
Consistent Abstractions for the Purpose of Supervisory Control

Thomas Moor* Christine Baier* Thomas Wittmann*

Abstract— A common strategy in the design of discrete event
systems is to run synthesis algorithms not on the actual plant
model but on abstractions thereof. Depending on the control
objectives, certain conditions are imposed on the abstractions,
in order to end up with an appropriate supervisory controller
for the actual plant. A well known result from the literature
is that abstractions obtained by so called natural observers can
be used for non-blocking supervisory control. In this paper, we
conduct a backward-reachability analysis to obtain alternative
conditions that imply a non-blocking and complete closed-loop
system for an abstraction-based supervisory controller design.

INTRODUCTION

When the plant model provides more detail than required
for the controller design problem at hand, one may resort
to a plant abstraction instead. A crucial question in such an
abstraction-based controller design is whether the resulting
controller enforces relevant control objectives not only for
the abstraction but also for the original plant model.

More specifically, we consider the situation where the
plant model is given as a formal language and the natural
projection to strings of high-level events is considered as
a candidate for an abstraction; see also [1, 2]. This setting
applies to the design of hierarchical control architectures
when a group of plant components, each subject to low-
level control [8, 9], are composed and the subsequent task
is the synthesis of a supervisor that addresses cooperative
behaviour, specified w.r.t. high-level events. In the present
paper, we rephrase the question, whether the abstraction-
based design solves the original problem, as a requirement
imposed on the high-level alphabet and we develop condi-
tions to verify this requirement by a reachability analysis.

Our study relates to [13], where within a general frame-
work the notion of an observer is defined and proven to
be a sufficient condition for the purpose of non-blocking
hierarchical controller synthesis. Variations of the natural
observer property that explicitly take into account controlla-
bility are presented in [2] and address minimal restrictive
hierarchical supervision [10]. In [4], it is shown that the
observer property is not only sufficient but also necessary
for compositional nonblocking verification, with a further
development to address compositional synthesis given in [5].
The conditions developed in the present paper are weaker
than the requirement of the natural projection to be an
observer. This is demonstrated by an example.

Preliminaries and notational conventions are given in
Section I to prepare for the technical problem statement
in Section II with a solution based on natural observers in

* Lehrstuhl für Regelungstechnik, Friedrich-Alexander Universität Er-
langen-Nürnberg, Germany. lrt@fau.de

Section III. For the class of control problems under con-
sideration, liveness properties can be alternatively addressed
by the reachability analysis presented in Section IV. The
implementation of the corresponding reachability operators
is outlined in Section V.

I. PRELIMINARIES AND NOTATION

Let Σ be a finite alphabet, i.e., a finite set of symbols σ ∈
Σ. The Kleene-closure Σ∗ is the set of finite strings s =

σ1σ2 · · ·σn, n ∈ �, σi ∈ Σ, and the empty string ε ∈ Σ∗,
ε < Σ. If, for s, r ∈ Σ∗, there exists t ∈ Σ∗ such that s = rt,
we say that r is a prefix of s, and write r ≤ s. A formal
language (or short a language) over Σ is a subset L ⊆ Σ∗.

The prefix-closure (or short prefix) of a language L ⊆ Σ∗

is defined by pre L :={r ∈ Σ∗ | ∃ s ∈ L : r ≤ s}. A language
L is prefix-closed (or short closed) if L = pre L. For two
languages L and K, we say K is relatively closed w.r.t. L if
K = (pre K)∩L. The prefix operator distributes over arbitrary
unions of languages. However, for the intersection of two
languages L and H, we have pre (L ∩ H) ⊆ (pre L)∩ (pre H).
If equality holds, L and H are said to be non-conflicting.

The natural projection po : Σ∗ → Σ∗o, Σo ⊆ Σ, is defined
iteratively: (1) let po ε := ε; (2) for s ∈ Σ∗, σ ∈ Σ, let
po(sσ) :=(po s)σ if σ ∈ Σo, or, if σ < Σo, let po(sσ) := po s.
The set-valued inverse p−1

o of po is defined by p−1
o (r) :={s ∈

Σ∗ | po(s) = r } for r ∈ Σ∗o. When applied to languages, the
projection distributes over unions, and the inverse projection
distributes over unions and intersections. The prefix operator
commutes with projection and inverse projection.

Given two languages L, K ⊆ Σ∗, and a set of uncon-
trollable events Σuc ⊆ Σ, we say K is controllable w.r.t.
L, if (pre K)Σuc ∩ (pre L) ⊆ pre K. A language K ⊆ Σ∗

is complete, if for all s ∈ pre K there exists σ ∈ Σ such
that sσ ∈ pre K; see e.g. [3]. Each one of the proper-
ties controllability, completeness, closedness and relative
closedness is retained under arbitrary union; see, e.g., [8, 9]
regarding controllability, and [3] for completeness. Note that
closedness and relative closedness is also retained under
arbitrary intersection.

Unless otherwise noted, the alphabets Σ, Σc, Σuc, Σo and
Σuo refer to the common partitioning Σ = Σc∪̇Σuc = Σo∪̇Σuo
in controllable, uncontrollable, observable and unobservable
events, respectively.

An automaton is a tuple G = (Q, Σ, δ, qo, Qm), with
state set Q, initial state qo ∈ Q, marked states Qm ⊆

Q, and the transition function δ : Q × Σ → Q with its
common extension to the domain Q×Σ∗; i.e., δ(q, ε) := q and
δ(q, sσ) := δ(δ(q, s), σ). With the automaton G we associate
the marked language Lm(G) :={s ∈ Σ∗ | δ(qo, s) ∈ Qm }. A

language L ⊆ Σ∗ is said to be regular, if it is marked by
some automaton with finitely many states. For the automaton
G = (Q, Σ, δ, qo, Qm), the equivalence relation ≡G on Σ∗ is
defined by s′ ≡G s′′ if and only if δ(qo, s′) = δ(qo, s′′).
Given a language L ⊆ Σ∗, the equivalence relation ≡L on
Σ∗ is defined by s′ ≡L s′′ if and only if (∀ t ∈ Σ∗)[s′t ∈
L ⇔ s′′t ∈ L]. If, for a language M ⊆ Σ∗, the equivalence
relation ≡G is at least as fine as ≡M , then M is marked by the
generator H = (Q, Σ, δ, qo, Xm) with Xm :={δ(qo, s)| s ∈ M }.

II. PROBLEM STATEMENT

For the purpose of this paper, both, the plant and the
controller are modelled as formal languages L ⊆ Σ∗ and
H ⊆ Σ∗, respectively, with the intersection K = L∩H as the
closed-loop behaviour. Moreover, we impose the following
conditions on the controller H w.r.t. the plant L and thereby
characterise the control problem under consideration.

Definition II.1. Given a plant L ⊆ Σ∗, Σ = Σc∪̇Σuc, the
controller H ⊆ Σ∗ is admissible w.r.t. L, if
(H0) H is prefix-closed;
(H1) H is controllable w.r.t. L;
(H2) L and H are non-conflicting; and,
(H3) (pre L) ∩ (pre H) is complete. �

It is readily verified that a closed-loop behaviour K ⊆ L
can be achieved by a controller H that complies with (H0)–
(H2) if and only if K is controllable w.r.t. L and relatively
closed w.r.t. L. This corresponds to non-blocking supervision
as originally proposed by [8, 9]. There, control is exercised
by a causal feedback map V : pre L → Γ, which maps the
respective past string s ∈ pre L to a control pattern γ =

V(s), Σuc ⊆ γ ⊆ Σ, to indicate the set of enabled successor
events. In this paper, the controller H is interpreted as a
representation of the feedback map V .

The additional condition (H3) is motivated by sequential
behaviours, i.e., discrete-event systems that continue opera-
tion for infinite logic time; see e.g. [3, 7]. To this end, we
note that a language K ⊆ L can be achieved as a closed-loop
behaviour K = L∩H with a controller H that complies with
(H0)–(H3) if and only if K is controllable w.r.t. L, relatively
closed w.r.t. L, and complete. If the latter conditions on K are
satisfied, H := pre K is an admissible controller that achieves
the closed-loop behaviour K. When a language inclusion
specification E ⊆ L is given, controller design amounts
to the computation of the supremal achievable closed-loop
behaviour K↑ ⊆ E in order to extract a corresponding
controller H↑ := pre K↑; see also [3, 6].

For the abstraction-based controller design discussed in
this paper, the events synchronised with the controller are
deliberately restricted to a set of high-level events Σo ⊆ Σ

and we utilise the projection Lo := po L ⊆ Σ∗o as a plant
abstraction. This setting is motivated by hierarchical control
systems, where the plant consists of multiple components,
each subject to low-level control, and the remaining task is
to design a high-level controller Ho ⊆ Σ∗o, that addresses
cooperative behaviour expressed by a language inclusion

specification Eo ⊆ Σ∗o; see e.g. [2, 11, 13]. The effect of a
high-level controller Ho on the plant L is represented by the
implementation H := p−1

o Ho and we obtain the closed-loop
behaviour K = L ∩ H to observe

K ⊆ p−1
o (Lo ∩ Ho) and Lo ∩ Ho = po K . (1)

The latter equality is also referred to as hierarchical consis-
tency, and, for the particular closed-loop configuration under
investigation, indeed holds automatically; see also [11, 14].
Moreover, the closed-loop behaviour satisfies the specifica-
tion E := p−1

o Eo, i.e., K ⊆ E.
In the worst case, the number of states required to realise

Lo is even larger when compared to L, so there may be
no computational benefits; see [12]. However, for relevant
applications a substantial reduction in the state count can be
observed. In such a prospective situation, there remains a cru-
cial question: does admissibility of Ho w.r.t. the abstraction
Lo imply admissibility of the implementation H := p−1

o Ho w.r.t.
the actual plant L? We rephrase this question as a formal
requirement imposed on the abstraction.

Definition II.2. Given a plant L ⊆ Σ∗, Σ = Σc∪̇Σuc =

Σo∪̇Σuo, the plant abstraction Lo := po L is consistent for the
purpose of controller design (or short consistent), if

(∀ Ho ⊆ Σ∗o)[Ho is admissible w.r.t. Lo

⇒ p−1
o Ho is admissible w.r.t. L �

This paper is concerned with conditions under which an
abstraction is consistent for the purpose of controller design.

III. A KNOWN SOLUTION

We start our discussion with the observation that the im-
plementation H := p−1

o Ho in an abstraction-based design is
automatically closed (H0) and controllable (H1).

Proposition III.1. Given a plant L ⊆ Σ∗, Σ = Σc∪̇Σuc =

Σo∪̇Σuo, let Ho ⊆ Σ∗o be prefix-closed and controllable w.r.t.
the plant abstraction Lo := po L. Then H := p−1

o Ho is closed
and controllable w.r.t. L.
Proof. For closedness, recall that pre p−1

o Ho = p−1
o pre Ho.

Controllability is covered by [14], Theorem 4.1. We provide
a simple direct proof for the more specific case at hand. Pick
any s ∈ pre H = H and σ ∈ Σuc, such that sσ ∈ pre L. In the
case of σ ∈ Σuo, we obtain po(sσ) = po s ∈ po H and, thus,
sσ ∈ p−1

o po H = p−1
o Ho = H. In the case of σ ∈ Σo, we obtain

(po s)σ = po(sσ) ∈ pre Lo, and, po s ∈ Ho. By controllability
of Ho w.r.t. Lo, observe that po(sσ) ∈ pre Ho = Ho. Again,
we can conclude sσ ∈ p−1

o Ho = H. �

However, the liveness properties (H2) and (H3) are not
automatically satisfied and we refer to literature on non-
blocking hierarchical supervisory control, where a variety
of observer conditions [13] have been developed for this
purpose; see also [2, 10, 11]. For the particular setting of
the present paper, we show that natural observers provide
consistent abstractions in the sense of Definition II.2, and
thereby relate our study to the more general framework [13].

Definition III.2. The projection po : Σ∗ → Σ∗o is a natural
observer for a language L ⊆ Σ∗, if for all s ∈ pre L and all
u ∈ Σ∗o with (po s)u ∈ po L there exists t ∈ Σ∗ such that st ∈ L
and po t = u. �

For natural observers, admissibility of Ho w.r.t. Lo indeed
implies non-conflictingness (H2) and completeness (H3) for
the actual closed-loop system.

Proposition III.3. Given a natural observer po : Σ∗ → Σ∗o
for the plant L ⊆ Σ∗, consider a prefix-closed controller
candidate Ho ⊆ Σ∗o. If Lo := po L and Ho are non-conflicting,
then so are L and H := p−1

o Ho.
Proof. The claim is covered by [13], Theorem 6. We provide
a simple direct proof for the more specific case at hand. Pick
any s ∈ (pre L) ∩ H. Clearly, po s ∈ (pre Lo) ∩ (po p−1

o Ho) =

(pre Lo) ∩ Ho. Since Lo and Ho are non-conflicting, we can
choose u ⊆ Σ∗o such that (po s)u ∈ Lo ∩ Ho. By the natural
observer property, there exists t ∈ Σ∗ with st ∈ L, po t = u.
The latter implies st ∈ p−1

o Ho, and, thus, st ∈ L ∩ H. �

Proposition III.4. Given a natural observer po : Σ∗ → Σ∗o
for the plant L ⊆ Σ∗, consider a prefix-closed controller
candidate Ho ⊆ Σ∗o, and let H := p−1

o Ho. If Lo := po L and
Ho are non-conflicting and if (pre Lo)∩Ho is complete, then
(pre L) ∩ H is complete, too.
Proof. Pick any s ∈ (pre L) ∩ H and observe po s ∈ (pre Lo) ∩
Ho. By completeness of (pre Lo) ∩ Ho, we can choose σ ∈ Σo
such that (po s)σ ∈ (pre Lo)∩Ho. As in the proof of the above
Proposition III.3, we choose u ⊆ Σ∗o such that (po s)σu ∈ Lo∩

Ho, to obtain, by the natural observer property, the existence
of t ∈ p−1

o u such that sσt ∈ L ∩ H. �

The above propositions are summarised by the following
theorem to identify the natural observer property as a suffi-
cient prerequisite for abstraction-based controller design.

Theorem III.5. If the projection po : Σ∗ → Σ∗o is a natural
observer for the plant L ⊆ Σ∗, then the abstraction Lo := po L
is consistent for the purpose of controller design. �

Natural observers not only guarantee liveness for the
closed loop, but also exhibit favourable properties regarding
composed plant models (can be verified componentwise)
and the state count of the abstraction (state count is not
increased); see e.g. [2, 11]. Moreover, the observer property
can be synthesised in polynomial time by extending the
alphabet of observabe events; see e.g. [1]. Thus, natural
observers and variations thereof [10, 11] can be conceived the
preferable approach to abstraction-based controller synthesis.

However, there are situations where no natural observer
with a reasonable state count in the abstraction exists, and
we demonstrate this by the example Fig. 1, which has been
extracted from an real-world application. Here the events x,
y, p and a represent alternative work cycles of a processing
machine. The event f represents the feed of a workpiece
performed by a transport system with buffer capacity two.
For the design of a high-level controller to operate the
process, a specification is stated in terms of Σo = {x, y, p, a},

i.e., the only event that one may remove by projection is f.
The right-hand side in Fig. 1 shows the resulting abstraction.
The example is readily extended for larger buffer capacities,
with a constant state count in the abstraction and substantially
higher state count in the detailed plant model. To observe that
the projection fails to be a natural observer, consider the low-
level string s = ffx. Here, the abstraction suggests that u = pa
reaches a marked state, but, for the low-level marking to be
reached, two a events are required. As the only option to
extend the set of high-level events is to include f, natural
observers can not reduce the state count for this example.

Fig. 1. Plant L and abstraction Lo, resp., with Σo = {x, y, p, a, }, Σc = {x, y}

Even though the proposed projection fails to be a natu-
ral observer, any admissible high-level controller Ho must
enable at least one of the controllable events x and y for
completeness of (pre Lo) ∩ Ho. This implies that the imple-
mentation H can never prevent the actual closed loop to reach
a marking. Likewise, completeness is verified by inspection.
Thus, we found a consistent abstraction with reduced state
count. This demonstrates that, in the context of the above
theorem, the natural observer property is restrictive.

IV. BACKWARD REACHABILITY ANALYSIS

The liveness properties non-conflictingness (H2) and com-
pleteness (H3) require that any string in the local closed-loop
behaviour (pre L)∩H can be extended by another event, and
that a finite number of such extensions can reach a string in
L ∩ H. Thus, when L and H are given, both properties can
be verified by a backward-reachability analysis, with target
set M = (pre L) ∩ H or M = L ∩ H, respectively. For the
purpose of consistency, L is interpreted as known parameter,
whilst H is universally quantified to be any abstraction-based
controller. We give a formal definition of the reachability
operators under consideration.

Definition IV.1. Given a plant L ⊆ Σ∗, Σ = Σc∪̇Σuc =

Σo∪̇Σuo, denote Lo := po L the plant abstraction. An operator
Ω1 on pre L, i.e., Ω1(M) ⊆ pre L for M ⊆ pre L, is a universal
one-step-reachability operator, if, for all M ⊆ pre L and all
controllers Ho ⊆ Σ∗o admissible w.r.t. Lo, it holds that

(∀ s ∈ Ω1(M) ∩ p−1
o Ho)(∃σ ∈ Σ)[sσ ∈ M ∩ p−1

o Ho] . (2)

Likewise, Ω∗ is a universal star-reachability operator, if

(∀ s ∈ Ω∗(M) ∩ p−1
o Ho)(∃ t ∈ Σ∗)[st ∈ M ∩ p−1

o Ho] . (3)
�

Along with the intention of Definition IV.1, the following
proposition states sufficient conditions for liveness properties
in an abstraction-based controller design.

Proposition IV.2. Given a plant L ⊆ Σ∗, Σ = Σc∪̇Σuc =

Σo∪̇Σuo, denote Lo := po L the plant abstraction. Furthermore,
let

H↑o := sup{Ho ⊆ Σ∗o |Ho is admissible w.r.t. Lo } , (4)

K↑loc :=(pre L) ∩ (p−1
o H↑o) . (5)

If, for a universal one-step-reachability operator Ω1, we have

K↑loc ⊆ Ω1(pre L) , (6)

then the local closed loop (pre L) ∩ (p−1
o Ho) is complete

for any controller Ho that is admissible w.r.t. Lo. If, for a
universal star-reachability operator Ω∗, we have

K↑loc ⊆ Ω∗(L) , (7)

then L and p−1
o Ho are non-conflicting for any controller Ho

that is admissible w.r.t. Lo.
Proof. Recall that properties (H0)–(H3) are retained under
arbitrary union. Thus, H↑o is admissible w.r.t. Lo and con-
stitutes an upper bound to all admissible controllers Ho. In
particular, we have (pre L) ∩ (p−1

o Ho) ⊆ (pre L) ∩ (p−1
o H↑o) =

K↑loc. Now assume that (6) is satisfied for Ω1, and pick an
arbitrary s ∈ (pre L) ∩ (p−1

o Ho). In particular, we have s ∈
K↑loc ⊆ Ω1(pre L) ∩ (p−1

o Ho). Thus, Definition IV.1 guarantees
the existence of σ ∈ Σ such that sσ ∈ pre L ∩ (p−1

o Ho); i.e,
the local closed-loop behaviour is complete. Regarding non-
conflictingness, assume that (7) is satisfied for Ω∗, and pick
an arbitrary s ∈ (pre L) ∩ (p−1

o Ho). In particular, we have
s ∈ K↑loc ⊆ Ω∗(L) ∩ (p−1

o Ho). Thus, Definition IV.1 guarantees
the existence of t ∈ Σ∗ such that st ∈ L ∩ (p−1

o Ho); i.e., L
and p−1

o Ho are non-conflicting. �

In order to obtain specific universal one-step-reachability
operators, we identify strings s ∈ pre L with an extension
sσ ∈ M ⊆ pre L that can not be prevented by the imple-
mentation p−1

o Ho of any admissible controller Ho. This is
clearly the case when the extension can be chosen as an
unobservable event, i.e., σ ∈ Σuo, sσ ∈ M ⊆ pre L. Referring
to controllability of p−1

o Ho (by Proposition III.1), this is also
the case for uncontrollable extensions, σ ∈ Σuc. Finally,
referring to completeness of (pre Lo) ∩ Ho, we identify the
case where all observable successor events that comply with
pre Lo reach the target M. The following proposition gives a
formal definition of the respective operator for each case.

Proposition IV.3. Given a plant L ⊆ Σ∗, Σ = Σc∪̇Σuc =

Σo∪̇Σuo, denote Lo := po L the plant abstraction. Then the
operators Ω1A, Ω1B and Ω1C, defined by

Ω1A(M) :={ s ∈ pre L| ∃σ ∈ Σuo : sσ ∈ M } , (8)

Ω1B(M) :={ s ∈ pre L| ∃σ ∈ Σuc : sσ ∈ M } , (9)

Ω1C(M) :={ s ∈ pre L|

(∀ σ ∈ Σo)[po sσ ∈ pre Lo ⇒ sσ ∈ M] } , (10)

for M ⊆ pre L, are universal one-step-reachability operators.
Proof. Choose M ⊆ pre L and a controller Ho ⊆ Σ∗o that
is admissible w.r.t. Lo, both arbitrarily. For s ∈ Ω1A(M) ∩
(p−1

o Ho), we can choose σ ∈ Σuo, sσ ∈ M, and po(sσ) = po s

implies sσ ∈ p−1
o Ho. For s ∈ Ω1B(M) ∩ (p−1

o Ho), we can
choose σ ∈ Σuc, sσ ∈ M. By Proposition III.1, p−1

o Ho is
controllable w.r.t. L and, thus, sσ ∈ M ⊆ pre L implies sσ ∈
p−1

o Ho. Finally, consider s ∈ Ω1C(M) ∩ (p−1
o Ho). Here, we

have po s ∈ (pre Lo) ∩ Ho and, by admissibility of Ho w.r.t.
Lo, we can choose σ ∈ Σo such that po sσ ∈ (pre Lo) ∩ Ho.
By the definition of Ω1C, this implies sσ ∈ M ∩ (p−1

o Ho). �

It follows immediately from Definition IV.1, that the union
composition of (arbitrarily many) universal reachability oper-
ators again is a universal reachability operator. In particular,

Ω1ABC := Ω1A ∪Ω1B ∪Ω1C (11)

is a universal one-step-reachability operator. For the example
Fig. 1, we obtain pre L = Ω1ABC(pre L) and thereby satisfy
condition (6) in Proposition IV.2.

Technically, any universal one-step-reachability operator is
also a universal star-reachability operator. Since the identity
Ωid(M) := M constitutes a universal star-reachability opera-
tor, so does

Ω∗ABC := Ωid ∪Ω1A ∪Ω1B ∪Ω1C . (12)

The following proposition establishes how iterations of a
universal star-reachability operator again yield a universal
star-reachability operator.

Proposition IV.4. Given a plant L ⊆ Σ∗, Σ = Σc∪̇Σuc =

Σo∪̇Σuo, denote Lo := po L the abstraction, and consider a uni-
versal star-reachability operator Ω∗. For M ⊆ pre L and n ∈ N
let M0 := M, Mi+1 := Ω∗(Mi), and define Ωn

∗ and Ω∞∗ by

Ωn
∗(M) := Mn and Ω∞∗ (M) :=∪i∈NMi , (13)

respectively. Then Ωn
∗ and Ω∞∗ are universal star-reachability

operators.
Proof. Let M ⊆ pre L and n ∈ N and choose any controller
Ho ⊆ Σ∗o that is admissible w.r.t. Lo. Pick an arbitrary
s ∈ Ωn

∗(M) ∩ (p−1
o Ho). For the case of n = 0, we have

st ∈ M ∩ (p−1
o Ho) with t = ε. If, for some i ∈ N, we

have s ∈ Mi+1 ∩ (p−1
o Ho), we can choose ti ∈ Σ∗ such

that sti ∈ Mi ∩ (p−1
o Ho). For the case of n > 0, we have

s ∈ Mn ∩ (p−1
o Ho) and we apply the latter argument n times

to obtain stntn−1 · · · t2t1 ∈ M0 ∩ (p−1
o Ho). Thus, Ωn

∗ is a
universal star-reachability operator. By definition, Ω∞∗ is the
union of universal star-reachability operators. Thus, Ω∞∗ itself
is a universal star-reachability operator. �

Indeed, for the example Fig. 1, iterating Ω
∗ABC on L

yields pre L and, thus, establishes condition (7). We conclude
that the respective abstraction is consistent. However, the
variation Fig. 2 of our example demonstrates limitations of
the operators proposed so far. In Fig. 2, the process starts
automatically r and can be completed by the controller with
either a or b. Depending on the specification, controllers may
do so after a particular number of p events. Universal quan-
tification over all controllers corresponds to an unbounded set
of extensions required to reach a marking, once the process
has been started. This is not accounted for when iterating
Ω
∗ABC, and we propose an alternative operator.

Fig. 2. Plant L and abstraction Lo, resp., with Σo = {r, p, a, b, }, Σc = {a, b}

Proposition IV.5. Given a plant L ⊆ Σ∗, Σ = Σc∪̇Σuc =

Σo∪̇Σuo, denote Lo := po L the plant abstraction. Consider the
operator Ω

∗D, defined by

Ω∗D(M) :={ s ∈ pre L|

(∀ u ∈Σ∗o)[po su ∈ Lo ⇒ (s p−1
o pre u) ∩ M , ∅] } , (14)

for M ⊆ pre L. Then Ω
∗D is a universal star-reachability

operator.
Proof. Choose any M ⊆ pre L and any controller Ho ⊆ Σ∗o
that is admissible w.r.t. Lo. For s ∈ Ω

∗D(M) ∩ (p−1
o Ho), we

have po s ∈ (pre Lo) ∩ Ho and, by admissibility of Ho w.r.t.
Lo, we can choose u ∈ Σ∗o such that po su ∈ Lo ∩ Ho. Observe
that s p−1

o pre u ⊆ p−1
o Ho. Moreover, by the definition of Ω

∗D,
we can choose t ∈ p−1

o pre u, such that st ∈ M, and, hence,
st ∈ M ∩ p−1

o Ho. �

Observe that M ⊆ Ω
∗D(M) for all M ⊆ pre L. Thus, we

define Ω
∗ABCD by

Ω∗ABCD := Ω1A ∪Ω1B ∪Ω1C ∪Ω∗D , (15)

and obtain, by Propositions IV.4 and IV.5, the universal star-
reachability operator

Ω∞∗ABCD :=∪i∈NΩi
∗ABCD . (16)

Indeed, for both examples Fig. 1 and Fig. 2, the iteration
yields pre L = Ω∞

∗ABCD(L), and, thus, consistency is estab-
lished for the respective abstractions. The following theorem
summarises Propositions IV.2–IV.5 as our main result.

Theorem IV.6. Given a plant L ⊆ Σ∗, Σ = Σc∪̇Σuc =

Σo∪̇Σuo, denote Lo := po L the plant abstraction, and K↑loc ⊆

Σ∗ the upper bound on the local closed loop from Eq. (5). If

K↑loc ⊆ Ω1ABC(pre L) ∩ Ω∞∗ABCD(L) , (17)

for the operators Ω1ABC and Ω∞
∗ABCD from Eq. (11) and

Eq. (16), then the abstraction Lo is consistent for the purpose
of controller design. �

Both examples Fig. 1 and Fig. 2 demonstrate, that our
condition (17) can be satisfied even when po fails to be
a natural observer. In general, our condition is not more
restrictive than the requirement of po to be a natural observer.

Theorem IV.7. If the projection po : Σ∗ → Σ∗o is a natural
observer for the plant L ⊆ Σ∗, then condition (17) in
Theorem IV.6 is satisfied.
Proof. To show that K↑loc ⊆ Ω1ABC(pre L), pick an arbitrary
s ∈ K↑loc ⊆ pre L. We distinguish two cases. First, if there
exists σ ∈ Σuo ∪ Σuc with sσ ∈ pre L, we obtain s ∈
Ω1A(pre L) ∪ Ω1B(pre L), and, hence s ∈ Ω1ABC(pre L). For
the second case, we have that sσ ∈ pre L implies σ ∈ Σo.

Here, we establish that s ∈ Ω1C(pre L). Pick an arbitrary
ρ ∈ Σo such that po sρ ∈ pre Lo. Then there exists u ∈ Σ∗o with
po sρu ∈ Lo and we refer to the natural observer property to
obtain t ∈ p−1

o (ρu) such that st ∈ L. In particular, the first
event in t must be observable, and, hence, match ρ. This
implies sρ ∈ pre L, and, hence, s ∈ Ω1C(pre L). With both
cases, we conclude K↑loc ⊆ Ω1ABC(pre L). We now show that
K↑loc ⊆ Ω

∗D(L). Pick an arbitrary s ∈ K↑loc ⊆ pre L. For any
u ∈ Σ∗o such that po su ∈ Lo, we refer to the natural observer
property in order to choose t ∈ p−1

o u such that st ∈ L. In
particular, (s p−1

o u) ∩ L , ∅, and, hence, s ∈ Ω
∗D(L). Clearly,

Ω
∗D(L) ⊆ Ω∞

∗ABCD(L), and we obtain K↑loc ⊆ Ω∞
∗ABCD(L). �

V. IMPLEMENTATION

Under the assumption that the plant L and the target set M are
regular with known finite automata realisations, we outline
a possible implementation of the reachability operators from
the previous section. In our discussion, we establish that each
operator retains regularity and identify a state set suitable for
the realisation of the respective results.

Proposition V.1. Given a plant L ⊆ Σ∗, denote the plant
abstraction Lo := po L. Then, for any target set M ⊆ pre L
and any s′, s′′ ∈ Σ∗, we have

s′ ≡L s′′, s′ ≡p−1
o Lo

s′′ and s′ ≡M s′′ ⇒ s′ ≡Ω(M) s′′ ,

where Ω denotes either one of the operators Ω1A, Ω1B, Ω1C
and Ω

∗D, defined by Propositions IV.3 and IV.5, respectively.
Proof. For each of the operators under consideration, we
have to show that for all s′, s′′ ∈ Σ∗ which are equivalent
w.r.t. ≡L, ≡p−1

o Lo
and ≡M , and for all t ∈ Σ∗, we have

s′t ∈ Ω(M) ⇔ s′′t ∈ Ω(M) .

Note that, s′ ≡L s′′ implies s′ ≡pre L s′′, and, likewise, we
obtain s′ ