up andv € X%, In particular, (@)pcp(ro) = € or (b) pcp(ro) = pep(t)pup. As
Lcop € ((YpUp)*(YpYcUcUp)*)* andYp free inScp, both cases implycp(ro)d € Lcop.
Moreover,pc(rod) = pc(ro) € L.
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e) o € Yp: sinceScp is complete, we can pick € Y u Up with pep(rod) € Lcp;
if 6 € Yo we havepc(roo) = pe(ro)d € Lo asYe is free inSe.  Furthermore,
pee(rod) = pee(ro) € Lo || Lg;
elses € Up. Then,ppr(rod) = ppe(ro)o € Lpg, asUp is a free input ofSpg. Further-
more,pg(rod) = pe(ro) € Ly andpc(rod) = pe(ro) € Le;

(i) If in addition Scp is admissible w.r.tSc, Sp andSg thenLe || pce(Lep || Lee) || Le IS
complete. Proof: Pick € pce(Lcp || Lpr); hence there exists € Lcp || Lpr such that
pce(r) = s. As Lcep || Lpg is complete and’o-live w.r.t. Lo andLg, there exists’v, v € Y
such thatr'v € Lcp || Lpr. AS per(r'v) = pee(r’)v # €, it holds thatpcg (r")v = or” with
someo € Ycg andr € i3 Observingpeg(rr'v) = per(r)pes(r’)v = sor”, it holds that

there existsr € YXcy such thato € Lcg. 5

Proof Proof of Theorem 4.1

IF. To show: GG is free ofYc-less SCC's= L(G) is Yc-live. Proof by contradiction: Assume
G is free of Yo-less SCC’s, bu (&) is notY-live. Hence, according to Proposition 4.1, there
exists a stringst € L(G), t # €, with st =) s andpyc(t) = e. Note that ass can be extended
by ¢ to the equivalent stringt, alsost can be extended to the equivalent stritge £(G), and
S0 on, i.e.s can be extended by an arbitrary repetitiont ofHence,st* ¢ £(G). Letn denote
the finite number of states ¢f. Thus, only a maximum number of < n elements okt* can be
represented by different states. All remaining elements oére represented by some of the same
m states. Accordingly, we can find two strings! andst”1¢t"2, ny # 0, that are represented by the
same stated(qo, st™') = 6(qo, st™'t"?) := ¢;. Note that each staig on the patht”? from ¢; to ¢;
belongs to the same equivalence cl@ss ) according to Definition 4.2, ag is equivalent tay;
(acc. to the equivalence defined in Def. 4.2): from each gtab@ this path, there exists a path
to stateg; as well as there exists a pathfrom ¢; to ¢z, with pyc(7.) = pyc(7) = €, ast, 7, = t"2
andpyc(t"?) = e. Consider two possible cases:

a)|Q;| > 1, thenQ; is aY.-less SCC.

b) |@Q;] = 1. Consequently"? = ¢ = ¢ for someo € ¥ — Y, ast + e andpyc(t) = €. Thus,Q; is a
Yco-less SCC.

Hence,Q; is aYc-less SCC, and we have the contradiction.

ONLY IF. To show: L(G) is Y¢-live = G is free of Ys-less SCC’s. Proof by contradiction:
AssumeL(G) is Yc-live but G is not free ofY-less SCC's, i.e. there exists at least dfaeless
SCC that shall be denotég,. Consider two possible cases:

a)|Q;| = 1. Then,Q; consists of one element. Denotes the path from the initial state t@,
i.e.s e L(G) andd(qo,s) = ¢;. According to Definition 4.2§(g;,0) = ¢; for someo € ¥ - Y¢.
Hence,so =;(¢) s, and alsoso can be extended by, i.e. soo € L(G), and so on. We get
so* € L(G). For the limit of £(G), we can conclude := so¥ € L(G)™. Aso € X - Y, it holds

3Note that not necessarity = v.
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thatpyc(w) = e ¢ YY. Thus, in this case; (G) is notYc-live.

b) |Q:| > 1. We choose two states # ¢, that are element af;. Denotes the path from the initial
state togy, i.e.s € L(G) andd(qo, s) = 1. As Q; is aYc-less SCC, there exists a pathfrom ¢
to ¢o, i.€. 0(q1,t1) = 0(qo, st1) = ¢ andst; € L(G). Likewise, there exists a path from ¢, to
¢, 1.€.0(qa,t2) = 6(qo, stita) = q1 andstyt, € L(G). Note that, a®(qo, s) = 0(qo, stit2), it holds
thats =) stito. As s can be extended bit,, also the nerode-equivalent stringyt, can be
extended by t,, i.€. stitstits € L(G), and so on. We get(t1t2)* ¢ L(G). For the limit of £L(G),
we can conclude := s(t,t2)* € L(G)*. As, according to Definition 4.25yc(t1) = pyc(t2) = €,
it holds thatpyc(w) = € ¢ Y¥. Thus, also in this casé,(G) is notYc-live.

Hence,L(G) is notYc-live, and we have the contradiction. o

Proof Proof of Lemma 4.1
Observe

Lcp || Lege = (Kcp U IC?;(UPYP)* u }ng(UPYP)*) | L. _LemmaA.l

= (Kcp || Lpg.) U (’Cglfa(Upr)* | Lrg.) U (’Cg%(Upr)* | Lrge)-

We showlcgl;(Upr)* | Lpg. = @ = Icgg(Upr)* | Lpg.. As Lpg,. is prefix-closed, for any
string s € ¢, it holds thats ¢ Lrp, = st ¢ Lpp, Vit € Yipg- This means that it is sufficient to
show/Cl, || Lpg, = @ = K8 || Lpk., which can be done by showing:

Vs eXipg: pop(s) € IC}C/% U Ing = s¢ Lpg,

Pick arbitrarys € Lpg,.
First, considepcr (s) € Ky, and observe from Definition 4.5 &f%:

(1) pCP(S) € EEPYP' Hence,s = rcpeVplE with TCPE € EEPE, Up € Yp, tp € EE,

(2) pcp(s) = reprp ¢ Kep (With 7ep = pep(repr)),
(3) repvp € Kcp for somevy, € Yp.

Proof by contradictionwe show thak € Lpg, is a contradiction to item (2) above.

So, assume ¢ Lpg.. AS Lpk, = Lc || L || Le € [(Ye(YeUo)*Up)*Ei]* 4, it holds that every
Yp-event is followed by d/p- or Y- event. Comparing this te = rcpgrptg, this meansgy = ¢
ands = rcpgrip.

From item (3), we knowpcp(rcpevp) = repvp € Kep. As Kep = pep(Ks), there exists
Tepg € 2cpg SUch thatr{ppvp € KCs.

Note that/C, ¢ Lpg,, i.€. i pptp € Lpr.. In particular, as bothiC, and Lpg,. are prefix-closed,
Tepg € Ko andripn € Lpg,.

4This language structure results from the 1/0 plant langdageat of Lpr, synchronized with the language format
of L induced by the controller-1/0O po(LUp, Yp) of Sc.
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Now, we use the normality property &if,: Computepcp(ripr) = rcp. AS alsopep(rcpr) = e,
we have

rope € pop(Pep (T0pr)) € Pap (Pop(K2)).
As rcpg € Lpg., We havercpg € poh(pep(K2)) N Lpg.. As Ky is normal w.r.t.Lpg, andXcp,
we receivercpr € Ko. Hence, as according to the assumptiofgrp € Lpg., and ask, is
controllable w.r.t Lpr,. andYp, it holds thatrcprrp € Ks.
Thus,pcp(rcpeve) = reprp € Kep, Which contradicts the above item (2)!

Second, considercp(s) € K4S and observe from Definition 4.5 ¢f0g:

(1) pCP(S) € EEPUC' Hence,s = rcPEMCTE with TCPE € 26PE’ He € Uc, tp € EE,
(2) pep(s) = reppc £ Kep (With rep = pep (repr)),
(3) rep g € Kep for somey, € Uc.

Proof by contradictionwe show that € Lpg,. is a contradiction to item (2) above.

So, assume € Lpg.. AS Lrg, = Lc || Lep || Lr € [(Yr(YeUc)*Up)*E5]%, it holds that every
Uc-event is followed by d/p- or Y- event. Comparing this te = rcpguct g, this meansg = €
ands = repgpc.

From item (3), we knowpcp(repeis) = repp € Kep. As Kep = pep(Ks), there exists
Tepg € 2cpg SUCh thatrlp . € KCs.

Note that/C, ¢ Lpg,, i.€. 7¢pgiic € Lrr.. In particular, as both, and Lpg,. are prefix-closed,
repg € Ko andripp € Lpge.

Now, we use the normality property &if,: Computepcp(ripr) = rcp. AS alsopep(rcpr) = rcp,
we have

repr € pep(Pep(repe)) € pop(Pep(K2)).

As rcpg € Lpg., We havercpg € poh(pep(K2)) N Lpg.. As Ky is normal w.r.t.Lpg, andXcp,
we receivercpg € Ko, Hence, as according to the assumptiopg/ic € Lpg., and ask, is
controllable w.r.tLpg,. andUg, it holds that cpgpc € Ks.

Thus,pcp(repeiic) = reppic € Kep, Which contradicts the above item (2)!

Consequently, the assumptiene Lpg, is wrong in both cases. l.e. for arbitragye o
with pep(s) € Kb U KSS we gets ¢ Log,. 1.e. Kb || Lpge = @ = K28 || Lpr, and thus, a€pg,

is prefix-closediCiE (UpYp) ™ || Lrge = @ = KoS(UpYe) ™ || Lpke- 0

Proof (Theorem 4.2)

Observe that for the languages constructed in the 1/0 Ciberti®ynthesis Algorithm it holds that
Koc ki C ’CO.

Note that, technically(Xcp, @) is a solution. Now, considefcp > @. We have to show the
following items:
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1) Scp is an 1/O controller:
(i) Scp is asystem withEcp = XcUYp, X := UUYq, Yp := UpUYp ;

(i) (Ug,Yc) and(Up, Yp) are a plant- and a controller-1/0 port fS¢p, respectively;

(III) »CCP c ((YPUP)*(YPYCUcUp)*)* ;

(iv) Lcp is complete.
2) Scp is admissible t&Spg W.r.t. Sc, Sp andSg:
() pp(Lc || Lep || Lre || L&) € Lp

(II) ,Ccp H £pE is Yc-”VG W.r.t.SC andSE
3) Scp enforcesS;peccr ON Spe..

Proof:

1)

1) Scp IS a system, aScp is provided byll andL¢p is a regular language ovelp.

i) a) (Ug, Yc) is a plant-1/0 port foiScp and b)(Up, Yp) is a controller-1/0 port folScp.
a) We prove all plant-1/0 port properties f0¥/c, Y:) given in Definition 3.2:

) Scp = WOUOYe with W = Sp, Ug # @ # Ye given byl

II) Note thatLep = Kop U Keh (UpYp) " uKES(UpYr)™.
First, consideiCcp and observe
Kcp = pep(K2) € pep(Ko) € (Ye(e+ YeUc)Up)* € (Xp(YeUc)*)*.
Second, considek}r,(UpYp)" and pick arbitrarys € KtF,. Then, according to Defini-
tion (4.5), s = s'vp for somevp € Yp and v, € Yp such thats'v), € Kcp, Where
Kep ¢ (35 (YeUc)*)*. Consequently, asp and v}, are from the same alphabgp, also
s = s'vp € (U5(YoUc)*)*. As s was chosen arbitrarily, it holds thats, ¢ (S5 (YeUc)*)*.
Moreover, ass = s’vp, it holds that also the extension K%‘;(UPYP)* meets the language
format (X5 (YcUc)*)*.
Third (analogous t&;?), considerCS (UpYr)™ and pick arbitrary € £0S. Then, according
to Definition (4.5),s = s'uc for somepuc € Uc and3pug, € Uc such thats’ i, € Kep, where
Kep € (35(YcUc)*)*. Consequently, agc and g, are from the same alphabg&t;, also
s =s'pc € (B5(YeUc)*)*. As s was chosen arbitrarily, it holds thﬁlgg c (Z5(YceUc)*)x .
Moreover, ass = s'uc, it holds that also the extension Kgg(Upr)* meets the language
format (33 (YcUc)*)*.
Summing up, we gefcp € (X5 (YeUc)*)*.

