
Preprint — submitted to Discrete Event Dynamic Systems
Please use the final publication for citation/reference. It is available
at Springer via http://dx.doi.org/10.1007/s10626-014-0182-x

A Hierarchical and Modular Control Architecture

for Sequential Behaviours

Christine Baier · Thomas Moor

Abstract This paper develops a hierarchical and modular control architecture for

so called sequential behaviours, i.e. for plant dynamics and specifications that are

represented as formal languages of infinite-length words. Our main result is the elab-

oration of structural properties that allow for abstraction based controller design and

that are preserved under closed-loop composition. Thus, we propose to alternate con-

troller design, closed-loop composition and abstraction in order to construct a hier-

archical control system in a bottom-up fashion. When the overall plant is composed

from a number of components, our approach naturally extends to the alternation of

controller design, closed-loop composition, abstraction and component composition.

Technically, our results are based on the notion of input-output systems known from

behavioural systems theory, with a particular focus on liveness properties represented

as sequential behaviours that are not necessarily topologically closed.

Keywords discrete-event systems · ω-languages · sequential behaviours · hierarchi-

cal control systems · modular control systems

Christine Baier · Thomas Moor

Lehrstuhl für Regelungstechnik

Friedrich-Alexander Universität Erlangen-Nürnberg

Cauerstr. 7, 91058 Erlangen, Germany

Tel.: +49-9131-8527130

Fax: +49-9131-8528715

E-mail: lrt@fau.de

2 Christine Baier, Thomas Moor

Introduction

It is common engineering practice to address complex control problems by a hier-

archical system design. In the context of supervisory control (Ramadge and Won-

ham, 1989), this principle has been formalized from a variety of perspectives, see

e.g. (Wong and Wonham, 1996; Feng and Wonham, 2008; da Cunha et al, 2002;

Leduc et al, 2005; Schmidt et al, 2008). In contrast to monolithic approaches, the

benefits include a systematic derivation of adequate models for the individual levels

of abstraction, as well as computational feasibility for large scale systems.

In this paper, we further develop a hierarchical control architecture that was orig-

inally introduced by Moor et al (2003) to address a class of hybrid systems, and

subsequently discussed by Perk et al (2006) for discrete-event systems. For each

individual level of the hierarchy, it is proposed to design a controller according to

a language inclusion specification. When only safety properties are of concern, all

relevant languages can be considered prefix-closed, and controller synthesis can be

based on an abstraction of the levels below, i.e., on a superset language that accounts

for any trajectory the lower levels may evolve on. In particular, the specification used

for one level in the hierarchy can be utilized as an abstraction for the synthesis of the

controller one level above. Furthermore, when the plant is composed from a num-

ber of components, one may first design individual low-level controllers that address

local control objectives per plant component, and then compose the individual spec-

ifications to obtain an abstraction for the design of a high-level supervisor. Techni-

cally, as long as all relevant languages are considered prefix-closed, the validity of

this approach is established by a fairly simple set-inclusion argument. Computational

benefits are expected from alternating abstraction and controller synthesis, since the

specification does not need to express how the control objective is achieved. This has

been demonstrated by a transport system example in Perk et al (2008).

Regarding liveness properties, the situation is more involved than for safety prop-

erties. Depending on the particular approach (Wong and Wonham, 1996; Feng and

Wonham, 2008; da Cunha et al, 2002; Leduc et al, 2005; Schmidt et al, 2008), ad-

ditional conditions are imposed on the plant and/or the abstraction in order to retain

liveness properties in a hierarchical design. Here, Perk et al (2006) refer to a variation

of input-output systems proposed by Willems (1991) in order to establish the follow-

ing structural liveness property of the overall closed-loop configuration: any finite

string on which the overall system evolves (a) can be extended by one more event and

(b) when extended to infinite length must include infinitely many high-level events.

The former appears to be a natural choice for the hybrid systems discussed in Moor

et al (2003), whereas the latter guarantees for persistent feedback through all levels

of the hierarchy of controllers. However, in the context of discrete-event systems,

more general liveness properties can be expressed by languages of infinite-length

words, also known as sequential behaviours or ω-languages. Examples of liveness

properties include eventual task completion or eventual feedback to a server of any

individual one of a number of clients. The corresponding ω-languages share the tech-

nical property that they are not topologically closed; for a detailed classification of

liveness properties in the context of temporal logics, see (Baier and Kwiatkowska,

2000; Manna and Pnueli, 1990). While the literature on supervisory control com-

A Hierarchical and Modular Control Architecture for Sequential Behaviours 3

monly represents relevant dynamics as ∗-languages, the core results are also available

for ω-languages (Ramadge, 1989; Kumar et al, 1992; Thistle and Wonham, 1994), in-

cluding abstraction-based controller design (Moor et al, 2011).

This paper is an extended revision of the conference contribution (Baier and

Moor, 2012), where we introduce a hierarchical control architecture for not nec-

essarily topologically closed ω-languages. In addition to the results in (Baier and

Moor, 2012), we explicitly address modularity, i.e., plants that are composed from

individual components, and we include an example to further illustrate our approach.

Conceptually, we follow the discussion presented in (Moor et al, 2003; Perk et al,

2006). However, while Moor et al (2003) formally use ω-languages to represent be-

haviours, they effectively require plant and controller to be topologically closed, and,

thus, exclude general liveness properties. Similarly, Perk et al (2006) model system

components by prefix-closed ∗-languages, which exhibit a topologically closed limit,

and, thus, can not represent general liveness properties. In this contribution, we re-

fer to a notion of non-anticipating input-output systems to achieve a non-conflicting

closed-loop configuration, but we impose no further constraints regarding liveness

properties possessed by the plant or required by the specification.

The paper is organized as follows. Section 1 introduces notation, recalls well-

known facts regarding formal languages, and gives a concise summary on the super-

vision of ω-languages. Section 2 discusses a closed-loop configuration with external

signals and characterizes admissible controllers in terms of achievable closed-loop

behaviours. Section 3 shows that relevant plant properties are retained under closed-

loop composition, and, thereby, establishes a hierarchical control architecture. Sec-

tion 4 elaborates a composition method for modular plants. An example is provided in

Section 5 in order to illustrate the formal results in an application context. A number

of technical lemmata have been moved to the Appendix.

1 Preliminaries and notation

1.1 ∗-languages

For an alphabet 6, the Kleene-closure 6∗ is defined as a set of finite strings s =

σ1σ2 · · · σn , n ∈N, σi ∈ 6, including the empty string ǫ ∈ 6∗, ǫ 6∈ 6. The length of

a string s ∈ 6∗ is denoted |s| ∈N. A ∗-language (or short language) over 6 is a set

L ⊆6∗ of strings. A language L ⊆6∗ is bounded if sup{|s| | s ∈ L }<∞, or, else, L

is unbounded. An introduction to ∗-languages from a supervisory control perspective

is included in e.g. (Cassandras and Lafortune, 2008).

If for two strings s, r ∈ 6∗ there exists t ∈ 6∗ such that s = r t , we say r is

a prefix of s, and write r ≤ s. If in addition r 6= s, we say r is a strict prefix of

s and write r < s. The prefix-closure (or short closure) of L ⊆ 6∗ is defined by

pre L := {r | ∃ s ∈ L : r ≤ s} ⊆ 6∗. A language L ⊆ 6∗ is called closed, if L = pre L .

Given L , K ⊆ 6∗, we say K is relatively closed w.r.t. L if K = (pre K) ∩ L . If

a language K is relatively closed w.r.t. a closed language, then K itself is closed.

The closure operator distributes over arbitrary unions of languages. However, for the

intersection of two languages L , K ⊆6∗, we have pre(L ∩ K)⊆ (pre L) ∩ (pre K),

4 Christine Baier, Thomas Moor

and, if equality holds, L and K are said to be non-conflicting. This is trivially the case

for K ⊆ L .

The natural projection po : 6∗ →6∗
o , 6o ⊆6, is defined iteratively: let poǫ := ǫ;

and, for s ∈6∗, σ ∈6, if σ ∈6o, let po(sσ) := (pos) σ , or else let po(sσ)= pos. The

set-valued inverse p−1
o is defined by p−1

o (r) := {s ∈ 6∗ | po(s) = r } for r ∈ 6∗
o . When

applied to languages, the projection distributes over arbitrary unions, and the inverse

projection distributes over arbitrary unions and arbitrary intersections. Furthermore,

the closure operator commutes with projection and inverse projection.

Given L , K ⊆ 6∗, and a set of uncontrollable events 6uc ⊆ 6, we say K is

controllable w.r.t. (6uc, L), if ((pre K)6uc) ∩ (pre L) ⊆ pre K ; see (Ramadge and

Wonham, 1987). Given L , K ⊆ 6∗, and a set of observable events 6o ⊆ 6, we say

K is prefix-normal w.r.t. (6o, L), if pre K = (p−1
o po pre K) ∩ (pre L); see (Lin and

Wonham, 1988). A language K ⊆6∗ is said to be complete, if for all s ∈ pre K there

exists σ ∈6 such that sσ ∈pre K ; see e.g. (Kumar et al, 1992). Controllability, prefix-

normality, completeness, prefix-closedness and relative closedness are retained under

arbitrary union. In particular, given a language E ⊆ 6∗, the supremal sublanguage

that possesses any conjunction of the above properties exists uniquely.

A ∗-language L ⊆ 6∗ is regular, if it is marked by a finite automaton; see e.g.

(Hopcroft and Ullman, 1979). Operations on ∗-languages relevant to this paper retain

regularity, with known algorithms to obtain the respective finite state realisation.

1.2 ω-languages

An infinite string over 6 is defined as a function w : N → 6. By 6ω := {w | w :

N→ 6} we denote the set of all infinite strings over 6. An ω-language is a subset

L⊆ 6ω. For a general discussion of ω-languages, see e.g. (Mukund, 1996; Thomas,

1990). Throughout this paper, we follow the convention to denote ω-languages by

calligraphic letters.

Given w ∈ 6ω, the prefix with length n ∈ N is denoted w(n) ∈ 6∗ and we write

s < w for a prefix s ∈ 6∗ of w. The prefix of an ω-language L ⊆ 6ω is defined by

preL := {s ∈ 6∗ | ∃w ∈L : s < w} ⊆ 6∗. The prefix of any ω-language is a complete

prefix-closed ∗-language. The prefix operator distributes over arbitrary unions of ω-

languages. However, for the intersection of two ω-languages L,K ⊆ 6ω, we have

pre(L ∩ K) ⊆ (preL) ∩ (preK), and, if equality holds, the languages are said to be

non-conflicting. The languages L, K ⊆ 6ω are locally non-conflicting if (preL) ∩

(preK) is complete. If two languages are non-conflicting, they are also locally non-

conflicting. Note, that for K⊆L both conditions are trivially satisfied.

A monotone sequence of strings, denoted by (sn) ⊆ 6∗, is a sequence (sn)n∈N,

sn ∈ 6∗, sn ≤ sn+1 for all n ∈ N. The sequence (sn) is bounded if sup{|sn| | n ∈

N } < ∞, or, else, (sn) is unbounded. The point-wise limit of a monotone sequence

(sn) is denoted by lim(sn) ∈ 6∗ ∪ 6ω. For a language L ⊆ 6∗, the limit is defined

by lim L := {lim(sn) | (sn) ⊆ L} ∩ 6ω. Note that pre lim L = L , if and only if L is

complete and prefix-closed; see (Kumar et al, 1992). Hence, pre lim preL=preL. For

the intersection of two ∗-languages L , K ⊆ 6∗, with K = pre K , it is lim(L ∩ K) =

(lim L) ∩ (lim K); see (Baier and Moor, 2012), Lemma 1.

A Hierarchical and Modular Control Architecture for Sequential Behaviours 5

The topological closure (or short closure) of an ω-language L ⊆ 6ω is defined

by cloL := lim preL. An ω-language is said to be topologically closed (or short

closed) if cloL=L. The limit of a prefix-closed ∗-language is topologically closed.

Given two ω-languages L, K ⊆ 6ω, we say, that K is relatively closed w.r.t. L, if

K= (cloK) ∩ L. The closure operator distributes over finite unions of ω-languages,

see e.g. Ramadge (1989).

For the natural projection of infinite strings, let w ∈ 6ω, denote (sn) ⊆ 6∗ an

unbounded monotone sequence of prefixes of w, and define pω
ow := lim(posn)∈6∗

o ∪

6ω
o ; see also (Kumar et al, 1992). The set-valued inverse is given by p−ω

o (v) := {w ∈

6ω | pω
o(w) = v } for v ∈ 6∗

o ∪ 6ω
o . When applying the projection to languages, we

obtain pω
oL= {pω

ow | w ∈L } ⊆ 6∗
o ∪ 6ω

o for L⊆ 6ω, and p−ω
o Lo = {w ∈ 6ω | pω

ow ∈

Lo } for Lo ⊆ 6∗
o ∪ 6ω

o . Here, the projection distributes over arbitrary unions, the

inverse projection over arbitrary unions and arbitrary intersections. Both commute

with the prefix operator. Note also that p−ω
o pω

oL={w ∈6ω | ∃w′ ∈L : pω
ow = pω

ow
′ }.

From (Baier and Moor, 2012), Lemma 2, we recall the following relationship between

limit and projection: given 6, 6o ⊆6, and L = pre L ⊆6∗, Lo ⊆6∗
o , Lo ⊆6ω

o , then

(i) (pω
o lim L) ∩ 6ω

o = lim poL ,

(ii) p−ω
o lim Lo = (lim p−1

o Lo) ∩ (p−ω
o 6ω

o),

(iii) clo p−ω
o Lo = (p−ω

o cloLo) ∪ (p−ω
o preLo).

Given L, K⊆6ω, we say that K is normal w.r.t. (6o, L), if K= (p−ω
o pω

oK) ∩ L.

Normality is retained under arbitrary union. Provided that K is relatively closed w.r.t.

L, prefix-normality of preK w.r.t. (6o, preL) implies normality of K w.r.t. (6o,L);

see (Baier and Moor, 2012), Lemma 3.

An ω-language L⊆ 6ω is regular, if it is accepted by a Büchi automaton, i.e., a

finite automaton that accepts all those infinite-length executions that infinitely often

pass marked states; see e.g. (Thomas, 1990). Moreover, if an ω-language can be rep-

resented as the limit of a regular ∗-language, it is accepted by a deterministic Büchi

automaton, and, hence, it is regular. The main results developed in this paper do nei-

ther rely on regularity nor on a particular form of finite state realisation. However,

when referring to computational procedures we pragmatically focus attention on de-

terministic Büchi automata or, equivalently, on limits of regular ∗-languages; e.g., to

address the natural projection, algorithms can be obtained via the above relations (i)

and (ii); see also (Mukund, 1996).

1.3 ω-controllability

We recall the definition1 of ω-controllability from (Thistle and Wonham, 1994) and

discuss how it relates to earlier work (Ramadge, 1989).

1 Literally, Definition 1 differs from the referenced literature, as we use slightly different notation to

facilitate the subsequent extension to the situation of partial observation and to formally account for the

case H 6⊆L in the context of abstraction-based control. However, for H⊆L, our variation is technically

equivalent to the corresponding definition in (Thistle and Wonham, 1994).

6 Christine Baier, Thomas Moor

Definition 1 Let 6uc ⊆6 and consider the plant L⊆6ω and the controller H⊆6ω.

Then, H is said to be ω-controllable w.r.t. (6uc, L), if for all s ∈ (preL) ∩ (preH)

there exists a Vs ⊆L ∩ H with s ∈ preVs , and

(i) preVs is controllable w.r.t. (6uc, preL), and

(ii) Vs is relatively topologically closed w.r.t. L. ⊓⊔

Note that ω-controllability implies that L and H are non-conflicting and that preH

is controllable w.r.t. (6uc, preL); see Appendix, Lemma 2. In particular, if H is

topologically closed, then the closed loop K = L ∩ H is relatively topologically

closed w.r.t. L and can be used to uniformly satisfy conditions (i) and (ii). This

situation matches the notion of infinite-time controllability proposed by Ramadge

(1989), where the exercised control is represented as a supervisor map f : 6∗ → Ŵ,

Ŵ = {γ ⊆ 6| 6uc ⊆ γ }, related to K by f (s) = {σ | sσ ∈ preK} ∪ 6uc. If, on the

other hand, the controller H is not topologically closed, then its effect cannot be rep-

resented by a single supervisor map f . For this situation, the quantification over all

prefixes s ∈ (preL)∩(preH) in the above definition effectively requires the persistent

existence of supervisor maps fs that can take over to run the plant for infinite time

within L ∩ H. This can be interpreted as a liveness property introduced by H and

not present in L; e.g., to eventually start a process (in contrast to doing so within a

specified period of logic time). A conceptual benefit of this generalisation is that ω-

controllability is retained under arbitrary union, whilst topological closedness is not.

Thus, given a specification E ⊆L, the supremal ω-controllable sublanguage K⇑ ⊆ E

exists uniquely. It is only in the special case where E is relatively topologically closed

w.r.t. L, that K⇑ turns out relatively topologically closed, too, and that H = cloK⇑

can be used as a topologically closed controller with closed-loop behaviour K⇑.

When the plant L and the specification E ⊆ L are given as limits of regular ∗-

languages, the computational procedure presented in (Thistle and Wonham, 1992),

Section 8, can be applied to obtain a realisation of K⇑. The procedure consists of five

nested fixed-point iterations on the product state set of plant and specification, with

runtime behaviour polynomial in the state count. Moreover, the procedure allows for

the extraction of realisations for Vs , s ∈preK⇑, to satisfy the above conditions (i) and

(ii) and in addition to resolve eventuality properties in minimum logical time; e.g.,

when required to start a process eventually, it will be scheduled for the earliest time

possible. Whenever K⇑ is non-empty, one may use H= cloVs , s = ǫ, as a controller

that can be implemented as a single supervisor map f : 6∗ → Ŵ in order to enforce

E , however, in general not achieving the supremal closed-loop behaviour K⇑. This

can be interpreted as a practical solution to the synthesis for the case that E fails to

be relatively topologically closed w.r.t. L.

1.4 ω-admissibility

In order to address supervision under partial observation, we derive the following

notion of ω-admissibility as a variation of ω-controllability. For the scope of this pa-

per, all controllable events are assumed to be observable and, as with ∗-languages,

we can utilize the concept of normality to guarantee that the supervisor maps fs

A Hierarchical and Modular Control Architecture for Sequential Behaviours 7

are applicable under partial observation. A more general approach to the supervi-

sion of sequential behaviours under partial observation is presented in (Thistle and

Lamouchi, 2009). The discussion therein includes the case of unobservable control-

lable events, however, the provided computational procedures require the plant to be

topologically closed. Further related work from the area of program synthesis with

incomplete information, based on alternating tree-automata, is given in (Kupferman

and Vardi, 2000).

Definition 2 Let 6uc ⊆ 6, 6o ⊆ 6, 6 − 6uc ⊆ 6o, and consider the plant L⊆ 6ω

and the controller H⊆ 6ω. Then, H is said to be ω-admissible w.r.t. (6uc, 6o, L),

if for all s ∈ (preL) ∩ (preH) there exists a Vs ⊆L ∩ H with s ∈ preVs , and

(i) preVs is controllable w.r.t. (6uc, preL),

(ii) preVs is prefix-normal w.r.t. (6o, preL), and

(iii) Vs is relatively topologically closed w.r.t. L. ⊓⊔

Clearly, ω-admissibility implies ω-controllability. Note also that ω-admissibility im-

plies that the local closed loop (preL) ∩ (preH) is prefix-normal w.r.t. (6o, preL);

see Appendix, Lemma 5. Furthermore, the above conditions (ii) and (iii) imply that Vs

is normal w.r.t. (6o,L). Now assume that H is topologically closed. Then, the closed

loop K=L ∩H uniformly satisfies conditions (i)–(iii). Hence, referring to the situa-

tion of full observation, we obtain that the closed-loop behaviour K can be achieved

by the supervisor map f : 6∗ →Ŵ defined f (s) :={σ | sσ ∈preK} ∪ 6uc. By the ad-

ditional normality condition (ii), we have σ ∈ f (s) if and only if po(sσ)∈po preK for

any σ ∈ 6c with sσ ∈ preL. Thus, the closed-loop behaviour K is also obtained un-

der feedback f ′(s) := {σ | po(sσ) ∈ po preK} ∪ 6uc, which is implementable under

partial observation. If, on the other hand, H is not topologically closed, the quan-

tification over all prefixes s ∈ (preL) ∩ (preH) ensures the persistent existence of

supervisor maps f ′
s that can take over to run the plant for infinite time within L ∩ H.

Here, we refer to condition (ii) and observe that s ∈ preVs implies s′ ∈ preVs for

any s′ ∈ (preL) ∩ (preH) with pos = pos′. Thus, if H is ω-admissible, the languages

Vs can be chosen to additionally satisfy Vs = Vs′ for all s′, pos = pos′. In partic-

ular, the application of a supervisor map f ′
s can be based on the observation pos.

As with ω-controllability, this is interpreted as a liveness property introduced by H

and not present in L. Again, ω-admissibility is retained under arbitrary union, and,

hence, given a specification E ⊆L, the supremal ω-admissible sublanguage K⇑ ⊆ E

exists uniquely; see Appendix, Lemma 3. Moreover, the supremal ω-admissible sub-

language K⇑ turns out to be relatively topologically closed w.r.t. L, provided that E

is relatively topologically closed w.r.t. L; see Appendix, Lemma 4.

We outline two procedures for the computation of an ω-admissible controller H

for a given plant L and a given specification E ⊆ L, all realized as deterministic

Büchi automata. First, assume that E is relatively topologically closed w.r.t. L. For

this case, a characterisation of K⇑ in terms of limits of ∗-languages is given in the

Appendix, Lemma 6. In particular, the algorithms provided by Moor et al (2012) can

be applied to obtain a Büchi automata realisation of K⇑, and we use H= cloK⇑ as

an ω-admissible controller with closed-loop behaviour K⇑. Note that, due to natural

projection operations and the construction of observer automata, the computational

8 Christine Baier, Thomas Moor

complexity is exponential in the number of plant and specification states. For our sec-

ond computational procedure, we drop the assumption of a relatively closed specifi-

cation. To our best knowledge, this situation has not been addressed in the literature.

We, therefore, propose to first use the method presented in (Thistle and Wonham,

1992), Section 8, to obtain a representation of the supremal ω-controllable sublan-

guage, and in particular a relatively topologically closed behaviour Vǫ that satisfies

conditions (i) and (iii). In a second stage, we use Vǫ as a relatively topologically

closed specification for a subsequent synthesis via Lemma 6 and (Moor et al, 2012).

The complexity is again exponential in the number of plant and specification states,

and the result is guaranteed to be ω-admissible, however, not necessarily supremal. In

ongoing work, we study variations of the algorithms by Thistle and Wonham (1992)

in order to eliminate the intermediate step and to obtain a realisation of K⇑.

1.5 Table of symbols

For easy reference, we provide a table of symbols used throughout this paper.

Symbol Description Page

6 overall alphabet, Sections 2 and 3 9 (Def. 3)

6c high-level control alphabet 9 (Def. 3)

6cp =6c ∪̇ 6p controller alphabet 9 (Def. 3)

6pe =6p ∪̇ 6e plant alphabet 9 (Def. 3)

6e low-level plant alphabet 9 (Def. 3)

6 overall alphabet, Section 4 18

6el =6e ∪̇ 6l environment alphabet 18 (Sec. 4.2)

L IO-plant over alphabet 6pe 8

E IO-specification over alphabet 6 9

H IO-controller over alphabet 6cp 9

I IO-environment over alphabet 6el 16

K closed-loop behaviour over alphabet 6 9

L6 full plant behaviour over alphabet 6 8

H6 full controller behaviour over alphabet 6 9

I6 full environment behaviour over alphabet 6 16

Lalt auxiliary language for event ordering 14

L‖ composition of IO-plants Ln , n = 1, ..., m 15

Lerr error behaviour for composed IO-plants L‖ 15

LIO IO-shuffle for IO-plants Ln , n = 1, ..., m 15

pre prefix closure operator for ∗-languages /

prefix operator for ω-languages

3/4

lim limit operator for ∗-languages 4

clo topological closure operator ω-languages 4

p− projection from 6∗ to 6∗
− 4

p−1
− set-valued inverse projection from 6∗

− to 6∗ 4

pω
− projection from 6ω to 6ω

− ∪ 6∗
− 5

p−ω
− set-valued inverse projection from 6ω

− ∪ 6∗
− to 6ω 5

A Hierarchical and Modular Control Architecture for Sequential Behaviours 9

2 Closed-loop with external signals

The closed-loop configuration under consideration consists of a controller compo-

nent, a plant component, and three ports for system interconnection; see Figure 1, on

the left. The motivation of explicitly addressing external interaction is to specify the

relationship between internal and external behaviour as a formal requirement for the

controller design. Each of the three ports is realised by synchronization of alternating

UeUe YeYe

UpYp

UcUc YcYc

Controller H

Plant L

Specification E⇔

Fig. 1 Closed-loop configuration

input-events and output-events, from alphabets denoted U− and Y−, respectively. As

in (Perk et al, 2006), this particular form of system interconnection refers to the no-

tion of input-output systems by Willems (1991) and is a crucial prerequisite for our

results on abstraction-based controller design in Section 3. Internally, the plant and

the controller synchronize alternating symbols from 6p = Up ∪̇ Yp, and thus form a

closed-loop configuration, similar to the common setting of sampled-data continu-

ous control systems. Furthermore, the controller interacts with a high-level operator,

while the plant is synchronized with a low-level environment. We take the perspective

that the operator seeks to affect the environment according to high-level commands

from Uc. The controller is meant to implement each high-level command on the plant

by applying suitable events from Up, while monitoring the plant responses ranging in

Yp. Eventually, the controller shall provide a high-level feedback event from Yc to the

operator, in order to receive the subsequent high-level command. A specification re-

ferring to the overall alphabet is meant to relate high-level events from 6c = Uc ∪̇ Yc

with low-level events from 6e = Ue ∪̇ Ye, and, thereby, formally define the conse-

quences of high-level commands; see also Figure 1, to the right.

For the further discussion, we summarize the relevant parameters as a control

problem and subsequently introduce conditions and requirements to characterize ac-

ceptable solutions.

Definition 3 A control problem consists of

6 :=6p ∪̇ 6e ∪̇ 6c, the overall alphabet,

6c := Uc ∪̇ Yc, the high-level control events,

6p := Up ∪̇ Yp, the internal events,

6e := Ue ∪̇ Ye, the low-level plant events,

L⊆ (6p ∪̇ 6e)
ω, the plant behaviour, and

10 Christine Baier, Thomas Moor

E ⊆6ω, the specification.

Throughout this paper, the individual alphabets are obvious from the context and we

concisely refer to the control problem by (6,L, E). Furthermore, we denote

6pe :=6p ∪̇ 6e, the plant alphabet,

6cp :=6c ∪̇ 6p, the controller alphabet,

6ce :=6c ∪̇ 6e, the external alphabet,

6uc := Uc ∪̇ Yp ∪̇ 6e, the uncontrollable events, and

6o :=6c ∪̇ 6p, the observable events. ⊓⊔

Projections from strings or infinite strings over 6, to any of the above subsets of 6,

are denoted p− and pω
−, respectively, with a subscript to indicate the respective range;

e.g., ppe for the projection from 6∗ to 6∗
pe.

2.1 Plant properties

For the intended interpretation of inputs and outputs, the plant behaviour L ⊆ 6ω
pe

must exhibit alternating input and output events, and, accept any input event from the

controller and from the environment. For the acceptance of input events, we refer to

the notion of a locally free input; see also Perk et al (2006).

Definition 4 For a language L ⊆6∗, the alphabet U ⊆6 is a locally free input if

(∀ s ∈6∗, µ,µ′ ∈ U) [sµ∈ pre L ⇒ sµ′ ∈ pre L] . ⊓⊔

Formally, we require the plant behaviour to possess properties P1 and P2 and refer to

L as an IO-plant:

P1 L⊆ ((YpUp)
∗(YeUe)

∗)ω ⊆6ω
pe.

P2 preL possesses locally free inputs Up and Ue.

For the subsequent discussion, it turns out convenient to raise L⊆ 6ω
pe to the overall

alphabet 6, and to consider

L6 := (p−ω
pe (L ∪ preL)) ∩ (clo ((Yp(YcUc)

∗Up)
∗ (YeUe)

∗)ω)

as the full plant behaviour. The particular construction ensures that the inverse pro-

jection does not introduce artificial liveness properties while enforcing the intended

event order. Moreover, if L is an IO-plant, then L6 possesses locally free inputs Uc,

Up ∪̇ Yc and Ue by construction.

2.2 Specification properties

The main purpose of the language inclusion specification E ⊆6ω is to relate external

to internal signals. However, for the hierarchical control architecture in Section 3,

we also require that the external closed-loop behaviour again possesses the plant

properties P1 and P2. In particular, the external closed-loop must persistently provide

A Hierarchical and Modular Control Architecture for Sequential Behaviours 11

high-level feedback ranging in Yc and it must accept any external input events from

Uc and Ue. Technically, the IO-specification E must satisfy:

E1 E ⊆ (((YpUp)
∗ (YeUe)

∗)∗ (Yp(YcUc)
+Up))ω.

E2 pre E possesses locally free inputs Uc and Ue.

2.3 Solution to the control problem

Given a control problem (6, L, E) with an IO-plant L and an IO-specification E ,

consider a candidate controller H⊆ 6ω
cp. For convenience, we write H6 := p−ω

cp H⊆

6ω for the controller behaviour w.r.t. the overall alphabet. For H to solve the control

problem, it must enforce the specification and satisfy a controllability condition w.r.t.

the plant behaviour. Formally, we impose the following conditions on H to form a

solution to the control problem:

C1 H enforces the specification E , i.e., L6 ∩ H6 ⊆ E .

C2 H6 is ω-admissible2 w.r.t. (6uc, 6o, L6).

If H is a solution, we obtain by C1 and E1 the full closed-loop behaviour

K :=L ‖H := (p−ω
pe L) ∩ (p−ω

cp H)=L6 ∩ H6,

where the last equality follows from the particular event ordering in L6 and E ;

i.e., we have L6 ∩ H6 ⊆ E ⊆ (((YpUp)
∗ (YeUe)

∗)∗ (Yp(YcUc)
+Up))ω, and, thus,

(p−ω
pe preL) ∩ L6 ∩ H6 =∅. Furthermore, recall that C2 implies that L6 and H6 are

non-conflicting. This implies (pre p−ω
pe L) ∩ (pre p−ω

cp H) = pre((p−ω
pe L) ∩ (p−ω

cp H)),

and we note that the plant L and the controller H form a non-conflicting closed-loop

configuration.

2.4 Closed-loop properties

The following propositions relate solutions of a control problem to properties of the

full closed-loop behaviour.

Proposition 1 If H is a solution to the control problem (6, L, E), where L is an

IO-plant, then the full closed-loop behaviour K=L6 ∩ H6 satisfies K1–K5:

K1 K enforces the specification E , i.e., K⊆ E ,

K2 K is ω-admissible w.r.t. (6uc, 6o, L6),

K3 K is normal w.r.t. (6o, L6),

K4 preK is prefix-normal w.r.t. (6o, preL6),

K5 preK possesses locally free inputs Uc and Ue.

2 In our conference contribution (Baier and Moor, 2012), we use the weaker requirement of ω-

controllability. However, as discussed in the preliminaries, ω-admissible is more adequate for supervision

of ω-languages under partial observation.

12 Christine Baier, Thomas Moor

Proof K1 and K2 are immediate consequences of C1 and C2. For K3 observe that

K⊆(p−ω
cp pω

cpK) ∩ L6 = (p−ω
cp pω

cp(H6 ∩ L6)) ∩ L6 ⊆

(p−ω
cp pω

cpp−ω
cp H) ∩ (p−ω

cp pω
cpL6) ∩ L6 =H6 ∩ L6 =K.

K4 is obtained by

preK⊆ (p−1

cppcp preK) ∩ (preL6) =

(p−1

cppcp pre(H6 ∩ L6)) ∩ (preL6) ⊆

(p−1

cppcp preH6) ∩ (p−1

cppcp preL6) ∩ (preL6) =

(preH6) ∩ (preL6)= pre(H6 ∩ L6) = preK.

For the penultimate equality, recall that C2 implies that L6 and H6 are non-conflicting.

Regarding K5, we pick s, r ∈ preK, µ, µ′ ∈Ue, and ν, ν′ ∈Uc, such that sµ∈ preK

and rν ∈ preK. Observe that sµ, rν ∈ preK ⊆ preL6 . According to P2 it fol-

lows that sµ′ ∈ preL6 . Furthermore, the locally free input Uc of preL6 implies that

sν′ ∈ preL6 . From ω-admissibility of H6 w.r.t. (6uc, L6) and s, r ∈ preH6 follows

that sµ′, rν′ ∈ preH6 . Recall again that L6 and H6 are non-conflicting, to obtain

sµ′, rν′ ∈ (preL6) ∩ (preH6)= preK. ⊓⊔

Vice versa, any ω-language that satisfies properties K1–K3 can be shown to be a

solution to the control problem.

Proposition 2 Given a control problem (6, L, E), consider a closed-loop candidate

K⊆L6 . If K satisfies K1–K3, then the controller H= pω
cpK solves the control prob-

lem (6, L, E).

Proof Note that K2, by Lemma 5 from the Appendix, implies that (preL6)∩ (preK)

is prefix-normal w.r.t. (6o, preL6), and, together with K ⊆ L6 , we obtain K4. Ac-

cording to K1 and K3, we have that L6 ∩ H6 =L6 ∩ (p−ω
cp pω

cpK) =K⊆ E , hence, H

satisfies C1. To establish C2, pick an arbitrary s ∈ (preL6) ∩ (pre p−ω
cp pω

cpK). Here,

K4 implies s ∈ preK. According to K2, we can choose Vs ⊆ L6 ∩ K ⊆ L6 ∩ H6

such that s ∈ preVs , preVs is controllable w.r.t. (6uc, preL6), prefix-normal w.r.t.

(6o, preL6), and relatively closed w.r.t. L6 . Hence, H6 is ω-admissible and satisfies

C2. ⊓⊔

Conclusion. In this section, we proposed a control problem for a closed-loop with

external signals. By the above Propositions 1 and 2, and in compliance with common

approaches to supervisory control, a solution can be obtained from the supremal

closed-loop behaviour K⇑ that satisfies K1–K3, i.e., the supremal ω-admissible and

normal sublanguage of a specification E . When all relevant languages are given as

limits of regular ∗-languages (or, equivalently, are realised by deterministic Büchi

automata), and if E is relatively closed w.r.t. L6 , K⇑ can be obtained via Lemma 6

and the results from Moor et al (2012). More general settings are subject of ongoing

research; see also the discussion on the Preliminaries and the example in Section 5.

A Hierarchical and Modular Control Architecture for Sequential Behaviours 13

3 Hierarchical controller design

Consider a control problem (6, L, E), a solution H and the full closed-loop be-

haviour K=L6 ∩H6 . The external closed-loop behaviour Lhi := pω
ceK can again be

interpreted as a plant. Thus, given a specification Ehi, we obtain another control prob-

lem (6hi, Lhi, Ehi). Provided we find a solution Hhi, we end up with a hierarchical

control architecture; see Figure 2, to the right.

