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Abstract: Fault-hiding control reconfiguration aims at hiding a fault from the nominal
controller while the reconfigured closed-loop system possesses admissible behaviour. The
necessary degrees of freedom are created by placing a reconfiguration block between nominal
controller and faulty plant. We aim at a guaranteed non-conflicting, complete and controllable
behaviour of the self-reconfiguring closed-loop system, in particular for an arbitrary solution
to the nominal control problem. Thereby, the nominal controller design and the design of the
reconfiguration block are completely decoupled. This is desirable from a practical perspective,
since in this way additional fault-tolerant control capabilities can be retrofit to an existing
control system. In this paper, we propose a self-reconfiguring control architecture, state our
reconfiguration problem in terms of finite languages and address the synthesis of discrete event
dynamic reconfiguration blocks. To illustrate our results, we provide a running example.
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1. INTRODUCTION

Industrial PLCs are programmed by experts in practice,
and this is not expected to change in the near future. In
this paper we thus introduce a concept for fault-tolerant
control of discrete event processes that can coexist with
manually programmed PLCs and that can be retrofit to
existing controlled plants.

Inspired by the fault-hiding principle, we place a reconfigu-
ration block between controller and faulty plant. Thereby,
we influence the signals in the nominal closed-loop system
in order to hide a fault from the controller. The recon-
figuration block shall be inactive during nominal opera-
tion and take over control only after fault occurrences.
Motivated from industrial applications, where the actual
controller implementation is unknown, we demand the
reconfiguration block to be functional for an arbitrary but
specification-conforming controller.

Much research in recent years has focused on control
reconfiguration, see [Blanke et al., 2006] and subsequent
literature. In [Schmidt, 2012] control reconfiguration is
considered in the context of reconfigurable machine tools.
Fault-tolerant control based on control reconfiguration is
reported in [Paoli et al., 2008, 2011, Nke and Lunze,
2013]. The fault-hiding principle was originally developed
for linear continuous-time system [Lunze and Steffen,
2006] and later extended to selected classes of non-linear
continuous-time systems [Richter et al., 2011]. However, to
the authors best knowledge there is no approach to fault-
hiding control reconfiguration in discrete event systems,
which is our main contribution.

Our approach relies on the supervisory control theory
(SCT), as proposed in [Ramadge and Wonham, 1987,

1989]. In this paper the nominal controller is a solution
to a control problem under partial observation [Lin and
Wonham, 1988], which we extend by an operator interface.
Thereby, integrating a reconfiguration block to hierarchi-
cally structured control systems is simplified. Furthermore,
we use fault-accommodating control [Wittmann et al.,
2012] to address sensor, actuator and plant faults, thus we
do not rely on a separate diagnosis or controller switching
mechanism. Our design goals w.r.t. the self-reconfiguring
closed-loop system are non-conflictingness, completeness,
controllability and specification conformance. We set up a
suitable candidate for the closed-loop system and thereof
we extract an admissible reconfiguration block by projec-
tion.

Our main results consist in sufficient conditions for the
synthesis of a reconfiguration block that ensures non-
conflictingness, completeness, controllability and the con-
formance with the design specifications for an arbitrary
nominal controller.

The remainder of this paper is structured as follows. A
concise revision of formal languages and SCT is provided
in Section 2. In Section 3 we state the nominal control
problem and recall fault-accommodating control. In Sec-
tion 4 we address fault-hiding control reconfiguration in
discrete event systems, and illustrate our results using an
example.

2. PRELIMINARIES

Let Σ be a finite alphabet, i.e., a finite set of symbols (or
events) σ ∈ Σ. A finite sequence of symbols σi ∈ Σ, i ≤ n
is called a string s = σ1σ2 . . . σn, where n ∈ N. The length
of a string s ∈ Σ∗ is denoted |s| ∈ N0. The empty string
ε is characterised by |ε| = 0. The Kleene-closure Σ∗ is the



set of all finite strings over the alphabet Σ including the
empty string.

