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Abstract: In our previous work, a communication protocol for the reliable communication of
discrete event supervisors that are implemented on physically distinct controller devices on
a shared-medium network was developed. Here, the required data exchange is captured by
communication models that are algorithmically computed from an underlying hierarchical and
decentralized supervisor synthesis. These communication models are particularly efficient if all
synthesized supervisors are implemented on distinct controller devices. In this paper, the general
case is considered, where multiple supervisors can be aggregated on each controller device. To
this end, the algorithmic communication model computation is adapted in order to remove
communication among supervisors on the same controller device. The benefit of the controller
aggregation is illustrated by a manufacturing system case study.
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1. INTRODUCTION

Several approaches enable the efficient supervisor synthesis
for large-scale manufacturing systems modeled as discrete
event systems (DES) (de Queiroz and Cury, 2000; Leduc
et al., 2005; Hill and Tilbury, 2006; Feng and Wonham,
2008; Schmidt et al., 2008a). As a common feature, they
result in a set of modular or decentralized supervisors that
interact by synchronizing the occurrence of shared events.
These methods ensure the reliable operation of the DES
plant, and are particularly beneficial if the supervisors can
be implemented on a single centralized controller device
such that the shared event synchronization can be handled
internally, e.g., via shared memory.

However, in practical applications (e.g., on a factory floor),
the supervisors are implemented on various controller de-
vices in distinct physical locations that are connected by
a communication medium. Hence, the synchronization of
shared events has to be performed by exchanging informa-
tion about their occurrences among the supervisors while
preserving the reliable system operation. An initial com-
munication model of the required information exchange
for the approach in (Schmidt et al., 2008a) was developed
in (Schmidt et al., 2008b), where a fully distributed im-
plementation is assumed, i.e., each supervisor runs on a
separate controller device.

In this work, we propose a communication model for the
general case, where multiple supervisors can be executed
on each controller device. This scenario for example ad-
dresses the implementation of multiple supervisors for a
system component in an industrial application on a single
controller device (e.g., Programmable Logic Controller).
Then, communication is only required among supervi-
sors that are located on different controller devices, while

shared event occurrences can be synchronized internally
among supervisors that are aggregated on the same con-
troller device. Hence, smaller communication models can
be computed compared to the fully distributed case. This
result is illustrated by a manufacturing system case study
that is performed for different supervisor aggregations.

The organization of the paper is as follows. Section 2
provides a brief overview of hierarchical and decentralized
control for DES. The communication model construction
for the general setup with multiple supervisors on each
controller device is developed in Section 3 and applied to
a manufacturing system example in Section 4. Conclusions
are given in Section 5.

2. HIERARCHICAL AND DECENTRALIZED
CONTROL

2.1 Architecture

This work is based on the hierarchical and decentralized
control approach for DES in (Schmidt et al., 2008a), which
is suitable for large-scale DES that are composed of sev-
eral components. The hierarchical supervisor construction
results in a set R = {R1, . . . , Rn} of n supervisors that
exhibit a hierarchical relationship as depicted in the ex-
ample in Fig. 1 (a), where each supervisor is represented
by a finite automaton Rk = (Xk, Σk, δk, x0,k, Xm,k) with
the set of states Xk, the alphabet Σk, the transition
function δk : Xk × Σk → Xk, the initial state x0,k and
the set of marked states Xm,k following the notation in
(Cassandras and Lafortune, 2006). W.l.o.g. Rn denotes
the highest-level supervisor. In this approach, interaction
among the supervisors is represented by shared events
in the set Σ∩ :=

⋃n

k=1

⋃n

j=1,j 6=k(Σk ∩ Σj) that have to
occur synchronously in all supervisors where they appear.
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Fig. 1. (a) Supervisor hierarchy; (b) Shared-medium net-
work.

Hence, the overall closed-loop behavior is characterized by
an automaton R = (X, Σ, δ, x0, Xm) that is computed by
evaluating the parallel composition of all supervisors.

R := ||nk=1Rk. (1)

Note that nonblocking control is ensured, i.e., L(R) =

Lm(R), where L(R) and Lm(R) denote the closed and
marked language of R, respectively. In addition, (1) need
not be evaluated explicitly in a practical implementation
which avoids the state space explosion encountered by
monolithic implementations.

The hierarchical relationship is formally described by a
directed tree TR = (R, Rn, cR, pR) (see e.g., Hopcroft
and Ullman (1975)). In this paper, R denotes the set of
vertices, Rn is the root vertex and cR : R → 2R and
pR : R → R are the children map and the parent map such
that cR(Rk) is the set of children and pR(Rk) is the parent
of Rk ∈ R, respectively. Note that the unique highest-
level supervisor Rn does not have a parent, and any vertex
without children is called a leaf. Furthermore, we define
the descendant map dR : R → 2R and the ancestor map
aR : R → 2R, where dR(Rk) is the set of descendants and
aR(Rk) is the set of ancestors of Rk in R.

Example 1. A hierarchy with 3 levels and n = 6 super-
visors is depicted in Fig. 1 (a). The lowest-level super-
visors R1, R2, R3 and R4 constitute leafs of the tree
TR, while the root is given by R6. All events in the set
Σ∩ = {α, β, γ, δ, ϕ} are synchronized when R = ||6k=1Rk

is computed. In this hierarchy, it holds that for example
the set of children of R5 is cR(R5) = {R1, R2, R3} and the
parent of R5 is pR(R5) = R6.

2.2 Properties

In addition to the hierarchical structure, the approach in
(Schmidt et al., 2008a) features further properties that are

relevant in the course of this paper. We denote Σ̂k := Σk∩
Σ∩ as the set of events of Rk that are shared with other

supervisors, and introduce the natural projection pk :

Σ∗
k → Σ̂∗

k. The abstraction R̂k = (X̂k, Σ̂k, δ̂k, x̂0,k, X̂m,k)
is defined for each supervisor Rk by

L(R̂k) := pk(L(Rk)) and Lm(R̂k) := pk(Lm(Rk)) (2)

Furthermore, the dependency of Rk on its children super-
visors is described as

• Σk =
⋃

l,Rl∈cR(Rk) Σ̂l

• L(Rk) ⊆ ‖l,Rl∈cR(Rk)L(R̂l)

3. CONTROLLER AGGREGATION

We now consider the case of a practical implementation
of the derived supervisors on controller devices that are
potentially located in distinct physical locations, and that
can communicate via a shared-medium network. Hence,
at most one controller device can access the medium at
a time. Such scenario arises for example on a factory
floor with communicating programmable logic controllers
(PLCs). In this work, we investigate the general case,
where multiple supervisors can be assigned to the same
controller device. Our goal is the construction of commu-
nication models (CMs) that enable the synchronization
of shared events among supervisors on distinct controller
devices via the shared-medium network.

3.1 Grouping of Controller Components

Formally, we introduce a set of groups G such that each
group G ∈ G represents the supervisors assigned to a
unique controller device. Each supervisor is associated to
a group in G by the group assignment map g : R → G, i.e.,
g(Rk) denotes the group of the supervisor Rk ∈ R.

Example 2. Fig. 2 shows two possible grouping scenarios,
where gray boxes indicate supervisors that occupy the
same group. For example, in Fig. 2 (a), G = {G1, G2, G3}
and g(R2) = g(R3) = g(R5) = G3.
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Fig. 2. (a) and (b): Grouping of supervisor components;
(c) and (d): Communication relationship.

It can be observed from the example in Fig. 2 (a), that
controllers that reside in the same group (i.e., on the
same controller device) can perform the synchronization of
shared events internally. Conversely, the synchronization
of shared events among different groups still relies on
communication as illustrated by the network scenario in
Fig. 2 (c). Furthermore, it has to be noted that arbitrary
aggregations of controllers are not desirable. Fig. 2 (b)
depicts two situations that have to be avoided.



(i) On the one hand, R6 can internally synchronize with
R1 as both supervisors belong to the same group
G1, while on the other hand, R6 communicates with
R1 via the intermediate supervisor R5 that resides
in a different group. Hence, we require in Definition
3.1 (i) that all supervisors on the path between two
supervisors Ri ∈ R to Rj ∈ R in the same branch of
TR must be in the same group if Ri and Rj belong
to the same group.

(ii) The group G3 has two different parent groups G1 and
G2. Similar to (i), this implies that there are different
communication paths from G1 to G3 (direct and via
G2). Consequently, we require that each group must
have a unique parent group in Definition 3.1 (ii).

Definition 3.1. (Compatibility). Let TR be a directed tree
of supervisors, let G be a set of groups, and let g : R → G
be a group assignment map. g is said to be compatible to
TR if the following holds.

(i) Ri, Rj ∈ R s.t. g(Ri) = g(Rj) and Rl ∈ (aR(Ri) ∩
dR(Rj)) ∪ (dR(Ri) ∩ aR(Rj)) ⇒ g(Rl) = g(Ri).

(ii) Ri, Rj ∈ R s.t. g(Ri) = g(Rj), while g(pR(Ri)) 6=
g(Ri) and g(pR(Rj)) 6= g(Rj) ⇒ g(pR(Ri)) =
g(pR(Rj)).

It it readily verified that compatibility of a group as-
signment map g : R → G as introduced in Definition
3.1 ensures that the groups in G again constitute a tree
structure. We denote this tree by TG = (G, G, cG , pG) with
the associated root G = g(Rn), children map cG : G → 2G

and parent map pG : G → G. Again, cσ
G : G → 2G denotes

the restriction of cσ
G to groups that contain the event σ. In

the sequel, our goal is to adopt the communication strategy
in (Schmidt et al., 2008b) to the grouped case. 1

In this context, the basic idea is to introduce question
events, answer events, and a command event for each
event and each group, where the event appears. The
synchronized occurrence of such event is then determined
by questions that are propagated from parent groups to
children groups and answers that are sent by children
groups and collected by parent groups. In this framework,
an event occurs, if all possible answers arrived at the
highest-level parent group that shares the event. In that
case, the command is issued. Furthermore, it is required
that all supervisors in a group agree on their questions and
answers. Example 3 substantiates this idea.

Example 3. We consider the situation in Fig. 2 (a) with
the supervisor hierarchy in Fig. 1 (a). Initially, the group
G1 would ask a question ?αG1

to G3. Then, G3 would first
inquire about the event ϕ (?ϕG3

to G2). After the answer
!ϕG2

from G2, the command ϕ is given by G3 if ϕ is feasible
in both R5 and R2. Note that no communication between
R5 and R2 is necessary as they share the same group. Next,
G3 asks the question ?αG3

to the group G2. After receiving
the answer !αG2

, G3 can locally decide about the answer
!αG3

to G1 if α is feasible in R3 and R5. The execution
of α is then locally decided by G1 if the answer !αG3

is
received and also α is feasible in R4. After the execution
of α, communication for the events β and γ is initiated by
G1 asking ?βG1

and ?γG1
as soon as R4 reaches state 5.

1 We refer to Schmidt (2009) for a detailed discussion.
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Fig. 3. (a) Low-level group; (b) Intermediate-level group;
(c) High-level group.

3.2 Aggregated Communication Models

Formalizing the strategy presented in the previous section,
we now develop an aggregation method that avoids un-
necessary communication among supervisors in the same
group while synchronizing shared events via communi-
cation among different groups. To this end, we divide
the alphabet of each supervisor Rk into 4 subsets s.t.
Σk = Σk,L∪̇Σk,I ∪̇Σk,H∪̇Σk,N based on the position of Rk

in the tree TG . Here, we assume that g(Rk) = Gg.

Σk,L := {σ ∈ Σ̂k|∃Rj ∈ aσ
R(Rk) s.t. g(Rj) 6= Gg

∧ ∄Rl ∈ dσ
R(Rk) s.t. g(Rl) 6= Gg} (3)

Σk,I := {σ ∈ Σ̂k|∃Rj ∈ aσ
R(Rk) s.t. g(Rj) 6= Gg

∧ ∃Rl ∈ dσ
R(Rk) s.t. g(Rl) 6= Gg} (4)

Σk,H := {σ ∈ Σk|∄Rj ∈ aσ
R(Rk) s.t. g(Rj) 6= Gg

∧ ∃Rl ∈ dσ
R(Rk) s.t. g(Rl) 6= Gg} (5)

Σk,N := {σ ∈ Σk|∄Rj ∈ aσ
R(Rk) s.t. g(Rj) 6= Gg

∧ ∄Rl ∈ dσ
R(Rk) s.t. g(Rl) 6= Gg} (6)

That is, Σk,L contains the events that are communicated
with a parent group, Σk,H represents the events that are
only synchronized with children groups and Σk,I consists
of events that are shared with parent and children groups.
The events in Σk,N are not communicated at all.