 ⇒⇒⇒

UeUeUeUe YeYeYeYe

KK

YcYcYc Yc UcUcUc Uc

Y hi
cY hi

c Uhi
cUhi

c

IO-Plant LIO-Plant L

Controller HController H

Controller Hhi Controller Hhi

Specification ESpecification E

Fig. 2 Abstraction-based hierarchical controller design

Rather than to solve (6hi, Lhi, Ehi) directly, we propose to use the specification

pω
ceE as an abstraction of the plant behaviour Lhi; see again Figure 2. Since K ⊆ E

implies Lhi = pω
ceK ⊆ pω

ceE , solutions Hhi of (6hi, pω
ceE, Ehi) are readily observed

to also satisfy C1 for the actual control problem (6hi, Lhi, Ehi). In contrast to the

actual closed-loop K, the specification E does not express how the control objective

is achieved and, hence, is expected to be considerably less complex. The proposed

approach raises two questions:

◦ Are the plant properties P1 and P2 of L retained under closed-loop compo-

sition and, thus, also satisfied by Lhi?

◦ Can we guarantee that the solutions of (6hi, pω
ceE, Ehi) also solve the actual

problem (6hi, Lhi, Ehi), i.e., possess not only C1 but also C2?

As it turns out, we need to impose an additional condition on the plant L in order to

provide affirmative answers to both questions.

3.1 Non-anticipating IO-plant

In Moor et al (2011), it has been demonstrated that locally free inputs, as imposed

by P2, do in general not imply a non-conflicting closed-loop for an abstraction-based

controller design. While P2 requires the plant to accept any input locally, we need

an additional structural plant property that requires that the liveness properties pos-

sessed by the plant may at no instance of time restrict the input in its infinite future.

Hence, the plant shall always be in the position to choose its outputs such that it

satisfies its own liveness properties; see Moor et al (2011) for a detailed discussion

14 Christine Baier, Thomas Moor

of this property, including examples. More specifically, the cited paper develops a

variation of Willems’ notion of non-anticipating input-output systems as a sufficient

structural plant property for a non-conflicting closed-loop. Based on these consid-

erations, we impose the additional requirement P3 on L and refer to the plant as a

non-anticipating IO-plant.

P3 L is ω-controllable w.r.t. (Up ∪̇ Ue, cloL).

Technically, property P3 is a controllability condition, where the inputs events are

considered the uncontrollable events, and can be verified, e.g., by the algorithm pro-

vided in (Thistle and Wonham, 1992), Section 8. The non-anticipating property prop-

agates from L to the full plant behaviour L6; see Appendix, Lemma 7. By the follow-

ing proposition, it is also preserved in the full closed-loop and we obtain an additional

closed-loop property.

Proposition 3 If H is a solution to the control problem (6, L, E), and if L is a

non-anticipating IO-plant, then

K6 K is ω-controllable w.r.t. (Uc ∪̇ Ue, cloK).

Proof We prove the claim by construction of a suitable Vs ⊆K for an arbitrarily cho-

sen s ∈ preK. Note that, by Lemma 7 from the Appendix, L6 is a non-anticipating

IO-plant. Thus, we can choose Ṽs ⊆ L6 , such that s ∈ pre Ṽs , pre Ṽs is controllable

w.r.t. (6c ∪̇Up ∪̇Ue, preL6), and Ṽs is relatively closed w.r.t. cloL6 . In particular, Ṽs

is closed. By Proposition 1, K satisfies K1–K5. Referring to K2, we choose Ws ⊆K

with s ∈ preWs , and preWs is controllable w.r.t. (6uc, preL6), and Ws is relatively

closed w.r.t. L6 . To establish ω-controllability of K w.r.t. cloK, consider the candi-

date Vs := Ṽs∩Ws . Clearly, Vs ⊆K. Furthermore, Vs = Ṽs∩Ws = Ṽs∩(cloWs)∩L6 =

Ṽs ∩ (cloWs) = (clo Ṽs) ∩ (cloWs) ⊇ cloVs , i.e., Vs is closed and, thus, relatively

closed w.r.t. any superset. To show controllability of preVs w.r.t. preK, we pick

r ∈pre(Ṽs ∩Ws)⊆ (pre Ṽs)∩(preWs) and σ ∈Uc ∪̇Ue such that rσ ∈preK⊆preL6 .

By controllability of pre Ṽs and preWs , it follows that rσ ∈ (pre Ṽs) ∩ (preWs). To

establish rσ ∈ pre(Ṽs ∩ Ws), observe that each event in 6 is uncontrollable for ei-

ther pre Ṽs or preWs . Thus, starting with r0 = rσ , we can construct an unbounded

sequence (rn) ⊆ (pre Ṽs) ∩ (preWs) with limit w := lim(rn) ∈ (clo Ṽs) ∩ (cloWs).

Since Ṽs is closed, we have w ∈ Ṽs ⊆L6 . By relative closedness of Ws w.r.t. L6 , we

obtain w ∈Ws . Hence, rσ ∈ pre(Ṽs ∩ Ws). ⊓⊔

3.2 Propagation of plant properties

We are now in the position to show that the plant properties P1–P3 are retained un-

der closed-loop composition, i.e., the external closed-loop behaviour is again a non-

anticipating IO-plant.

Theorem 1 For a non-anticipating IO-plant L and an IO-specification E , consider a

solution H of the control problem (6, L, E). Then the external closed-loop pω
ceK,

with K=L6 ∩ H6 , is a non-anticipating IO-plant, too.

A Hierarchical and Modular Control Architecture for Sequential Behaviours 15

Proof Regarding the event ordering P1, we refer to K1 and E1 to obtain pω
ceK ⊆

((YcUc)
∗(YeUe)

∗)ω . Regarding locally free inputs P2, recall from K5 that K has lo-

cally free inputs Uc and Ue, that are preserved under projection to 6ce. We are left to

verify non-anticipation P3. Pick s ∈ pre pω
ceK. Then, there exists t ∈ preK such that

pcet = s. According to K6, we can choose Wt ⊆K such that t ∈ preWt , and preWt

is controllable w.r.t. (Uc ∪̇ Ue, preK), and Wt is closed. As a candidate to establish

P3, let Vs := pω
ceWt . Note that Vs ⊆ pω

ceK. Further, s = pcet ∈ pce preWt = preVs . To

verify controllability of preVs , consider an arbitrary ŝ ∈ preVs and σ ∈Uc ∪̇ Ue such

that ŝσ ∈ pre pω
ceK. Then, there exists t̂ ∈ preK such that pce t̂ = ŝ and t̂ ∈ preWt .

Furthermore, t̂σ ∈ preK, since ŝσ = pce(t̂σ) ∈ pce preK. Controllability of preWt

implies that t̂σ ∈ preWt and pce(t̂σ) ∈ pce preWt = preVs . Consequently, the can-

didate preVs is controllable w.r.t. (Uc ∪̇ Ue, pre pω
ceK). To verify closedness of Vs ,

observe that Vs = pω
ceWt = (pω

ce cloWt) ∩ 6ω
ce = clo pω

ceWt . ⊓⊔

3.3 Abstraction-based controller design

We adapt the argument regarding abstraction-based controller design from (Moor

et al, 2011) to the closed-loop configuration with external signals, see Figure 1, to

obtain the following theorem.

Theorem 2 Given a control problem (6, L, E) with a non-anticipating IO-plant L,

let L′ ⊆6ω denote a plant abstraction, i.e., L⊆L′. Then, any solution H of (6, L′, E)

also solves (6, L, E).

The proof of Theorem 2 refers to (Baier and Moor, 2012), Lemma 14, which, for

convenience, is repeated below, with a proof provided in the Appendix.

Lemma 1 Under the hypothesis of Theorem 2, consider any solution H of the control

problem (6, L′, E). If V ′ ⊆L′
6 ∩ H6 , and if preV ′ is controllable w.r.t. (6uc, L

′
6),

and if V ′ is relatively closed w.r.t. L′
6 , then L6 and V ′ are non-conflicting. ⊓⊔

Hence, any controller candidate V ′, found by using the abstraction L′ as plant,

will result in a non-conflicting closed loop composed from the original plant L and

the candidate V ′.

Proof of Theorem 2. Note that H trivially enforces the specification C1, since L6 ∩

H6 ⊆ L′
6 ∩ H6 ⊆ E . We are left to verify admissibility C2. Pick an arbitrary s ∈

(preL6)∩(preH6). Since H is a solution to (6, L′, E), we can choose V ′
s ⊆L′

6∩H6

such that s ∈ preV ′
s , and preV ′

s is controllable w.r.t. (6uc, preL′
6), and preV ′

s is

prefix-normal w.r.t. (6o, preL′
6), and V ′

s is relatively closed w.r.t. L′
6 . We choose

the candidate Vs := V ′
s ∩ L6 . Observe that Vs ⊆ L′

6 ∩ H6 ∩ L6 = H6 ∩ L6 and

s ∈ (preL6)∩ (preH6)∩ (preV ′
s). By Lemma 1, we obtain s ∈pre(L6 ∩V ′

s)=preVs .

Regarding controllability, pick any sν ∈ preL6 with s ∈ preVs and ν ∈ 6uc. By con-

trollability of preV ′
s w.r.t. preL′

6 and L6 ⊆L′
6 , we deduce that sν ∈ preV ′

s . Again by

Lemma 1, we obtain sν ∈pre(L6∩V ′
s). Hence, preVs is controllable w.r.t. preL6 . Re-

garding prefix-normality, we first observe that (preL6)∩(p−1
cppcp preVs)⊆ (preL6)∩

(p−1
cppcp preV ′

s)=(preL6)∩(preL′
6)∩(p−1

cppcp preV ′
s)=(preL6)∩(preV ′

s)=pre(L6∩

16 Christine Baier, Thomas Moor

V ′
s) = preVs , where the last equality is by Lemma 1. Together with pre Vs ⊆ preL6 ,

this constitutes prefix-normality of preVs w.r.t. (6o, L6). Regarding relative closed-

ness, observe that (cloVs)∩L6 ⊆ (cloV ′
s)∩L′

6 ∩L6 =V ′
s ∩L6 =Vs . This concludes

the verification of admissibility C2. ⊓⊔

Conclusion. As our main result in Section 3, we proved that the plant properties P1–

P3 of L are retained under closed-loop composition with H and, thus, also satisfied

by Lhi. Moreover, the solutions of (6hi, pω
ceE, Ehi) possess both properties C1 and

C2 and, thus, also solve the actual problem (6hi, Lhi, Ehi). In summary, Theorem 1

and Theorem 2 formally justify the hierarchical controller design as proposed by

Figure 2.

4 Composition of modular plants

The modular control systems under consideration consist of a number of independent

non-anticipating IO-plants. In contrast to other approaches of modular supervision,

we require that all alphabets are disjoint and represent dependencies between individ-

ual subsystems (e.g. shared resources) by so called IO-environments. In this section,

we investigate the overall behaviour of the modular IO-system, see Figure 3, in order

to verify that the IO-plant properties are retained under the proposed system composi-

tion. Thus, the resulting external behaviour is again an IO-plant, subject to subsequent

controller design.

Ue,1Ye,1 Ue,2Ye,2

Up,1Yp,1 Up,2
Yp,2

UpYp

Yl Ul

IO-Plant

IO-Environment

IO-Plant L1 IO-Plant L2

Fig. 3 Modular IO-System

4.1 Composition of non-anticipating IO-plants

We first let aside the IO-environment and consider the parallel composition of m ∈N

IO-plants Ln ⊆6ω
n , 6n = Up,n ∪̇ Yp,n ∪̇ Ue,n ∪̇ Ye,n , n = 1, . . . , m, i.e.,

L1 ‖ · · · ‖Lm :={w ∈6ω
pe | pω

nw ∈Ln for n = 1, . . . , m } ,

using the notational convention 6pe := 61 ∪̇ · · · ∪̇ 6m for the overall plant alphabet,

and

Up := ˙⋃m

n=1 Up,n, Yp := ˙⋃m

n=1 Yp,n, Ue := ˙⋃m

n=1 Ue,n, Ye := ˙⋃m

n=1 Ye,n .

for the respective input alphabets and output alphabets.

A Hierarchical and Modular Control Architecture for Sequential Behaviours 17

Since we assume all alphabets disjoint, the above parallel composition amounts to

a shuffle product. However, in order to maintain the structural requirement of input-

output alternation in the composed system, it is necessary to restrict the shuffle ac-

cordingly. To this end, we propose to intersect with

Lalt := (6161 + · · · + 6m6m)ω .

Thus, a controller that operates a composed system is meant to reply instantaneously

to any output event by an input event directed to the respective plant component.

In order to formally obtain a locally free input Up ∪ Ue, we take the union with an

artificial error behaviour Lerr that accounts for miss-directed input events, i.e.,

Lerr :=

m
⋃

k,n=1
k 6=n

((6∗
peYp,n) ∩ (preL‖))Up,k((YpUp)

∗(YeUe)
∗)ω

m
⋃

k,n=1
k 6=n

((6∗
peYe,n) ∩ (preL‖))Ue,k((YpUp)

∗(YeUe)
∗)ω .

and consider the IO-shuffle

LIO :=L1 ‖
IO

· · · ‖
IO
Lm :=L‖ ∪ Lerr ⊆6ω

pe ,

with

L‖ := (L1 ‖ · · · ‖Lm) ∩ Lalt ,

as the behaviour of the composed IO-plants Ln , n = 1, . . . , m. Note that any relevant

specification will implicitly prevent the controller from issuing miss-directed input

events in order to avoid the error behaviour in the closed-loop configuration.

By the following proposition, the construction so far preserves the IO-plant prop-

erties P1–P3.

Proposition 4 Given m ∈N non-anticipating IO-plants Ln ⊆6ω
n , n = 1, . . . , m, then

the IO-shuffle LIO :=L1 ‖
IO

· · · ‖
IO
Ln is a non-anticipating IO-plant, too.

Proof Regarding the event ordering P1, and as a consequence of Lalt and the al-

ternating inputs and outputs from each component Ln , n = 1, . . . , m, observe that

L‖ ⊆ [(YpUp)
∗(YeUe)

∗]ω. Referring to the definition of Lerr, this implies that Lerr ⊆

[(YpUp)
∗(YeUe)

∗]ω, and, hence, LIO ⊆ [(YpUp)
∗(YeUe)

∗]ω. Regarding locally free in-

puts P2, we focus attention on the input alphabet Up, pick an arbitrary sµ ∈ preLIO,

with µ ∈ Up, and an alternative input symbol µ′ ∈ Up. By P1, we decompose s =

tν with ν ∈ Yp,n for some n. If tν ∈ Lerr, we obtain tνµ′ ∈ preLerr ⊆ preLIO by

the definition of Lerr, and, hence, tνµ′ ∈ LIO. Else, we have tν 6∈ Lerr and obtain

tν ∈ preL‖ by the definition of LIO. Here, we distinguish two more cases. First, if

µ′ ∈ Up,n , the locally free input Up,n of preLn implies that pn(s)νµ′ ∈ preLn and,

thus tνµ′ ∈ preL‖ ⊆ preLIO. In the second case we have µ′ ∈ Up,k for some k 6= n,

and again obtain tνµ′ ∈ preLerr ⊆ preLIO. This establishes that Up is a locally free

input of LIO. The free input Ue is verified likewise and this concludes the proof of

locally free inputs P2. Regarding non-anticipation P3, we verify ω-controllability of

18 Christine Baier, Thomas Moor

L‖ w.r.t. (Up ∪̇ Ue, cloL‖). For clarity of representation, trivial case distinctions to

extend the argument to account for the error behaviour Lerr have been omitted. Pick

an arbitrary string s ∈ preL‖ and denote rn := pns for n = 1, . . . , m. Choose w ∈L‖,

s < w, to observe pω
nw ∈Ln and, hence, rn ∈ preLn , for all n = 1, . . . , m. Since each

Ln is non-anticipating, we can choose Vr,n ⊆Ln ⊆Lalt with rn ∈ preVr,n and preVr,n

is controllable w.r.t. (Up,n ∪̇ Ue,n, preLn) and Vr,n is relatively closed w.r.t. cloLn .

In particular, Vr,n is closed. For the string s, we define the candidate

Vs :=
(

m
⋂

n=1

clo p−ω
n Vr,n

)

∩ Lseq

with Lseq :=Lalt ∩ 6|s|(ǫ +6)(6161 · · · 6m6m)ω. Note that, as a finite intersection

of closed languages, Vs itself is closed. To show that Vs ⊆ L‖, pick w ∈ Vs and n

arbitrarily. By w ∈ clo p−ω
n Vr,n , we have pre w ⊆ pre p−ω

n Vr,n and, hence, pn pre w ⊆

preVr,n . Referring to the definition of Lseq, pn pre w is unbounded and we obtain

{pω
nw} = lim pn pre w ⊆ lim preVr,n = Vr,n , i.e., pω

nw ∈ Vr,n . By the arbitrary choice

of w and n, we conclude Vs ⊆ L‖. Given an arbitrary ŝ ∈ preLseq, we claim that

r̂n :=pn ŝ ∈preVr,n for all n implies ŝ ∈preVs . From r̂n ∈preVr,n , we choose ûn ∈6ω
n

such that r̂n ûn ∈ Vr,n . The alphabets 61 to 6m are disjoint, and we can choose û in

the shuffle p−ω

1 û1 ∩ · · · ∩ p−ω
m ûm such that pω

n(ŝû) = r̂n ûn ∈Vr,n and ŝû ∈Lseq. Thus,

we have indeed ŝ ∈preVs . This concludes the proof of our claim, with s ∈preVs as an

immediate consequence. Regarding controllability of preVs w.r.t. (Up ∪̇ Ue, preL‖),

pick an arbitrary string ŝ ∈ preVs and σ ∈ 6uc, such that ŝσ ∈ preL‖. Denote j

the index of the corresponding component, i.e. σ ∈ 6 j . Controllability of preVr, j

w.r.t. preL j implies (p j ŝ)σ ∈ preVr, j . Thus, we have pn(ŝσ) ∈ preVr,n for all n and

ŝσ ∈ preLseq. This implies ŝσ ∈ preVs . ⊓⊔

4.2 IO-environment

The IO-environment models dependencies between the individual plant components;

see Figure 3. It is meant to facilitate the reuse of plant models when operated in

different environments. Technically, we require the IO-environment I⊆6ω
el, defined

over the alphabet 6el :=6e ∪̇6l, with 6l :=Yl ∪̇Ul, to possess the below properties.

I1 I ⊆ ((YeUe)
∗(YeYlUlUe)

∗)ω.

I2 pre I possesses locally free inputs Ul and Ye.

I3 I is topologically closed.

The composition of the IO-plant LIO with an IO-environment I can be discussed

in analogy to the construction of the full closed-loop behaviour presented in Sec-

tion 2, where LIO plays the role of the plant and I corresponds to the controller.

More specifically, we raise both languages to the overall alphabet 6 :=6p ∪̇6e ∪̇6l,

to consider the full IO-shuffle behaviour and the full IO-environment behaviour,

A Hierarchical and Modular Control Architecture for Sequential Behaviours 19

L6 := (p−ω
pe (LIO ∪ preLIO)) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω) ,

I6 := (p−ω

el (I ∪ pre I)) ∩ (clo((YpUp)
∗(YeUe)

∗(YeYlUlUe)
∗)ω) ,

respectively, and we obtain the intersection

L6 ∩ I6 ⊆6ω

to represent the modular IO-system, Figure 3. By the particular construction and

by condition I3, I6 is observed to be topologically closed. Still following the discus-

sion of the closed loop with external signals, proceeding with Section 3, we derive

two propositions to observe that the non-anticipating property is retained under the

proposed composition.

Proposition 5 For non-anticipating IO-plant components Ln ⊆ 6ω
n , n = 1, . . . , m,

the full IO-shuffle L6 ⊆6ω is ω-controllable w.r.t. (Up ∪̇ Ul, cloL6).

Proof The proof is almost literally identical to the proof of (Baier and Moor, 2012),

Proposition 9. For convenience, an explicit proof is provided in the Appendix. ⊓⊔

Proposition 6 For non-anticipating IO-plant components Ln ⊆ 6ω
n , n = 1, . . . , m

and an IO-environment I ⊆6ω
el, consider the full behaviours L6 ⊆6ω and I6 ⊆6ω,

respectively. Then, L6 and I6 are non-conflicting. Moreover, the modular IO-system

L6 ∩ I6 is ω-controllable w.r.t. (Up ∪̇ Ul, clo(L6 ∩ I6)).

Proof The claim is verified by the same line of thought as in the proof of Proposi-

tion 3. An explicit proof is provided in the Appendix. ⊓⊔

4.3 Propagation of plant properties in the modular IO-system

We are now in the position, to state the main theorem of this section: the external

behaviour of a modular IO-system again satisfies the IO-plant properties P1–P3.

Theorem 3 Given a modular IO-system, consisting of plant components Ln ⊆ 6ω
n ,

n = 1, . . . , m, and an IO-environment I ⊆ 6ω
el, denote the external behaviour Lpl :=

pω

pl (L6 ∩ I6). If Ln ⊆ 6ω
n , n = 1, . . . , m are non-anticipating IO-plants, then so is

Lpl.

Proof Regarding the event ordering P1, we observe that the modular IO-system sat-

isfies Lpl ⊆ pω

pl((YpUp)
∗(YeUe)

∗(YeYlUlUe)
∗)ω = ((YpUp)

∗(YlUl)
∗)ω. Regarding lo-

cally free inputs P2, we first show that L6 ∩ I6 possesses locally free inputs Up

and Ul. Pick s, s′ ∈ pre(L6 ∩ I6) and µ,µ′ ∈ Up, as well as ν, ν′ ∈ Ul such that

sµ, s′ν ∈ pre(L6 ∩ I6). By the locally free inputs Up and Ul of preL6 and pre I6

we obtain sµ′, s′ν′ ∈ (preL6) ∩ (pre I6), and, referring to non-conflictingness from

Proposition 6, sµ′, s′ν′ ∈ pre(L6 ∩ I6). Thus, L6 ∩ I6 indeed possesses locally free

inputs Up and Ul, which are retained under projection to 6pl. We are left to ver-

ify non-anticipation P3. Pick any s ∈ preLpl = pre pω

pl (L6 ∩ I6). Then, there exists

20 Christine Baier, Thomas Moor

t ∈ pre (L6 ∩ I6) such that pplt = s. Recall from Proposition 6 that L6 ∩ I6 is ω-

controllable w.r.t. (Up ∪̇ Ul, clo(L6 ∩ I6)). Thus, we can choose Wt ⊆L6 ∩ I6 such

that t ∈ preWt , and preWt is controllable w.r.t. (Up ∪̇ Ul, pre clo(L6 ∩ I6)), and

Wt is closed. As a candidate to establish P3, let Vs := pω

plWt ⊆ pω

plLpl and observe

s = pplt ∈ ppl preWt = preVs . Controllability and closedness of Vs follow as in the

proof of Theorem 1, and we obtain that Lpl is ω-controllable w.r.t. (Up ∪̇Ul, cloLpl).

⊓⊔

Conclusion. In this section, we proved that the IO-plant properties P1–P3 are re-

tained under the proposed modular component composition. As our main result in

this paper, Theorems 1–3 formally justify a hierarchical and modular controller de-

sign by alternating controller synthesis, closed-loop composition, abstraction and

component composition, as illustrated by Figures 2 and 3 and demonstrated by an

example in the next section.

5 Example

We apply the proposed approach to the control of a transport system. It consists of a

number of conveyor belts arranged next to each other, with the specified behaviour

to transport workpieces from the left to the right; see Figure 4. The example demon-

Fig. 4 Conveyor belt example

strates the use of separate models for components and their environments, the techni-

cal plant requirements P1–P3, and the use of specifications as abstractions. As indi-

cated in the preliminaries, we use deterministic Büchi automata for the representation

of the respective ω-languages. Recall that a Büchi automaton accepts those infinite

executions that infinitely often pass marked states.

5.1 Low-level controller design

To begin with, we derive a model for an individual conveyor belt by referring to

its physical configuration; see Figure 5. The actuator events bon and boff turn

the belt motor on and off, respectively. The sensor events wpar and wplv indicate

that a workpiece arrives at the sensor or leaves the sensor, respectively. Actuator and

sensor events correspond to edges on the digital signals used to physically control the

conveyor belt component. For possible interaction with components placed next to the

conveyor belt, we define the events enter and exit for a workpiece to enter from

the left or to exit to the right, respectively. Provided that the belt motor is on, enter is

A Hierarchical and Modular Control Architecture for Sequential Behaviours 21

eventually acknowledged by the sensor event wpar. In order to also trace the exit

event, we require that some component with a sensor is located on the right-hand

side of the conveyor belt. We then associate workpiece arrival on the neighbouring

component with exit.

Fig. 5 Conveyor belt, physical model

The physical model can be transformed to an IO-plant by replacing the occur-

rence of individual events by pairs, of each one input event and one output event; see

Figure 6. For this purpose, the additional output event idle is introduced to formally

provide feedback when no sensor event occurred. The events enter and exit are

replaced by pairs of request and acknowledgement. Here, enter is modelled by get

to indicate the attempt to get a workpiece from the left, which may succeed or fail,

indicated by a subsequent pack or nack, respectively. Likewise, exit is modelled

by put, followed by pack or nack. The event ordering P1 and locally free inputs P2

are readily verified on a per state basis. Regarding non-anticipation P3, we have com-

puted the supremal ω-controllable sublanguage of the conveyor belt behaviour w.r.t.

its topological closure and have verified that the result equals again the conveyor belt

behaviour. Thus, P3 is indeed satisfied and our model is an IO-plant. Referring to the

physical model, this was the expected outcome: the present eventuality properties do

not restrict the applicable actuator events, neither locally nor on the infinite time axis.

Up ={bon, boff}, Yp ={idle, wpar, wplv, exit, fail}

Ue ={pack, nack}, Ye ={get, put}

Fig. 6 Conveyor belt, IO-plant model

In order to state a control objective, we introduce the operator output events full

and empty to indicate whether or not a workpiece is known to be present, and the

22 Christine Baier, Thomas Moor

operator input events wpr and wpd for the request and delivery of a workpiece, re-

spectively. The intended semantics of the newly introduced events is defined by re-

lating them to the environment events via a specification automaton; see Figure 7.

Note that the specification automaton exclusively refers to the alphabet 6ce and that

it is left to the synthesis procedure to figure out how to drive the plant by interleaving

events from 6p. Technically, the depicted automaton realises the projection pω
ceE of

the formal specification E . In particular, there is no need to compute pω
ceE from E ,

avoiding a potentially exponential growth in the state count. The event ordering re-

quired by condition E1 is again verified on a per-state basis. The liveness requirement

to eventually provide feedback to the operator is confirmed by inspecting all strongly

connected components without an Yc event and by verifying them not to include a

marked state. Regarding locally free inputs E2, the error states Err, Errq have been

introduced to obtain a locally free Uc. For a human operator, a more specific error

behaviour would have been preferable. However, for the purpose of a subsequent de-

sign stage in a hierarchical control system, the proposed error behaviour will render

the error states unreachable for any sensible high-level specification.

Uc ={wait, wpd, wpr}, Yc ={empty, full}

Ue ={pack, nack}, Ye ={get, put}

Fig. 7 Specification for one individual conveyor belt

Yc: empty, full operator feedback to indicate presence of a workpiece

Uc: wait, wpr, wpr operator command to wait, or to receive/deliver one workpiece

Ye: get, put attempt to get/put a workpiece from/to the environment

Ue: pack, nack acknowledgement of recent get/put

Yp: idle,wpar,wplv plant sensors with dummy idle if nothing else is to report

Up: bon,boff plant actuator to operate belt motor

Table 1 List of events

As it turns out for this particular example, the specification fails to be relatively

topologically closed w.r.t. the plant. Thus, we cannot compute a realisation of the

supremal closed-loop behaviour. However, the approach outlined in Section 1.4 yields

a non-empty closed loop that satisfies K1–K3, from which we obtain a controller

A Hierarchical and Modular Control Architecture for Sequential Behaviours 23

that satisfies properties C1 and C2 and that amounts to 44 states. For the sake of

simplicity, all conveyor belts from our transport system are assumed identical, and

we can apply copies of the same controller to each belt. In order to formally end up

with disjoint alphabets, we use the convention to prefix each event with an identifier

of the respective component; e.g., cb1_bon to turn on the motor of the first conveyor

belt cb1, counting from the left to the right.

5.2 Hierarchical and modular controller design

By the physical arrangement, the departure of a workpiece from one belt corresponds

to the arrival of the workpiece at the next belt; e.g., cb1_putr–cb1_pack corre-

sponds to cb2_getl–cb2_pack. This is accounted for by suitable environments,

where, at this stage of our design, we compose groups of two conveyor belts each;

see Figure 8 for an environment to synchronise the passing of workpieces between

the two conveyor belts cb1 and cb2. For the purpose of further compositions at sub-

sequent stages of the hierarchical design, the proposed environment also introduces

events to represent workpieces entering or leaving the group of the two units; these

additional events are prefixed by cb12_. Adequate event-ordering I1 and locally

free inputs I2 are verified by the same per-state inspection as P1 and P2. Topological

closedness I3 is an immediate consequence of the marking.

The actual behaviour of the two belts cb1 and cb2 under low-level control to-

gether with the environment is given by the composition discussed in Section 4.

Referring to Theorem 1, the individual closed loops satisfy the IO-plant properties

P1–P3, and, by Theorem 3, so does the composed system incl. the environment. In

particular, the design of a high-level controller that coordinates the two conveyor

belts w.r.t. their effect on the environment can be based on an abstraction. The latter

can be constructed by replacing the low-level closed-loop behaviours with their re-

spective specifications prior to the composition with the environment. The resulting

automaton counts 172 states.

Ul ={cb12_nack, cb12_pack}, Yl ={cb12_put, cb12_get}

Ue ={cb1_pack,cb1_nack, cb2_pack, cb2_nack},

Ye ={cb1_get, cb1_put, cb2_get, cb2_put}

Fig. 8 Environment for the two conveyor belts cb1 and cb2

24 Christine Baier, Thomas Moor

Informally, we want the high-level controller to coordinate a group of conveyor

belts to behave as a single conveyor belt, except that the coordination should utilize

the additional capacity as a buffer when required. Here, Figure 7 is re-interpreted as

the behaviour of a transport unit with buffer capacity one, with obvious extensions to

higher capacities. Technically, we introduce events {wp0, wp1, wp . . .} as operator

feedback and additional states to distinguish the number of present workpieces. For

capacity two, the resulting specification is shown in Figure 9. To apply this automaton

to the specific situation of the two left most conveyor belts cb1 and cb2, the shown

event labels are prefixed with cb12_ and, thereby, match the environment model,

Figure 8.

Uc ={wait, wpd, wpr}, Yc ={wp0, wp1, wp2}

Ue ={pack, nack}, Ye ={get, put}

Fig. 9 Specification for a transport unit with capacity two

We apply the approach outlined in Section 1.4 to obtain a high-level controller for

the coordination of conveyor belts cb1 and cb2. A state count of 1461 is observed.

Thus, for the control of the two conveyor belts, we use two low-level controllers with

44 states each and one high-level controller with 1461 states. For a technical imple-

mentation, there is no need to apply a parallel composition to the three controllers.

Thus, the overall state count 44 + 44 + 1461 is considered an adequate indicator for

the implementation complexity.

The control architecture extends to multiple levels when applied to multiple con-

veyor belts; see Figure 10. Assume that we have designed two controllers to operate

one group of transport units each. To design the controller one level up the hierarchy,

one refers to the two transport-unit specifications used for the design of each existing

controller and to a third transport-unit specification for the overall behaviour. Each

transport-unit specification has a state count linear to its capacity. The below Table 2

gives the state counts we observed for the resulting controllers for an overall capacity

of up to eight workpieces. The table shows a polynomial growth of the state count

for the controller w.r.t. the capacity. When restricting the left transport unit to capac-

ity one, we experience a favourable linear growth of the state count. Hence, given a

number of conveyor belts, one may start with two units and add one more per level

of the hierarchy. With this strategy, we end up with as many controllers as conveyor

belts for the hierarchical control architecture plus one low-level controller per con-

veyor belt; see left-hand side of Figure 10. The overall state count for this design

A Hierarchical and Modular Control Architecture for Sequential Behaviours 25

strategy is quadratic in the number of conveyor belts; see Table 3. Alternatively, one

may keep the tree balanced by forming groups with minimal difference in the number

of components; see right-hand side of Figure 10.

cb1 cb1cb2 cb2cb3 cb3cb4 cb4

con1 con1con2 con2con3 con3con4 con4

con12

con12 con34

con123

con1234 con1234

Fig. 10 Hierarchical control architectures for the conveyor belts cb1, cb2, cb3 and cb4

overall capacity 2 3 4 4 5 5 6 6

capacity left/right 1/1 1/2 1/3 2/2 1/4 2/3 1/5 2/4

plant abs. state count 172 288 404 454 520 642 636 830

controller state count 1461 2479 3498 4041 4517 5727 5536 7417

overall capacity 6 7 7 7 8 8 8 8

capacity left/right 3/3 1/6 2/5 3/4 1/7 2/6 3/5 4/4

plant abs. state count 642 752 1018 1140 868 1206 1400 1450

controller state count 7954 6555 9104 10309 7574 10794 12667 13208

Table 2 Controller state count vs. capacity of two coordinated transport units

Our approach compares well with a monolithic controller design with an expected

state count exponential in the number of conveyor belts. For a comparison, we used

the plant model, Figure 5, and relabelled enter and exit events to obtain an overall

model by parallel composition. As it turned out, we needed to include the stack feeder

and the sink in the plant model for the synthesis of a nonblocking controller that

enforces a collision avoidance specification. For a fair comparison, we count the stack

feeder as one conveyor belt. In contrast to the hierarchical design, we did not need to

specify the buffer capacity of the closed-loop system explicitly. The respective state

counts for up to six conveyor belts are given in Table 3.

In order to validate the plant model and the formal specification, simulation exper-

iments with four and eight conveyor belts were conducted. For the plant, the animated

simulator FlexFact was used to simulate the continuous-time physical behaviour, in-

cluding digital signals for the purpose of controller interconnection provided via a

network interface. The hierarchy of controllers was interpreted by the discrete-event

simulator from the software library libFAUDES. Here, events have been defined as

26 Christine Baier, Thomas Moor

edges on the digital signals accessible via the network interface of the plant simula-

tion. The simulation experiment confirmed the expected closed-loop behaviour.

conveyor belts 1 2 3 4 5 6 7 8

one level per unit 44 1549 4072 7614 12175 17755 24354 31972

balanced hierarchy 44 1549 4072 7139 11348 16105 21520 27486

monolithic design 42 152 816 4290 23840 137110 – –

Table 3 Controller state count vs. number of conveyor belts for different design strategies

Conclusion

In this paper, we discussed a closed-loop configuration with external signals, where

plant and controller dynamics are represented as not necessarily topologically closed

ω-languages. Based on Willems’ notion of input-output systems, we identified the

requirements P1–P3 for the plant behaviour, such that controller synthesis can be

based on an abstraction while maintaining specified liveness and safety properties for

the actual closed-loop. We have shown that the requirements P1–P3 are preserved

under closed-loop composition, and, hence, that the closed-loop can again serve as a

plant model. This leads to a hierarchical control architecture, in which we repeatedly

design a controller, form the closed-loop and use the specification as an abstraction

for the subsequent controller design.

To complement the “vertical” composition of controllers by a “horizontal” com-

position of plant components, we introduce a specialized shuffle-product that again

preserves the requirements P1–P3. Here, dependencies between individual plant com-

ponents are represented as environment models. Since both proposed forms of system

composition retain the same three requirements, they can be freely combined to ob-

tain a hierarchical and modular control architecture, where each controller is designed

to addresses the coordination of a group of closed-loop systems on the level below.

Although not formally guaranteed, we expect computational benefits for relevant

applications. In the alternation of controller design, system combination and abstrac-

tion, the former two stages tend to increase the number of states while that latter re-

duces the state count to represent the purpose of the design as opposed to the means

of how it is achieved. The transport system example demonstrates, that the additional

structure required by our control architecture introduces a certain penalty for the syn-

thesis of the individual controllers, however, the overall complexity is observed to be

polynomial in the number of plant components, and, thus, compares well against a

monolithic design.

References

Baier C, Kwiatkowska M (2000) On topological hierarchies of temporal properties.

Fundamenta Informaticae 41:259–294

A Hierarchical and Modular Control Architecture for Sequential Behaviours 27

Baier C, Moor T (2012) A hierarchical control architecture for sequential behaviours.

Workshop on Discrete Event Systems 2012 pp 259–264

Cassandras CG, Lafortune S (2008) Introduction to Discrete Event Systems, 2nd edn.

Springer

da Cunha AEC, Cury JER, Krogh BH (2002) An assume-guarantee reasoning for

hierarchical coordination of discrete event systems. Workshop on Discrete Event

Systems 2006 pp 75–80

Feng L, Wonham W (2008) Supervisory control architecture for discrete-event sys-

tems. IEEE Transactions on Automatic Control 53(6):1449–1461

Hopcroft JE, Ullman JD (1979) Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, Reading

Kumar R, Garg V, Marcus SI (1992) On supervisory control of sequential behaviors.

IEEE Transactions on Automatic Control 37(12):1978 –1985

Kupferman O, Vardi MY (2000) Synthesis with incomplete informatio. In: Advances

in Temporal Logic, Kluwer Academic Publishers, pp 109–127

Leduc RJ, Lawford M, Wonham WM (2005) Hierarchical interface-based super-

visory control - part ii: Parallel case. IEEE Transactions on Automatic Control

50(9):1336–1348

Lin F, Wonham WM (1988) On observability of discrete-event systems. Information

Sciences 44:173–198

Manna Z, Pnueli A (1990) A hierarchy of temporal properties. Proc 9th ACM Sym-

posium on Principles of Distributed Computing pp 377–408

Moor T, Raisch J, Davoren JM (2003) Admissibility criteria for a hierarchical design

of hybrid control systems. Proc IFAC Conference on the Analysis and Design of

Hybrid Systems (ADHS’03’) pp 389–394

Moor T, Schmidt K, Wittmann T (2011) Abstraction-based control for not necessarily

closed behaviours. Proc 18th IFAC World Congress pp 6988–6993

Moor T, Baier C, Yoo TS, Lin F, Lafortune S (2012) On the computation of supremal

sublanguages relevant to supervisory control. Workshop on Discrete Event Sys-

tems 2012 pp 175–180

Mukund M (1996) Finite-state automata on infinite inputs. Internal Report TCS-96-2,

SPIC Mathematical Institute

Perk S, Moor T, Schmidt K (2006) Hierarchical discrete event systems with inputs

and outputs. Workshop on Discrete Event Systems 2006 pp 427–432

Perk S, Moor T, Schmidt K (2008) Controller synthesis for an i/o-based hierarchical

system architecture. Workshop on Discrete Event Systems 2008 pp 474–479

Ramadge PJ (1989) Some tractable supervisory control problems for discrete-event

systems modeled by buchi automata. IEEE Transactions on Automatic Control

34(1):10–19

Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event

processes. SIAM J Control Optim 25(1):206–230

Ramadge PJ, Wonham WM (1989) The control of discrete event systems. Proc IEEE

77(1):81–98

Schmidt K, Moor T, Perk S (2008) Nonblocking hierarchical control of decentralized

discrete event systems. IEEE Transactions on Automatic Control 53(10):2252–

2265

28 Christine Baier, Thomas Moor

Thistle JG, Lamouchi HM (2009) Effective control synthesis for partially observed

discrete-event systems. SIAM J Control and Optimization 48(3):1858–1887

Thistle JG, Wonham W (1992) Control of omega-automata, church’s problem,

and the emptiness problem for tree omega-automata. Computer Science Logic

626:367–381

Thistle JG, Wonham WM (1994) Supervision of infinite behavior of discrete-event

systems. SIAM J Control and Optimization 32(4):1098–1113

Thomas W (1990) Automata on infinite objects. Handbook of theoretical computer

science (vol B), The MIT Press, Cambridge, MA pp 133–191

Willems JC (1991) Paradigms and puzzles in the theory of dynamical systems. IEEE

TAC 36(3):259–294

Wong KC, Wonham WM (1996) Hierarchical control of discrete-event systems. Dis-

crete Event Dynamic Systems: Theory and Applications 6(3):241–273

Appendix

This section collects a number of technical lemmata to support the core arguments

Proof of Proposition 5 [See also the below Lemma 7]

Given non-anticipating IO-plant components, we have to show that the full IO-shuffle

L6 = (p−ω
pe (LIO ∪ preLIO)) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω)

is ω-controllable w.r.t. (6l ∪̇ Up ∪̇ Ue, cloL6). From the definition of L6 , we note

that preL6 ⊆pre p−ω
pe (LIO∪preLIO)=p−1

pe preLIO. Pick an arbitrary string s ∈preL6 ,

let r := ppes, and observe that r ∈ preLIO. Referring to Proposition 4, LIO is a non-

anticipating IO-plant, i.e., LIO is ω-controllable w.r.t. (Up ∪̇ Ue, cloLIO). Thus, we

can choose Wr ⊆LIO, such that r ∈ preWr , and preWr is controllable w.r.t. (Up ∪̇

Ue, preLIO), and Wr is relatively closed w.r.t. cloLIO. Recall that relative closedness

w.r.t. a closed language implies closedness. In particular, Wr is closed. To establish

the non-anticipating property for L6 , consider the candidate

Vs := (p−ω
pe (Wr ∪ preWr)) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω).

Clearly, Vs ⊆L6 and preVs ⊆ pre p−ω
pe (Wr ∪ preWr) = p−1

pe preWr . Further, we have

s ∈ preVs , since ppes = r ∈ preWr and s ∈ pre((YpUp)
∗(YeUe)

∗(YeYlUlUe)
∗)ω. To

show controllability, pick an arbitrary string ŝ ∈preVs and σ ∈6l ∪̇Up ∪̇Ue such that

ŝσ ∈ preL6 . In particular, ppeŝ ∈ ppep−1
pe preWr = preWr and ppe(ŝσ)∈ ppe preL6 ⊆

preLIO. Controllability of preWr w.r.t. preLIO implies that ppe(ŝσ) ∈ preWr . In

addition, there exists u ∈ 6ω
pe, such that ppe(ŝσ)u ∈ Wr . We choose w ∈ 6ω such

that ŝσw ∈ clo((YpUp)
∗(YeUe)

∗(YeYlUlUe)
∗)ω and pω

pe(ŝσw) = ppe(ŝσ)u. Note that

ŝσw ∈ Vs and, hence, ŝσ ∈ preVs . Finally, we have to establish relative closedness

of Vs w.r.t. cloL6 . Since cloL6 is a closed superset of Vs , relative closedness of Vs

A Hierarchical and Modular Control Architecture for Sequential Behaviours 29

and closedness of Vs are equivalent. Recall that the intersection of two topologically

closed languages is again topologically closed, to obtain closedness of Vs by

Vs = (p−ω
pe (Wr ∪ preWr)) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω)

= (p−ω
pe (cloWr ∪ preWr)) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω)

= (clo p−ω
pe Wr) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω) .

⊓⊔

Proof of Proposition 6

Given non-anticipating IO-plant components, consider the full IO-shuffle and the full

environment

L6 = (p−ω
pe (LIO ∪ preLIO)) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω) ,

I6 = (p−ω

el (I ∪ pre I)) ∩ (clo((YpUp)
∗(YeUe)

∗(YeYlUlUe)
∗)ω) ,

respectively. We have to show that L6 and I6 are non-conflicting and that L6 ∩ I6

is ω-controllable w.r.t. (Up ∪̇ Ul, clo(L6 ∩ I6)). We begin with ω-controllability and

construct a suitable candidate Vs ⊆L6 ∩I6 for an arbitrarily chosen s ∈pre(L6 ∩I6).

Referring to Proposition 5, there exists Ws ⊆L6 , such that s ∈preWs , preWs is con-

trollable w.r.t. (6l ∪̇Up ∪̇Ue, preL6), and Ws is relatively closed w.r.t. cloL6 . In par-

ticular, Ws is closed. To establish ω-controllability of L6∩I6 w.r.t. clo(L6∩I6), con-

sider the candidate Vs :=Ws∩I6 . Clearly, Vs ⊆L6∩I6 . Furthermore, Vs =Ws∩I6 =

(cloWs)∩(clo I6)⊇cloVs , i.e., Vs is closed and, thus, relatively closed w.r.t. any su-

perset. To show controllability of preVs w.r.t. pre(L6 ∩ I6), we pick r ∈pre(Ws ∩I6)

and σ ∈ Ul ∪̇ Up such that rσ ∈ pre clo(L6 ∩ I6) ⊆ (preL6) ∩ (pre I6). By con-

trollability of preWs , it follows that rσ ∈ (preWs). The locally free input Ul of I

and the inverse projection in the definition of I6 imply rσ ∈ (pre I6) for either case

σ ∈ Ul or σ ∈ ∪̇Up, respectively. So far, we have rσ ∈ pre(Ws) ∩ (pre I6). To es-

tablish rσ ∈ pre(Ws ∩ I6), observe that each event in 6 is either uncontrollable for

preWs or a locally free input for pre I6 . Thus, starting with r0 = rσ , we can con-

struct an unbounded sequence (rn) ⊆ (preWs) ∩ (pre I6) with limit w := lim(rn) ∈

(cloWs)∩(clo I6)=Ws ∩I6 . Hence, rσ ∈pre(Ws ∩I6). This concludes the proof of

ω-controllability. For non-conflictingness, pick an arbitrary s ∈ (preL6) ∩ (pre I6).

In our argument, we refer to the same candidate Ws as used in the first part of this

proof. In particular, we have s ∈ (preWs) ∩ (pre I6) and we can, as above, start with

s0 = s to construct an unbounded sequence (sn)⊆ (preWs)∩(pre I6) by successively

appending events that are either uncontrollable for preWs or a locally free input for

pre I6 . Consequently, we obtain w := lim(sn) ∈ (cloWs) ∩ (clo I6) = Ws ∩ I6 ⊆

L6 ∩ I6 and thus s ∈ pre(L6 ∩ I6). ⊓⊔

Proof of Lemma 1 [see also (Baier and Moor, 2012), Lemma 14]

This lemma supports the proof of Theorem 2, where for L ⊆ L′ a solution H of

the control problem (6, L′, E) is verified to also solve (6, L, E). For the lemma,

we have to show for V ′ ⊆ L′
6 ∩ H6 that, if preV ′ is controllable w.r.t. (6uc, L

′
6),

30 Christine Baier, Thomas Moor

and if V ′ is relatively closed w.r.t. L′
6 , then L6 and V ′ are non-conflicting, i.e., that

pre(L6 ∩preV ′)= (preL6)∩(preV ′). Pick an arbitrary string s ∈ (preL6)∩(preV ′).

Referring to Lemma 8, we represent L6 as L6 = ∪a∈ALa with La satisfying con-

ditions (i) and (ii). In particular, there exists a ∈ A with s ∈ preLa ⊆ L6 ⊆ L′
6 .

To extend s ∈ (preLa) ∩ (preV ′) by one event, pick σ such that sσ ∈ preLa . If

σ ∈ 6uc, then controllability of preV ′ implies sσ ∈ preV ′, and we end up with

sσ ∈ (preLa) ∩ (preV ′). If, on the other hand, σ ∈ Up ∪̇ Yc, we obtain by Lemma 8,

condition (i), that s(Up ∪̇ Yc) ⊆ preLa . Referring to the event ordering in the defini-

tion of L6 , we decompose s = rν with ν ∈ Uc ∪̇ Yp. Again by the definition of L6 ,

now using rν ∈ preV ′ ⊆ preL′
6 , we obtain the existence of σ ∈ Up ∪̇ Yc such that

sσ ∈ preV ′ and, thus, conclude with sσ ∈ (preLa) ∩ (preV ′). Repeatedly extending

s, we construct a strictly monotone sequence (sn) ⊆ (preLa) ∩ (preV ′) with limit

w := lim(sn) ∈ (cloLa) ∩ (cloV ′) and s = s0 < w. Since La is closed, we obtain

w ∈La to observe w ∈La ∩ (cloV ′) ⊆L6 ∩ L′
6 ∩ (cloV ′) =L6 ∩ V ′. In particular,

s ∈ pre(L6 ∩ V ′). ⊓⊔

Lemma 2 Consider 6uc ⊆6 and L, H⊆6ω. If H is ω-controllable w.r.t. (6uc, L),

then preH is controllable w.r.t. (6uc, preL), and L and H are non-conflicting.

Proof Pick any s ∈preH and σ ∈6uc, such that sσ ∈pre L . In particular, this implies

s ∈preL and we can choose Vs ⊆L∩H, s ∈preVs , according to conditions (i) and (ii)

from Definition 1. Here controllability (i) implies sσ ∈preVs ⊆pre(L ∩ H)⊆preH.

This concludes the proof of controllability for preH. For non-conflictingness, pick

an arbitrary s ∈ (preH) ∩ (preL) and again choose Vs ⊆L∩H, s ∈preVs , according

to Definition 1. Clearly, s ∈ preVs ⊆ pre(H ∩ L). ⊓⊔

Lemma 3 Let 6uc ⊆ 6, 6o ⊆ 6, 6 − 6uc ⊆ 6o, L ⊆ 6ω, and consider a family

of languages Ha ⊆ 6ω, a ∈ A, each one ω-admissible w.r.t. (6uc, 6o, L). Then, the

union H :=∪a∈AHa is ω-admissible, too.

Proof Pick an arbitrary prefix s ∈ (preL) ∩ (preH). By preH = ∪a∈A preHa , we

can choose a ∈ A such that s ∈ preHa . Since Ha is considered ω-admissible, we can

also choose Vs ⊆L ∩ Ha , s ∈ preVs to satisfy conditions (i)–(iii) from Definition 2.

Clearly, Vs ⊆L ∩ H, and we have established ω-admissibility of H. ⊓⊔

Lemma 4 Let 6uc ⊆ 6, 6o ⊆ 6, 6 − 6uc ⊆ 6o, and consider L ⊆ 6ω and E ⊆

L. Denote K⇑ ⊆ E the supremal ω-admissible sublanguage of E . If E is relatively

topologically closed w.r.t. L, then so is K⇑.

Proof Let K := (cloK⇑) ∩L, and observe K⇑ ⊆K⊆ (clo E) ∩L=E . Moreover, re-

call that pre cloK⇑ = preK⇑, to obtain preK⊆ (pre cloK⇑) ∩ (preL)= (preK⇑) ∩

(preL) = preK⇑, and, hence, preK= preK⇑. To show that K is ω-admissible w.r.t.

(6uc, 6o, L), pick an arbitrary s ∈ (preL) ∩ (preK) = (preL) ∩ (preK⇑). In par-

ticular, we can choose Vs ⊆K⇑, s ∈ preVs , according to conditions (i)–(iii) in Defini-

tion 2, and conclude that K is ω-admissible w.r.t. (6uc, 6o, L). Supremality of K⇑

implies K⊆K⇑. ⊓⊔

A Hierarchical and Modular Control Architecture for Sequential Behaviours 31

Lemma 5 Let 6uc ⊆6, 6o ⊆6, 6 − 6uc ⊆6o, and consider L⊆6ω and H⊆6ω.

If H is ω-admissible w.r.t. (6uc, 6o, L), then (preL) ∩ (preH) is prefix-normal

w.r.t. (6o, preL).

Proof Pick an arbitrary string s ∈ (p−1
o po((preL) ∩ (preH))) ∩ preL. Then there

exists s′ ∈ (preL) ∩ (preH) such that pos′ = pos, and we choose Vs′ ⊆ L ∩ H,

s′ ∈ preVs′ , according to conditions (i)–(iii), Definition 2. Here, prefix-normality (ii)

implies s ∈preVs′ . Together with preVs′ ⊆pre(L∩H)⊆ (preL) ∩ (preH), we obtain

s ∈ (preL) ∩ (preH). ⊓⊔

Lemma 6 Let 6uc ⊆ 6, 6o ⊆ 6, 6 − 6uc ⊆ 6o, and consider L ⊆ 6ω and E ⊆

L. Assume that E is relatively topologically closed w.r.t. L, and that both L and E

are represented as limits of regular ∗-languages L = lim L , E = lim E , where L is

complete and E = (pre E) ∩ L . Let K ↑ ⊆ 6∗ denote the supremal sublanguage of

K ⊆ E that satisfies the requirements (L1)–(L5) given in (Moor et al, 2012):

(L1) K is complete,

(L2) K is controllable w.r.t. (L , 6uc),

(L3) K is normal w.r.t. (L , 6o),

(L4) K ⊆ E , and

(L5) K is relatively prefix-closed w.r.t. L .

Then lim K ↑ is the supremal ω-admissible sublanguage K⇑ of E .

Proof The prerequisite that E is relatively topologically closed implies that K⇑ is

relatively topologically closed, too; see Lemma 4. In particular, K⇑ uniformly satis-

fies conditions (i)-(iii) in Definition 2 for all s ∈ (preL) ∩ (preK). Therefore, K⇑ is

identical with the supremal sublanguage K of E that satisfies

(i) preK is controllable w.r.t. (6uc, preL);

(ii) preK is prefix-normal w.r.t. (6o, preL); and

(iii) K is relatively topologically closed w.r.t. L.

Now consider an arbitrary K that satisfies (L1)–(L5) and denote K= lim K . By (L1),

we have preK= pre K , and, K satisfies (i) and (ii) by (L2) and (L3), respectively. By

(L4), we have K⊆ E . Finally, (cloK) ∩ L= (lim pre K) ∩ (lim L) = lim((pre K) ∩

L) = lim K = K is obtained by (L5), and we note that K satisfies (iii). Thus, we

have lim K ↑ ⊆K⇑. Vice versa, consider an arbitrary K ⊆ E conform to (i)–(iii) and

let K = (preK) ∩ L . Obviously, this choice satisfies (L5). To verify (L1)–(L4), we

first establish that pre K = preK. Clearly, pre K ⊆ preK. For the converse inclusion,

pick any s ∈ preK and choose w ∈ 6ω such that sw ∈K⊆ E ⊆L. In particular, there

exists r <w with sr ∈ L . With sr < sw, we obtain sr ∈ (preK) ∩ L = K , and, hence,

s ∈ pre K . This concludes the proof of pre K = preK, and immediately implies (L1).

Likewise, (L2) and (L3) follow directly from controllability (i) and normality (ii),

respectively. Regarding (L4), observe K = (preK) ∩ L ⊆ (pre E) ∩ L = E . Thus, we

have K ↑ ⊇ (preK⇑)∩ L , and, by taking limits, obtain lim K ↑ ⊇ lim((preK⇑)∩ L)=

cloK⇑ ∩ L=K⇑. This concludes the proof of lim K ↑ =K⇑. ⊓⊔

32 Christine Baier, Thomas Moor

Lemma 7 [see also (Baier and Moor, 2012), Proposition 9] If L is a non-anticipating

IO-plant, then L6 is ω-controllable w.r.t. (6c ∪̇ Up ∪̇ Ue, cloL6).

Proof Note that

L6 = (p−ω
pe (L ∪ preL)) ∩ (clo ((Yp(YcUc)

∗Up)
∗ (YeUe)

∗)ω) ,

implies preL6 ⊆ pre(p−ω
pe (L∪ preL))= p−1

pe preL. Pick an arbitrary string s ∈ preL6 ,

let r := ppes, and observe that r ∈ preL. Since L is non-anticipating, we can choose

Wr ⊆L, such that r ∈ preWr , and preWr is controllable w.r.t. (Up ∪̇ Ue, preL), and

Wr is relatively closed w.r.t. cloL. Recall that relative closedness w.r.t. a closed lan-

guage implies closedness. In particular, Wr is closed. To establish the non-anticipating

property of L6 , consider the candidate

Vs := (p−ω
pe (Wr ∪ preWr)) ∩ (clo((Yp(YcUc)

∗Up)
∗(YeUe)

∗)ω).

Clearly, Vs ⊆L6 and preVs ⊆ pre p−ω
pe (Wr ∪ preWr) = p−1

pe preWr . Further, we have

that s ∈ preVs , since ppes = r ∈ preWr and s ∈ pre((Yp(YcUc)
∗Up)

∗(YeUe)
∗)ω. To

show controllability, pick an arbitrary string ŝ ∈preVs and σ ∈6c ∪̇Up ∪̇Ue such that

ŝσ ∈ preL6 . In particular, ppeŝ ∈ ppep−1
pe preWr = preWr and ppe(ŝσ)∈ ppe preL6 ⊆

preL. Controllability of preWr w.r.t. preL implies that ppe(ŝσ) ∈ preWr . In addi-

tion, there exists u ∈ 6ω
pe, such that ppe(ŝσ)u ∈ Wr . We choose w ∈ 6ω such that

ŝσw ∈ clo((Yp(YcUc)
∗Up)

∗(YeUe)
∗)ω and pω

pe(ŝσw)=ppe(ŝσ)u. Note that ŝσw ∈Vs

and, hence, ŝσ ∈ preVs . Finally, we have to establish relative closedness of Vs w.r.t.

cloL6 . Since cloL6 is a closed superset of Vs , relative closedness of Vs and closed-

ness of Vs are equivalent. The latter is obtained by

Vs = (p−ω
pe (Wr ∪ preWr)) ∩ (clo((Yp(YcUc)

∗Up)
∗(YeUe)

∗)ω)

= (p−ω
pe cloWr ∪ p−ω

pe preWr) ∩ (clo((Yp(YcUc)
∗Up)

∗(YeUe)
∗)ω)

= (clo p−ω
pe Wr) ∩ (clo((Yp(YcUc)

∗Up)
∗(YeUe)

∗)ω).

The intersection of two topologically closed languages is topologically closed. ⊓⊔

Lemma 8 [see also (Baier and Moor, 2012), Lemma 13] For a non-anticipating IO-

plant L, the full behaviour can be represented as a union L6 =∪a∈ALa , where for all

a ∈ A

(i) La has locally free inputs Uc, Up ∪̇ Yc, and Ue.

(ii) La is closed.

Proof Technically, P3 together with (Baier and Moor, 2012), Proposition 9, implies

that L6 itself is the supremal ω-controllable sublanguage of L6 . Thus, by (Moor et al,

2011), Proposition 12, L6 can be represented as a union L6 = ∪a∈ALa , where, for

each, a ∈ A, preLa is controllable w.r.t. (6c ∪̇ Up ∪̇ Ue, preL6) and La is closed. To

establish (i), we pick s ∈ 6∗, µ,µ′ ∈ Uc, with sµ ∈ preLa . The locally free input of

preL6 implies sµ′ ∈ preL6 , and controllability of preLa w.r.t. preL6 implies, that

sµ′ ∈ preLa . Locally free inputs Up ∪̇ Yc, and Ue are verified likewise. ⊓⊔