If, for two strings s, r ∈ Σ∗, there exists t ∈ Σ∗ such that
s = rt, we say r is a prefix of s, and write r ≤ s. A formal
language (or short a language) L ⊆ Σ∗ over Σ, is a subset
of the Kleene-closure Σ∗. The prefix of a language L is
defined by preL := {r ∈ Σ∗ | ∃s ∈ L : r ≤ s}. A language
L is prefix-closed if L = preL.

The natural projection po : Σ∗ → Σ∗o with Σo ⊆ Σ, is
defined iteratively: (1) let po ε = ε; (2) for an arbitrary
s ∈ Σ∗ and σ ∈ Σ, let po (sσ) = po (s)σ if σ ∈ Σo, or,
if σ 6∈ Σo, then po (sσ) = po (s). The set-valued inverse
p−1

o of po is defined by p−1
o (r) = {s ∈ Σ∗ | po (s) = r } for

r ∈ Σ∗o . We use the convention that projections and inverse
projections are denoted p− and p−1

− , respectively, with
a subscript to indicate the respective range and domain.
When extended to languages, the projection distributes
over unions, and the inverse projection distributes over
unions and intersections.

The synchronous composition of two languages L1 ⊆ Σ∗1 ,
L2 ⊆ Σ∗2 is defined by L1 ‖ L2 := (p−1

1 L1) ∩ (p−1
2 L2),

where p1 and p2 denote the natural projections from
Σ = ( Σ1 ∪ Σ2 )∗ to Σ∗1 and Σ∗2 , respectively.

Given two languages L, K ⊆ Σ∗, and a set of uncon-
trollable events Σuc ⊆ Σ, we say K is controllable w.r.t.
(L, Σuc ), if preKΣuc ∩ ( preL ) ⊆ preK and relatively
closed w.r.t. L if K = preK ∩ L [Ramadge and Wonham,
1987]. With Σo ⊆ Σ the set of observable events, we say
K is prefix-normal w.r.t. (L, Σo ), if preK = preL ∩
(p−1

o po preK). A language K ⊆ Σ∗ is complete, if for all
s ∈ preK there exists σ ∈ Σ such that sσ ∈ preK [Kumar
et al., 1992] and Σ − ΣS complete, with ΣS ⊆ Σ, if for all
s ∈ preK exist t ∈ Σ∗S , σ ∈ Σ−ΣS, such that stσ ∈ preK
[Schmidt et al., 2008]. Note that controllability, prefix-
normality and completeness are retained under arbitrary
union.

3. NOMINAL AND FAULT-ACCOMMODATING
CONTROL

3.1 Nominal Control

Our nominal control problem is a variation 1 of modular
supervisory control [Lin and Wonham, 1988], see Fig. 1 for
the nominal closed-loop system.

The nominal overall alphabet ΣN is partitioned according
to

ΣN
:= ΣCON

.
∪ ΣUCON

.
∪ ΣHI

.
∪ ΣLO,

with ΣCON the controllable events and ΣUCON the uncon-
trollable events. Low-level events ΣLO facilitate modular
control and high-level events ΣHI provide an interface to a
superordinated operator.

Both the nominal plant LN ⊆ Σ∗P and the nominal
controller HN ⊆ Σ∗C are dynamic systems, where

ΣC
:= ΣUCON

.
∪ ΣCON

.
∪ ΣHI

ΣP
:= ΣUCON

.
∪ ΣCON

.
∪ ΣLO

1 Formal differences between our framework and [Lin and Wonham,
1988] are purely cosmetic but convenient for the purpose of fault-
hiding control reconfiguration.

HN ⊆ Σ∗C

LN ⊆ Σ∗P

ΣLO

ΣHI

ΣCON

.
∪ ΣUCON

Fig. 1. Nominal closed-loop system

holds. Furthermore, we model the nominal closed-loop
system by LN ‖ HN.

Definition 1. A nominal control problem is a pair (LN, EN),
where LN ⊆ Σ∗P is a nominal plant model and EN ⊆ Σ∗N
is a nominal specification. A solution to a nominal control
problem is a controller HN ⊆ Σ∗C satisfying

(C0) Closedness, i.e. HN = preHN,

such that the nominal closed-loop system LN ‖ HN statis-
fies

(NC1) Non-conflictingness, i.e.
(preLN)‖HN = pre (LN ‖HN)

(NC2) Completeness, i.e.
(∀s ∈ (preLN)‖HN∃σ ∈ ΣN)[sσ ∈ (preLN)‖HN]

(NC3) Controllability w.r.t. (LN,Σuc) with

Σuc := ΣUCON

.
∪ ΣLO, i.e.

(preLN)‖HNΣuc ∩ (p−1
P preLN) ⊆ (preLN)‖HN

(NC4) Specification Conformance, i.e. LN ‖HN ⊆ EN. 2

The following fact characterises a solution to a nominal
control problem by a closed-loop candidate KN ⊆ Σ∗N. It’s
proof is omitted for brevity but available at request.

Fact 2. Given a nominal control problem (LN, EN ) and a
candidate language KN ⊆ Σ∗N satisfying

(K1) Controllability w.r.t. (LN,Σuc), with

Σuc
:= ΣUCON

.
∪ ΣLO, i.e.

preKN Σuc ∩ (p−1
P preLN) ⊆ preKN

(K2) Prefix-Normality w.r.t. (LN,ΣC), i.e.
preKN = ( p−1

P preLN ) ∩ ( p−1
C pC preKN )

(K3) Relative Closedness w.r.t. LN, i.e.
KN = (preKN) ∩ p−1

P LN

(K4) Completeness, i.e.
(∀s ∈ preKN ∃σ ∈ ΣN )[ sσ ∈ preKN ]

(K5) Specification Conformance, i.e. KN ⊆ EN,

then HN
:= pC preKN is a solution to the given nominal

control problem. Conversely, if HN ⊆ Σ∗C is a solution
to the given nominal control problem, then the nominal
closed-loop system KN

:= LN ‖ HN possesses the proper-
ties (K1)-(K5). Furthermore, given H↑N := pC preK↑N where
K↑N denotes the supremal sublanguage (of Σ∗) w.r.t. (K1)-
(K5) and the supremal solution H⇑N to the given nominal
control problem, then the closed-loop behaviours achieved
by H↑N and H⇑N are identical, i.e. LN ‖ H↑N = LN ‖ H⇑N
holds. 2

An algorithm for computing the supremal sublanguage
w.r.t. (K1)-(K5), can be derived according to [Moor et al.,
2012]. A software implementation is given in [libFAUDES,
2006-2013]. In the following we will not distinguish be-
tween H⇑N and H↑N.



Example 1. Consider a machine that processes a single
workpiece using one of two different modes. Process start
and process completion are to be reported to the high-level
operator. Table 1 summarizes the relevant events.

Table 1. Simple machine alphabet

event semantics alphabet

a1/a2 start process 1/2 ΣCON

A1/A2 completion process 1/2 ΣUCON

ah/Ah report process start/completion ΣHI

An automaton representation of the nominal plant LN is
drawn in Fig. 2. The nominal specification EN and the

Fig. 2. Nominal plant model LN

minimally restrictive nominal controller H↑N are pictured
in Fig. 3. Note that the semantics of the high-level events
ah and Ah are defined by the specification EN and imple-
mented solely by the controller H↑N.

Fig. 3. Nominal specification EN and nom. controller H↑N

3.2 Fault-Accommodating Modelling and Control

Fault-accommodating models [Wittmann et al., 2012] are
a general modelling framework for systems subject to
spontaneously occurring sensor, actuator and plant faults.
We model a fault by a distinct low-level event F . Given a
nominal plant model LN ⊆ Σ∗P and a model of the fault’s
history together with its impact on the plant LD ⊆ Σ∗FP

with

ΣFP := ΣP

.
∪ {F} = ΣCON

.
∪ ΣUCON

.
∪ ΣLO

.
∪ {F},

then we call a pair (LN, LD) a fault-accommodating model.
With a given fault-accommodating model (LN, LD) we
associate the fault-accommodating behaviour 2 LF = LN ∪
LD. We could show that

LF = LNFΣ∗N ∩ LD

holds, given that preLD∩Σ∗N ⊆ preLN and LD∩Σ∗N ⊆ LN.

Example 2. (Ex. 1 cont’d). Both modes can be subject to
a sensor fault, i.e. starting in mode 1 is confirmed with
ending in mode 2. The fault-accommodating model LF

is pictured in Fig. 4. Observe that the states 1,2 and 3

Fig. 4. Fault-accommodating plant LF

correspond to the nominal plant model but the fault may
only occur in the states 2 and 3. The remaining states
describe the fault’s impact on the plant.

2 We will drop the distinction between model and behaviour in the
following.

HF ⊆ Σ∗C

LF ⊆ Σ∗FP

ΣHI

ΣCON

.
∪ ΣUCON

ΣLO

{F}

Fig. 5. Fault-accommodating closed-loop system

Using fault-accommodating models, the problem of fault-
tolerant control can be reduced to a standard control
problem, similar to the nominal control problem declared
over a different overall alphabet

ΣF := ΣN

.
∪ {F} = ΣCON

.
∪ ΣUCON

.
∪ ΣHI

.
∪ ΣLO

.
∪ {F}.

Formally, a fault-accommodating control problem is a pair
(LF, EF ), where LF ⊆ Σ∗FP denotes a fault-accommodating
plant model and EF ⊆ Σ∗F denotes a fault-accommodating
specification, and a solution to the fault-accommodating
control problem is a fault-accommodating controller HF ⊆
Σ∗C, HF = preHF such that the closed-loop system
LF ‖ HF is non-conflicting, complete, controllable w.r.t.

(LF,Σuc), Σuc = ΣUCON

.
∪ ΣLO

.
∪ {F} and conformal with

EF. Note that we use EF to define the semantics of the
operator interface in the case of a fault, see Ex. 3. The
resulting closed-loop system is pictured in Fig. 5.

Example 3. (Ex. 2 cont’d). After a fault, the process at
hand is no longer available and the controller may switch
to the alternative mode without reporting back to the
operator. The fault-accommodating specification EF and
the respective minimally restrictive fault-accommodating
controller HF are pictured in Fig. 6. Note that HF is

Fig. 6. Fault-accommodating spec. EF and controller HF

admissible for the nominal as well as the faulty plant. In
this example the specification is weak enough to retain the
semantics of the high-level events.

In industrial practice an expert solution is replaced by
a fault-accommodating controller, which is undesirable.
However, following the concept of fault-hiding control
reconfiguration introduced in the next section, we can
benefit from expert experience up to the fault occurence.

4. FAULT-HIDING CONTROL RECONFIGURATION

This section develops a formal framework for the design
of a reconfiguration block R that operates the fault-
accommodating plant LF in a suitable way, while it mimics
nominal plant behaviour w.r.t. the virtualised (decoupled)
nominal controller HV. The resulting self-reconfiguring
closed-loop structure is pictured in Fig. 7.



HV ⊆ Σ∗VC

R ⊆ Σ∗R

LF ⊆ Σ∗FP

ΣLO

ΣHI

ΣVCON

.
∪ ΣVUCON

ΣCON

.
∪ ΣUCON

{F}

Fig. 7. Self-reconfiguring closed-loop system

To create the necessary degrees of freedom, we for-
mally decouple the nominal controller from the fault-
accommodating plant by introducing virtual events. Each
virtual event has a unique physical counterpart with cor-
responding semantics. A virtual controller is defined over
virtual events and the high-level events, but follows the
nominal controller’s dynamical laws.

4.1 Self-reconfiguring Closed-Loop Structure

Formally, we introduce the set of virtual controllable events
ΣVCON and the set of virtual uncontrollable events ΣVUCON

disjoint with ΣF and in a bijective relation ρ with ΣCON

and ΣUCON:

ρ( ΣCON ) =ΣVCON , ρ( ΣUCON ) = ΣVUCON .

We extend this relationship to strings by the function
h : Σ∗ → Σ∗V, defined by h(ε) := ε and

h(sσ) :=

{
h(s)ρ(σ) if σ ∈ ΣCON

.
∪ ΣUCON,

h(s)σ otherwise.