Example 4. Referring to the aggregation in Fig. 2 (a), it
holds that Σ3,L = {α, β, δ}, Σ3,N = {g}, Σ3,H = Σ3,I = ∅
and Σ5,L = {β, δ}, Σ5,I = {α}, Σ5,H = {ϕ}, Σ5,N = ∅.
Furthermore, Σ6,H = {α, β, δ}, Σ6,N = {γ}, Σ6,L =
Σ6,I = ∅. It is interesting to note that no communication
is required for the shared events β, δ within G3 and for the
shared event γ in G1.

We now propose an algorithmic computation of the CM for
each group. In the following sections, we discuss how this
CM has to be constructed for events in Σk,L, Σk,I and Σk,H.
The algorithmic CM computation is then summarized
in Algorithm 3.1. In all cases, we consider a supervisor
Rk in the group Gg = g(Rk) and the event σ in the
respective alphabet Σk,L, Σk,I or Σk,H. In addition, we
denote Rj = pR(Rk) and Gf = pG(Gg) as the parent
supervisor of Rk and the parent group of Gg, respectively,
if they exist.

Communication Model for Σk,L: We want to compute
the CM component Lσ

j,k, where three different positions of

Rk in Gg are possible as depicted in Fig. 3 (a).



L1 Rj belongs to Gf , i.e., g(Rj) = Gf (see the light gray
box in Fig. 3 (a)). Then, Rk receives the question
?σGf

from and provides the answer !σGg
to the

parent supervisor that is located in the different group
Gf . Hence, Lσ

j,k is computed from R̂k by inserting

two states x̃ and x̄ for each state x where δ̂k(x, σ)
exists. These additional states are then connected
such that the string ?σGf

!σGg
must occur before σ is

feasible, while the transition structure of R̂k for events
different from σ remains unchanged. Algorithm 3.1
with the input parameters R̂i = R̂k, ∆ = Σ̂k ∪
{?σGf

, !σGg
} describes this computation.

L2 Rj belongs to Gg, i.e., g(Rj) = Gg and cR(Rk) = ∅
s.t. Rk is a leaf supervisor (see the dark gray box in
Fig. 3 (a)). Then, Rk does not receive ?σGf

but has
to give the answer !σGg

since !σGg
is only provided if

all supervisors in Gg agree that σ is feasible. Thus,

R̂i = R̂k, ∆ = Σ̂k ∪ {!σGg
} for computing Lσ

j,k.

L3 Rj belongs to Gg and cR(Rk) 6= ∅ (see the black box
in Fig. 3 (a)). Then neither ?σGf

is received nor the
answer !σGg

needs to be given, since there must be a
descendant in dσ

R(Rk) that already gives the answer

according to L2. 2 Consequently, Lσ
j,k = R̂k.

Example 5. Fig. 4 shows the component Lα
5,1 for R1 and

α (type L1) and Lα
5,3 for R3 and α (type L2).

Communication Model for Σk,I: The CM component
IUσ

j,k is computed. In I1 and I2, we address the case, where

there exists an Rl ∈ cσ
R(Rk) that lies in a different group

than Rk, i.e., Gh := g(Rl) 6= Gg.

IU1 It is further assumed that Gf = g(Rj) 6= Gg (see the
white box with σ in Gg in Fig. 3 (b)). Here, IUσ

j,k

includes the question ?σGf
from Rj , the question

?σGg
to Rl and the answer !σGg

to Rj . Note that
the question ?σGg

to Rl has to be asked between
the occurrence of ?σGf

and !σGg
according to our

communication strategy. This is captured by R̂i = R̂k

and ∆ = Σ̂k ∪ {?σGf
, ?σGg

, !σGg
} in Algorithm 3.1.

IU2 Now, g(Rj) = Gg (see the light gray boxes in Fig 3
(b)). Then, Rk does not receive a question from its
parent, while it has to agree on asking the question
?σGg

to the group Gh and answering !σGg
to the

parent group Gf . 3 Thus, R̂i = R̂k and ∆ = Σ̂k ∪
{?σGg

, !σGg
} for computing IUσ

j,k.

Next, we assume that all Rl ∈ cσ
R(Rk) are in the same

group with Rk, i.e., g(Rl) = Gg. There are again two cases
for the computation of IUσ

j,k.

IU3 If Gf = g(Rj) 6= Gg (see the dark gray box in Fig.
3 (b)), then Rk receives the question ?σGf

from Rj

and asks the question ?σGg
. However, the answer !σGg

does not have to be given by Rk as there is at least one
descendant in dσ

R(Rk) that already gives this answer.

It holds that R̂i = R̂k and ∆ = Σ̂k ∪ {?σGf
, ?σGg

}.

2 It can be shown that the feasibility of σ in a descendant in dσ

R
(Rk)

implies the feasibility of σ in Rk.
3 ?σGg

has to be agreed on by all supervisors in the group since
there is no implication from the feasibility of σ in an ancestor in
aσ

R
(Rk) on the feasibility of σ in Rk.
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IU4 If g(Rj) = Gg (see the black box in Fig. 3 (b)),
then Rk neither receives ?σGf

nor participates in
!σGg

. Only the question ?σGg
has to be asked. Hence,

R̂i = R̂k and ∆ = Σ̂k ∪ {?σGg
}.

The computation of IDσ
k,l for Rl ∈ cσ

R(Rk) involves two
cases.

ID1 If g(Rl) 6= Gg, the automaton IDσ
k,l is computed from

R̂l such that the question ?σGg
and the answer !σGh

have to be exchanged before the answer !σGg
can

be given to the parent group. Hence, R̂i = R̂l and
∆ = Σ̂l ∪ {?σGg

, !σGh
, !σGg

}.
ID2 If g(Rl) = Gg, there is no direct communication with

a child of Rk outside the group Gg. Hence, we set

IDσ
k,l = R̂l.

Example 6. Fig. 4 shows the CM components IUα
6,5 (type

IU1), IDα
5,1 (ID1) and IDα

5,3 (ID2) for R5 and α.

Communication Model for Σk,H: The computation of the
CM component Hσ

k,l for a child supervisor Rl ∈ cσ
R(Rk)

involves two different cases as shown in Fig. 3 (c).

H1 We assume that Gh := g(Rl) 6= Gg (see the light gray

box in Fig. 3 (c)). Then, Hσ
k,l is constructed for R̂l. It

has the same structure as Lσ
j,k, since the same types

of events ?σGg
and !σGh

in the same sequential order
are involved. The input parameters for Algorithm 3.1
are R̂i = R̂l and ∆ = Σ̂l ∪ {?σGg

, !σGh
}.

H2 If g(Rl) = Gg (see the dark gray box in Fig. 3 (c)),
then no answer is received by Rk. Hence, !σGh

is
removed from ∆ compared to H1 for computing Hσ

k,l.

Example 7. The type H1 is illustrated in Fig. 4 by Hα
6,5

for R6 and α.

Algorithm 3.1. (Computation of Aggregated CMs). We
compute an automaton G = (Q, ∆, ν, q0, Qm) for Lσ

j,k,
IUσ

j,k or Hσ
k,l depending on the input alphabet ∆.

1 Given: R̂i, σ, ∆.
2 Initialize: Q = X̂i; q0 = x̂0,k; Qm = X̂m,k

%% Introduce states needed for communication

3 for each x ∈ X̂i s.t. δ̂i(x, σ)!
4 if !σGg

∈ ∆ and ?σGg
6∈ ∆

5 Q = Q ∪ {x̄}; ν(x̄, σ) = δ̂i(x, σ)
6 if ?σGf

∈ ∆ %% Case L1



7 Q = Q ∪ {x̃}
8 ν(x, ?σGf

) = x̃; ν(x̃, !σGg
) = x̄

9 else %% Case L2
10 ν(x, !σGg

) = x̄
11 else if {?σGg

, !σGg
} ⊆ ∆

12 Q = Q ∪ {x̄}; ν(x̄, σ) = δ̂i(x, σ)
13 if ?σGf

∈ ∆ %% Case I1
14 Q = Q ∪ {x̃}; ν(x, ?σGf

) = x̃

15 ν(x̃, ?σGg
) = x̃; ν(x̃, !σGg

) = x̄
16 else %% Case I2
17 ν(x, ?σGg

) = x; ν(x, !σGg
) = x̄

18 else if ?σGg
∈ ∆ and !σGg

6∈ ∆
19 if ?σGf

∈ ∆ %% Case I3

20 Q = Q ∪ {x̃}; ν(x̃, σ) = δ̂i(x, σ)
21 ν(x, ?σGf

) = x̃; ν(x̃, ?σGg
) = x̃;

22 else %% Case I4
23 ν(x, ?σGg

) = x; ν(x, σ) = δ̂i(x, σ)
24 else if ?σGg

∈ ∆ and !σGg
6∈ ∆

25 Q = Q ∪ {x̄}; ν(x̄, σ) = δ̂i(x, σ)
26 if !σGh

∈ ∆ %% Case H1
27 Q = Q ∪ {x̃}
28 ν(x, ?σGg

) = x̃; ν(x̃, !σGh
) = x̄

29 else %% Case H2
30 ν(x, ?σGg

) = x̄

%% Add transition structure of original automaton R̂i

31 for each x ∈ X̂i

32 for each τ ∈ Σ̂i(x) − {σ}

33 ν(x, τ) = δ̂i(x, τ) =: x′

34 if σ ∈ Σ̂i(x) ∧ σ ∈ Σ̂i(δ̂i(x, τ))
35 if x̃ ∈ Q
36 ν(x̃, τ) = x̃′

37 if x̄ ∈ Q
38 ν(x̄, τ) = x̄′

39 else if σ ∈ Σ̂i(x) ∧ σ 6∈ Σ̂i(δ̂i(x, τ))
40 if x̃ ∈ Q
41 ν(x̃, τ) = x′

42 if x̄ ∈ Q
43 ν(x̄, τ) = x′

44 return G

3.3 Communication Model for Groups

The CM CMk = (Qk,Jk, νk, q0,k, Qm,k) for each supervi-
sor Rk is composed of the CM components as constructed
above, where the composition with Rk introduces the
supervisor action of Rk in the model.

CMk = (||σ∈Σk,L
Lσ

k)||(||σ∈Σk,I
Iσ
k )||(||σ∈Σk,H

Hσ
k )||Rk. (7)

Then, the CMs of supervisors that belong to the same
group can be executed in parallel on the same controller
device. That is, for each Gg ∈ G, we arrive at

CGg = ||k,g(Rk)=Gg
CMk. (8)

Implementing the aggregated CMs computed in this sec-
tion, it holds that the desired reliable operation of the
DES plant which is achieved by the hierarchical supervisor
design is still realized after introducing communication
among the supervisors that are grouped on distinct con-
troller devices.

Theorem 3.1. (Aggregation). Let TR = (R, Rn, cR, pR)
be a hierarchical tree of distributed supervisors, let TG =

(G, G, cG , pG) be a tree of groups with the group assign-
ment map g : R → G, and let CG1, . . . , CG|G| be the
group CMs defined above. Also let θ : K∗ → Σ∗ be the

natural projection, where K =
⋃|G|

g=1 Kg. Then

||
|G|
g=1Lm(CGg) = ||

|G|
i=kL(CGg)

θ(||
|G|
k=1L(CGg)) = ||nk=1L(Rk)

Remark 1. In our previous work (Schmidt et al., 2008b),
a less general version of Theorem 3.1 was stated based on
CMs that are computed as if all supervisors were located
in distinct groups. This simple aggregation potentially
leads to larger CMs, since the removal of unnecessary
communication among supervisors in the same group as
performed in Section 3.2 is not taken into account.

4. APPLICATION EXAMPLE

4.1 General Setup

The presented ideas are applied to the distribution system
(ds) in Fig. 5. Its purpose is to deliver parts entering from a
stack feeder (sf) to a larger manufacturing system via the
conveyor belts c2 and c3. As further components of ds,
there are two pushers p1 and p2 that push parts traveling
along the long conveyor belt c1 to c2 and c3, respectively.
In our models, c1 is divided into the 3 subcomponents c1a
(at p2), c1b (at p1) and con (connecting c1a and c1b).

sf

c2
c3

c1a

p2

conc1b

p1

c1

Part

Fig. 5. Distribution system overview.

The supervisor synthesis for ds has been performed analo-
gous to (Schmidt et al., 2008a). Fig. 6 shows the resulting
hierarchy with 4 levels and 12 supervisors, whose respec-
tive state counts are listed in Table 1. Together, the super-
visors have a sum of 218 states, which represents the size
of the supervisor required for a centralized implementation
on a single controller device.

R
(0)
sf R

(0)
c2 R

(0)
c3 R

(0)
c1a R

(0)
p2 R

(0)
con R

(0)
c1b R

(0)
p1

R
(1)
c1a−p2 R

(1)
c1b−p1

R
(2)
c1

R
(3)
dist

Fig. 6. Supervisor hierarchy of the distribution system.



SUP CM SUP CM

R
(0)
sf

9 19 R
(0)
c1a 12 61

R
(0)
c2 9 21 R

(0)
con 23 588

R
(0)
c3 9 21 R

(0)
c1b

9 37

R
(0)
p2 10 22 R

(1)
c1a−p2 11 484

R
(0)
p1 10 22 R

(1)
c1b−p1

9 237

R
(2)
c1 47 1359 R

(3)
dist

60 724

Table 1. Supervisor and CM state counts.

4.2 Controller Aggregation

For comparison, we first evaluate the CMs of the simple
aggregation in Remark 1, where all CMs are computed
as if their corresponding supervisors were implemented on
different controller devices. The state counts of the CMs
are shown in Table 1.

We now illustrate the grouping idea by two scenarios.
In Fig. 7, it is assumed that each of the functional
entities c1, c2, c3, sf, p1 and p2 is controlled by a local
controller device, while the components are coordinated

by the superposed supervisor R
(3)
dist on a separate controller

device. The state counts of the CMs for the corresponding
7 groups computed according to Section 3.3 are depicted in
Table 2. The reduction from 3595 to 1120 states compared
to the simple aggregation can be explained by the removal
of internal communication in the group G5.

R
(0)
sf R

(0)
c2 R

(0)
c3 R

(0)
c1a R

(0)
p2 R

(0)
con R

(0)
c1b R

(0)
p1

R
(1)
c1a−p2 R

(1)
c1b−p1

R
(2)
c1

R
(3)
dist

G1

G2 G3 G4

G5

G6 G7

Fig. 7. Grouping of functional entities.

G1 G2 G3 G4 G5 G6 G7 G8

∑

Fig. 7 527 21 21 19 428 22 82 — 1120

Fig. 8 727 21 21 19 61 22 37 22 930

Table 2. State counts for Fig. 7 and 8.

The second scenario in Fig. 8 considers that local con-
trollers are used for the supervisors c2, c3, c1a, c1b, p1, p2
and sf that exchange sensor and actuator information with
the plant. All remaining supervisors perform coordination
on a separate controller device (G1). Again, a reduction to
930 states due to the avoidance of internal communication
in G1 can be seen in Table 2. In our study, it could be
determined that it is favorable to group supervisors on
different hierarchical levels that share multiple events.

5. CONCLUSION

In this paper, the implementation of hierarchical and de-
centralized supervisors on distributed controller devices
that are connected by a shared-medium network is investi-
gated. Extending previous work that addresses a fully dis-
tributed implementation, communication models for the
general case, where multiple supervisors can be aggregated

R
(0)
sf R

(0)
c2 R

(0)
c3 R

(0)
c1a R

(0)
p2 R

(0)
con R

(0)
c1b R

(0)
p1

R
(1)
c1a−p2 R

(1)
c1b−p1

R
(2)
c1

R
(3)
dist

G1

G2 G3 G4 G5 G6 G7 G8

Fig. 8. Grouping with high-level coordination.

on a single controller device, are computed algorithmi-
cally. These communication models capture the required
information exchange among supervisors in order to syn-
chronize the occurrences of their respective shared events
in order to achieve reliable operation of the DES plant.
A manufacturing system case study illustrates that the
communication can be reduced by supervisor aggregation.

In future work, it will be evaluated how the reduced
communication affects the communication behavior of the
distributed supervisors both analytically and by simula-
tion analogous to (Schmidt et al., 2008b). Furthermore,
the fully distributed communication models for switched
networks in (Schmidt and Schmidt, 2008) will be adapted
to the general case with supervisor aggregation.
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