lI) To show: Uc is free inScp, i.€.:Vs e X5 Ye, pelUc: seLep = sp e Lep.
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Proof: pick an arbitrary ¢ Lcp n EE:Ye and arbitraryy € Uc. ObserveLep = Kep U
K& (UpYp)" UKYS(UpYp)™.

First, consides € K5 (UpYp)®*. Ass € X5, Yo, butiClh, e 25,Yp, s ¢ Kb, This meanss
is element of the extension &R.>, to 2%, (UpYp) ™. Hence, as € X, Yo, and as i UpYp) "
all Us-events are enabled aftefra-event, it holds thaty € IC(’?;(UPYP)* c Lep.

Second, considere K08 (UpYp) ™. Ass € S5p Yo, BUtKES € S5,Ug, s ¢ K06, This meanss

is element of the extension #-.¢ to K8 (UpYr) ™. Hence, as € ¥4, Ye, and as i Up Yp)*
all Us-events are enabled aftefra-event, it holds thaty € IC[C];B(UPYP)* c Lep.

Third, consides € Kcp. As Kep = pep(K2) and ass € X, Ye, 3s” € Ky such thapep(s') = s
ands’ = s"vc with s” € X¢pp, vo € Yo. As Ky is complete o € Ycpr such thats'o € K.

Considering the language format/of, it holds that

Ko< Ko< (Ye(evYeUc)Up)* || Lopecce € (X5 (YoUc)*)* || (YeUc)*(YeUg)*)* € (E5s(YeUc)*)*

This means that-- andUg-events strictly alternate ik,. Hence, as’ = s’v¢ we conclude
o= pc € Uc. l.e. suc € Kep € Lep for somepc € Ue. Now, pick arbitraryug, € Uc - pc.
Then, eithersl, € Kcp or, if sul, ¢ Kep, thenspul, € KES ¢ Lep (see Definition 4.5 okK5S).
Summing up, we haves e Lep N X Ye = sp e Lep for arbitrary € Uc.

Hence,(Uc, Y¢) is plant-1/O port ofScp.

b) (Up, Yp) is a controller-1/0 port foiScp. Proof: we prove all controller-1/0O port properties for

Scp given in Definition 3.3:

1) YXop = WUUpUYp With W = X¢, Up + @ # Yp given bylIl.

1) Lep € (YpELUp)*. Proof:
First, consideCcp and observéCcp = pep(Ks) <€ pep(Ko) € pep((Ye(e v YeUc)Up)*)
(YoXeUp)*.
Second, considdCéﬁ;(Upr)* and pick arbitrarys € IC?;. Then, according to Definition
(4.5),s = s'vp for somevp € Yp and3y, € Yp such thak’v], € Kcp, wherelCep € (YpXgUp)*.
Consequently, agp andyy, are from the same alphabkgt, alsos = s'vp € (YpXiUp)*. As
s was chosen arbitrarily, it holds thmgl; c (YpELUp)*. Moreover, as = s'vp, it holds that
also the extension tlsig‘;(Upr)* meets the language form@itp X5 Up ) *.
Third (analogous tdC}?), considerCiS (UpYp)™ and pick arbitrary € K5, Then, accord-
ing to Definition (4.5),s = s'uc for somepc € Uc and3p, € Ug such thats'ug, € Kep,
whereKcp ¢ (YpXgUp)*. Consequently, agc andy, are from the same alphabiét, also
s = s'uc € (YpXgUp)*. As s was chosen arbitrarily, it holds thmgg c (YpX&Up)*. More-
over, ass = s'uc, it holds that also the extension @;(UPYP)* meets the language format
(YoXeUp)*.
Hence,Lop = Kop UKE (UpYe) U KZS(UpYe)™ € (YpXaUp)*.

) (VseXipUpu{e},veYp)[seLep = sveLcp]. Proof:
Pick arbitrarys e (X¢,Up U {e}) n Lcp. We showsy € Lp for arbitraryy € Yp. As s € Lep,
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eithers e Ceporse P(Upr) orseIC (Upr) .

First, considers ¢ Kcp. Note that (only) this case includes = ¢, as Kcp is prefix-
closed and as ¢ K%, U KIS, As Kop = pep(Ka), 38’ € Ky € Ky € Ko with pep(s’) = s.

Note that, asC, is complete,do; € YXcpr such thats'o; € Ko, and3oy € Ycpg such that
s'o109 € Ky and so on. Repeating this procedure infinitely often, weivec@w € 3¢, with

w=0107... andsw e K.

As Ky € K4, it holds that/C, is Yc-live (see Proposition 4.2). Thugyc(s'w) € Y¥, and
dn e Nsuch that’w” = s'tvg, t € X, ve € Yo ands'tvg € Ky € K.

As pcp(Koy) € (Yp(evYcUc)Up)*, and as eithes = e or s = s"u, € Up, it holds that
pep(t) = vpt', t' € Xip, vp € Yp. Hencepep(s't) = svpt’ € Kep, i.€. svp € Kep € Lep.

Now, pick arbitraryr|, € Yp — vp. Then, eithersy), € Kcp or, if s, ¢ Kep, then
svl, € iR, € Lep (see Definition 4.5 o).

Second, consides € K%, (UpYp)™. Note that, ass € Y5pUp U {e} but K0P, € Y&, Yp,

it holds thate < s ¢ IC?F’,. l.e. s =tup, t € X¢p, pp € Up, ands is element of the extension
of KiF, to Kok, (UpYp) ™. As in the extensioriUpYp)" all Yo-events are possible after some
Up-event, it holds thatvp € K2 (UpYp) ™ € Lep for arbitrarywp € Yo.

Third, considers € KoS(UpYp)*. Note that, ass € S%,Up U {e} but KZ¢ € S%.U,

it holds thate < s ¢ /cgg,. l.e. s =tup, t € X¢p, pp € Up, ands is element of the extension
of K5$ to KU (UpYr)™. As in the extensioriUpYp)" all Yo-events are possible after some
Up-event, it holds thatvp € KOS (UpYp) ™ € Lep for arbitrarywp € Yo.

Summing up, we receiver € Lcp for arbitraryv € Yp.

Hence,(Up, Yp) is controller-1/0 port ofScp.

i) Lcep € ((YpUp)*(YpYcUcUp)*)* = (Yp(e v YoUc)Up)*. Proof:

First, observeCcp = pep(Ks2) € pep(Ko) € (Yp(ev YeUc)Up)*.

Second, considehigl;(Upr)* and pick arbitrarys € ;C(Y;;. Then, according to Definition (4.5),
s = s'vp for somevp € Yp and3y}, € Yp such thats’v}, € Kep, whereKep € (Yp(ev YcUc)Up)*.
Consequently, agp andv}, are from the same alphab¥gt, alsos = s'vp € (Yp(eVv YcUc)Up)*.
As s was chosen arbitrarily, it holds th;&ﬁC (Ye(evYcUc)Up)*. Moreover, as = s'vp, it
holds that also the extensmnlﬁgP(UPYp) meets the language form@te (e v YcUc)Up)*.

Third (analogous tdC o) conS|derIC S(UpYp)" and pick arbitrarys € /cgg. Then, accord-
ing to Definition (4.5),3 = s'uc for somepuc € U and 3 € Uc such thats’ug, € Kep,
where Kcp ¢ (Yp(evYcUc)Up)*. Consequently, agc and p(, are from the same alpha-
bet Ug, alsos = s'uc € (Yp(evYcUc)Up)*. As s was chosen arbitrarily, it holds that
KZS ¢ (Ye(evYoUc)Up)*. Moreover, ass = s'uc, it holds that also the extension to
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Icgg(Upr)* meets the language form@ts (e v YcUc)Up )*.

Hence,Lcp = Kep U ’Cg%(Upr)* c (Yp(e \Y; YCUC)UP)*.
iv) Lcp is complete. Proof: pick arbitrarye Lcp.

First, considers «¢ IC?;(UPYP)*. Observe thaﬂCé‘;(UPYp)* is complete by construction
and thusdo € Ycp such thako € K22 (UpYp) ™ € Lop.

Second, considngg(Upr)*. Observe thaﬂcgg(Upr)* is complete by construction and
thus3o € Xep such thato € KES(UpYr)™ € Lop.

Third, considers € Kcp. Then,3s’ € Ky such thatpcp(s’) = s. Note thatkC, is complete.
Thus, 30, € Xcpr such thats’o € Ky. Analogously,do, € Ycpg such thats’co, € Ky. Repeating
this procedure infinitely often, we receiuec 3¢, With s'w = s'0105--- € K°. ASKy € Ky IS Y-
live, pyc(s’) € Y&. Hence,dn e N such thatw” = tve € ICy. Note thatpep (tve) = pep(t)ve # €.
Consequently, fopcp(s’) = s, 3o € Ycp With 0 < pcp(tve) andso € Kep € Lop.

Summing up, for arbitrary € Lcp, d0 € Ygp such thatso € Lep. Hence,Lcop is com-
plete.

ConsequentlyScp is an 1/0O controller.

2) Scp is admissible toSpr w.rt. S¢, Sp and Sg. Proof: We have to show (i)
pp(ﬁc ” Lcp H Lpg ” EE) c Lp and (II) Lcp ” Lpy is Yc-live w.r.t. Sc andSg.

() pp(Lc || Lep || Lk || L) € Lp. Proof:

Observe

pp(Le || Lep || Lee || Le) = pp(Lep || Lrre) =Lemmaa12p(Kcp || Lpr.) €
pp(Kep) = pp(pep(K2)) = pp(Ks2) € pp(Ko) =
pp(Leec || Lp || (Yp(e v YcUc)Up)* || Lspeccr) € Lp

(i) to show: L || Lep || Leg || Li is Ye-live. Proof:

Observe

£C ” £CP H EPE H EE = ECP H ['PEc =Lemma 4.1 KCP ” ['PEc = pCP(K2) ” ['PEc =
par(pep(K2)) N Lpg.. Note that, by definition/C; is normal w.r.t.Xcp and Lpg.. Thus
pep(pep(K2)) N Lpg, = Koo Summing up, we gefc || Lep || Leg || Le = Ks, andiC; € Ky is
Yc-live.

3) Scp enforcesSgpeccr ONSpg W.I.t. Sc andSg. Proof:
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Observe

pCE(»CC || Lcp || Lpg || »CE) =Lemma4.1PCE(/CCP || »CPEC) =
pee(pep(K2) || Lege) = per(Pp (pep(Ka)) N Lk,

Note that, by definition/C; is normal w.r.tXcp and Lpg.. Thusper(pch (pep(K2)) N Lpg.) =
per(Ks). Note thatper (KCs) € per(Ko) € Lspeccr. SUmming uppee(Le || Lep || Lok || Lr) S
'CspecCE-

From items 1) to 3), we conclud€cp is a solution forl. ]

A.3 Chain of Transport Units: Monolithic Plant Model

A standard shared event model of a TU B that lies between a TU #sdeft and a TU C on its
right is shown in the subsequent figure. The events are &g as follows. The shared events
(denoted by bold labels) a2 B and B2C' and describe the propagation of a workpiece from TU
Ato TU B and from TU B to TU C, respectivelyB full | Bempty is issued by the sensor when a
workpiece arrives in / leaves the box. A workpiece that wasiked from TU A is transported to
the right border of the TU bysdel2r. Btakefl moves the box to the left border.

Btakefl Bempty

Figure 1.1: Transport Unit: simple shared-event model

The composition of TU B with the analogous model of TU A resitta state minimal automaton
with 36 states, i.e. the worst case of exponential growtbus@ for this example. For a chain of
up to 16 TU's, we obtain the numbers in the third column ofedhll.
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