The extension of the function h(s) to languages is straight
forward.

For a concise notation, we introduce the virtual overall
alphabet ΣV, the virtual plant alphabet ΣVP, and the virtual
controller alphabet ΣVC according to:

ΣV
:= ΣVCON

.
∪ ΣVUCON

.
∪ ΣHI

.
∪ ΣLO ,

ΣVP
:= ΣVCON

.
∪ ΣVUCON

.
∪ ΣLO ,

ΣVC := ΣVCON

.
∪ ΣVUCON

.
∪ ΣHI .

Given a nominal controller HN, a nominal plant model
LN and a nominal specification EN, we obtain the corre-
sponding virtualised controller, the virtualised plant and
the virtualised specification as follows:

LV
:= h(LN) ⊆ Σ∗VP

EV := h(EN) ⊆ Σ∗V
HV

:= h(HN) ⊆ Σ∗VC .

The bijective relation between nominal events and their
virtual counterparts, implies that HV solves the control
problem (LV, EV ) if and only if HN solves (LN, EN ).

The virtual controller HV and the fault-accommodating
plant LF are linked via a reconfiguration block R ⊆ Σ∗R,
where

ΣR = ΣCON

.
∪ΣUCON

.
∪ΣVCON

.
∪ΣVUCON .

The behaviour of the self-reconfiguring closed-loop be-
haviour is given by LF ‖ R ‖ HV.

4.2 Formal Reconfiguration Problem

We consider a reconfiguration block to be admissible if
the resulting self-reconfiguring closed-loop system is non-
conflicting, complete, controllable w.r.t. LF ‖ HV and if it
satisfies a given specification language E ⊆ Σ∗, where

Σ :=ΣCON

.
∪ΣUCON

.
∪ΣHI

.
∪ΣLO

.
∪ΣVCON

.
∪ΣVUCON

.
∪{F} (1)

We subdivide the specification E according to E = EF ‖
ER, with a fault-accommodating specification EF and a
reconfiguration specification ER. In this paper we use ER

to enforce inactivity conditions as in [Richter, 2011], i.e.
one-by-one event dispatching before the occurrence of a
fault; formally,

ER =(({ρ(σ)σ|σ ∈ ΣCON}∪
{σρ(σ)|σ ∈ ΣUCON} ∪ ΣHI ∪ ΣLO)∗FΣ∗). (2)

Obviously, given a virtualised controller HV and a fault-
accommodating plant LF the corresponding reconfigura-
tion block is the solution to the control problem (LF ‖
HV, E). However, in industrial practice the nominal con-
trol strategy is designed and implemented by human ex-
perts. Thus, we may not assume that a sufficiently precise
controller model is available and we are faced with the
design of a reconfiguration block that is functional for an
arbitrary nominal controller.

Definition 3. A reconfiguration problem is a tuple
(LN, EN, LF, EF, ER ), where LN ⊆ Σ∗P is a nominal plant
model, EN ⊆ Σ∗N is a nominal specification, LF ⊆ Σ∗FP is a
fault-accommodating plant model. Furthermore, EF ⊆ Σ∗F
is a fault-accommodating specification and ER ⊆ Σ∗ is a
reconfiguration specification, with E = EF ‖ ER relatively
closed w.r.t. the formal plant LF ‖ H↑V, i.e. E = (preE) ∩
LF ‖ H↑V. A solution to a reconfiguration problem is a
reconfiguration block R ⊆ Σ∗R with,

(R0) Closedness, i.e. R = preR,

such that for an arbitrary HV = h(HN ) where HN ⊆ Σ∗C
solves (LN, EN ), the self-reconfiguring control loop LF ‖
R ‖ HV satisfies

(RC1) Nonconflictingness, i.e.
( preLF )‖R‖HV = pre (LF ‖R‖HV )

(RC2) Completeness, i.e.
(∀s ∈ (preLF)‖R‖HV∃σ∈Σ)[sσ∈(preLF)‖R‖HV]

(RC3) Controllability w.r.t. (LF ‖ HV,Σuc), where

Σuc = ΣVUCON

.
∪ ΣVCON

.
∪ ΣHI

.
∪ ΣLO

.
∪ {F}, i.e.

(preLF)‖R‖HVΣuc∩(preLF)‖HV⊆(preLF)‖R‖HV

(RC4) Specification Conformance, i.e. LF ‖R‖HV ⊆ E.2

4.3 Reconfiguration Block Synthesis

Note that H↑V is an upper bound to all virtualised solutions
HV to the nominal control problem (LN, EN). Since HV

is unknown, we use H↑V instead. We interpret LF ‖ H↑V
as a formal plant model controlled by the reconfiguration
block R. However, a solution to the control problem (LF ‖
H↑V, E) is not necessarily a solution to the reconfiguration
problem (LN, EN, LF, EF, ER ), since the liveness properties
non-conflictingness and completeness are not guaranteed
for an arbitrary nominal controller.

Lemma 4. Given is a reconfiguration problem (LN, EN, LF,
EF, ER) and the virtualised minimally restrictive solution



H↑V to the nominal control problem (LN, EN ). Let E =
EF ‖ ER be relatively closed w.r.t. the formal plant, i.e.
E = ( preE ) ∩ (LF ‖ H↑V), and assume that the language
K ⊆ Σ∗ satisfies

(M1) Controllability w.r.t. (LF ‖ H↑V,Σuc), with

Σuc = ΣVUCON

.
∪ ΣVCON

.
∪ ΣHI

.
∪ ΣLO

.
∪ {F} i.e.

( preK Σuc ) ∩ (( preLF ) ‖ H↑V) ⊆ preK
(M2) Prefix-Normality w.r.t. LF ‖ H↑V and ΣR, i.e.

preK = (( preLF ) ‖ H↑V) ∩ ( p−1
R pR preK )

(M3) Relative Closure w.r.t. LF ‖ H↑V, i.e.
K = ( preK ) ∩ (LF ‖ H↑V )

(M4) Σ− ΣHI-Completeness, i.e.
(∀s ∈ preK ∃σ /∈ ΣHI, t ∈ Σ∗HI )[ stσ ∈ preK ]

(M5) Weak Sensor-Consistency, i.e.
(∀s ∈ preK )[ ( pVP s )ΣVUCON ∩ ( preLV ) 6= ∅
⇒ s( Σ− ΣVC )∗ΣVUCON ∩ ( preK ) 6= ∅ ]

(M6) Plant Conformance, i.e. preK ⊆ p−1
VP preLV

(M7) Specification Conformance, i.e. preK ⊆ preE.

Consider the reconfiguration block

R = pR preK. (3)

For any virtualised solution to the nominal control prob-
lem HV ⊆ Σ∗VC the self-reconfiguring closed-loop system
LF ‖ R ‖ HV possesses the properties (RC2)-(RC4).
Furthermore R is closed (R0). 2

Proof. We choose K ⊆ Σ∗ with the properties (M1)-(M7)
and start with the proof of two auxiliary statements

preK = (preLF) ‖ R ‖ H↑V (4)

K = LF ‖ R ‖ H↑V, (5)

proven by the deductions

preK = ( p−1

FP preLF ) ∩ ( p−1

VCH
↑
V ) ∩ ( p−1

R pR preK )

= (p−1

FP preLF) ∩ ( p−1

R R ) ∩ ( p−1

VCH
↑
V )

= ( preLF ) ‖ R ‖ H↑V,
K = ( preK ) ∩ (LF ‖ H↑V )

= (( preLF ) ‖ R ‖ H↑V) ∩ (LF ‖ H↑V )

= LF ‖ R ‖ H↑V.

Ad (R0): (R0) directly follows from the definition of R.

In order to establish (RC2)-(RC4), we choose an arbitrary
virtualised solution HV ⊆ Σ∗VC to the nominal control
problem (LN, EN ).

Ad (RC2): Picking an arbitrary s ∈ ( preLF ) ‖ R ‖ HV,
we need to establish the existence of a σ ∈ Σ such that
sσ ∈ ( preLF ) ‖ R ‖ HV. In order to structure the
following proof we introduce the set of events enabled by
HV, γH := {σ ∈ ΣVC | (pVC s)σ ∈ HV }, and the set of
events simultaneously enabled by LF and R, γLR := {σ ∈
ΣR ∪ ΣFP| (pFP s)σ ∈ preLF and (pR s)σ ∈ R }. Since HV

solves a standard control problem, the closed-loop system
LV ‖ HV is complete. Referring to Eq. (4), completeness
(M4) of K implies γLR 6= ∅. We distinguish the following
cases:

Case 1a (γH∩ΣHI 6= ∅, HV can evolve independently of LF):
Picking σ ∈ γH ∩ ΣHI, we obtain sσ ∈ ( preLF ) ‖ R ‖ HV,
as (ΣR∪ΣFP)∩ΣHI = ∅ holds, which implies (RC2). Thus,

for the sequel we may assume γH ⊆ ΣVCON

.
∪ ΣVUCON.

Case 1b (γLR ∩ ΣFP 6= ∅, LF ‖ R can evolve independently
of HV): Pick σ ∈ γLR∩ΣFP, we obtain sσ ∈ ( preLF ) ‖ R ‖

HV as ΣFP ∩ ΣVC = ∅ holds, which implies (RC2). Thus,

for the sequel we may assume γLR ⊆ ΣVCON

.
∪ ΣVUCON.

In summary, we have shown that Case 1 implies complete-
ness whenever HV and LF ‖ R can evolve independently. It
remains to s tudy cases where LF ‖ R and HV must evolve
together, namely γLR ∩ γH is nonempty.

Case 2a (γH ∩ ΣVCON 6= ∅): Assume that we can choose
σ ∈ γH∩ΣVCON. Observe that pFP (sσ) = pFP (s) ∈ LF and
pVC (sσ) ∈ H↑V hold, the latter one from HV ⊆ H↑V. Thus,
controllability (M1) implies sσ ∈ preK and we conclude
sσ ∈ (preLF) ‖ R ‖ HV, in particular σ ∈ γLR which
implies (RC2). The remaining case is characterised by
γH ⊆ ΣVUCON, i.e. the controller waits for an uncontrollable
event.

Case 2b (γH ∩ ΣVCON = ∅): Together with γLR ⊆ ΣVCON

.
∪

ΣVUCON this case implies γH ⊆ ΣVUCON. Referring to
Eq. (4) and HV ⊆ H↑V, we have s ∈ preK. From (M6)
we obtain preK ⊆ p−1

VP preLV and thus pVP s ∈ preLV.
Since HV solves a standard control problem for the plant
LV, closed-loop completeness (NC2) implies the existence
of σ such that pVP (sσ) ∈ preLV and pVC (sσ) ∈ preHV.
In particular, we must have σ ∈ ΣVUCON, i.e. the controller
waits for a sensor event. Hence, weak sensor consistency
(M5) implies that there exits t ∈ (Σ − ΣVC)∗ such that
stσ′ ∈ preK for some σ′ ∈ ΣVUCON. Referring to Eq. (4),
we have (pFP stσ

′) ∈ preLF and (pR stσ
′) ∈ R. Then,

γLR ⊆ ΣVCON

.
∪ ΣVUCON implies t = ε and we obtain σ′ ∈

γLR. Since pV s ∈ ( preLV ) ‖ HV and the nominal closed-
loop system LV ‖ HV is controllable w.r.t. (LV,ΣVUCON)
(from NC3) we obtain pV sσ ∈ (preLV) ‖ HV, in particular
sσ ∈ p−1

VCHV. This concludes the proof of completeness
(RC2).

Ad (RC3): Pick any s ∈ ( preLF ) ‖ R ‖ HV and any σ ∈
Σuc, with Σuc

:= ΣHI

.
∪ ΣLO

.
∪ ΣUCON

.
∪ ΣVCON , such that

sσ ∈ ( preLF ) ‖ HV. From the supremality of H↑V we have
sσ ∈ ( preLF ) ‖ H↑V and together with Eq. (4) we obtain
s ∈ ( preLF ) ‖ R ‖ HV ⊆ ( preLF ) ‖ R ‖ H↑V = preK.
From (M1) sσ ∈ preK = ( preLF ) ‖ R ‖ H↑V follows.
Finally, sσ ∈ ( preLF ) ‖ HV implies sσ ∈ ( preLF ) ‖ R ‖
H↑V∩( preLF ) ‖ HV = ( preLF ) ‖ R ‖ HV, which concludes
the proof of controllability (RC3).

Ad (RC4): To establish (RC4), note that from the supre-
mality of H↑V and Eq. (5) we have LF ‖ R ‖ HV ⊆ LF ‖
R ‖ H↑V = K. Since K is relatively closed w.r.t. the formal
plant (M3), together with (M7), we have K ⊆ (preE) ∩
(LF ‖ H↑V ). Since E is relatively closed w.r.t. to LF ‖ H↑V,
we obtain K ⊆ E, concluding the proof of specification
complicance (RC4). �

Each of the properties (M1),(M2),(M4) and (M5) satisfies
the prerequisites of [Moor et al., 2012], thus the supremal
sublanguage w.r.t. (M1)-(M7) can be computed using
results from [Moor et al., 2012].

If LF is closed, the property (RC1) is trivially satisfied,
which leads to our main practical result.

Corollary 5. Consider a reconfiguration problem
(LN, EN, LF, EF, ER ) and assume all languages are closed.
If a closed reconfiguration block R ⊆ Σ∗R satisfies the
properties (RC2)-(RC4), then R is a solution to the
reconfiguration problem. �



4.4 Result Validation

Example 4. (Ex. 3 cont’d). In the first step we virtualise
the minimally restrictive solution to the nominal control
problem to obtain H↑V, see Fig. 8.

Fig. 8. Minimally restrictive nominal controller H↑V

As an additional design requirement we impose the inac-
tivity condition ER according to Eq. 2, see Fig. 9.

Fig. 9. Reconfiguration specification ER

The supremal sublanguage K of LF ‖ H↑V w.r.t. (M1)-
(M7) is non-empty and the respective reconfiguration block
R = pR preK is pictured in Fig. 10.

Fig. 10. Reconfiguration block R

In order to evaluate the behaviour of the self-reconfiguring
closed-loop system we choose a restrictive solution HV to
the nominal control problem according to Fig. 11. The

Fig. 11. Restrictive virtualised nominal controller HV

behaviour of the resulting self-reconfiguring closed-loop
system LF ‖ R ‖ HV is shown in Fig. 12.

Fig. 12. Self-reconfiguring closed-loop system LF ‖ R ‖ HV

All languages in Example 4 are closed, thus from Corol-
lary 5 we can guarantee admissible behaviour of the self-
reconfiguring closed-loop system for an arbitrary virtual
solution to the nominal control problem.

Consider the self-reconfiguring closed-loop system in
Fig. 12. During nominal operation (states 1-6) the recon-
figuration block is inactive and nominal control commands
are dispatched one-by-one. After the fault the reconfigura-
tion block mimics a functional nominal plant by generating
the events a1v and A1v and thus hides a fault from the
virtual controller.

5. CONCLUSION

From a theoretical perspective, we have established a
framework for fault-hiding control reconfiguration for dis-
crete event systems based on SCT. Our main results
are sufficient conditions for the synthesis of a reconfig-
uration block, guaranteeing admissible behaviour of the
reconfiguring closed-loop system for an arbitrary nomi-
nal controller. Due to fault-accommodating models we do
not depend on external diagnosis or controller switching
mechanisms but our results are effectively restricted to
closed languages. Current research addresses extension of
the fault-hiding control reconfiguration framework for not
necessarily closed plants, and its experimental evaluation.
From a practical perspective, fault-tolerant control capa-
bilities can be retrofit to existing control systems, even
if they are hierarchically structured. Since our reconfigu-
ration block works with an arbitrary nominal controller,
its design is independent of the actual nominal controller
implementation: a desirable property for industrial appli-
cations.

REFERENCES

M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J. Schröder.
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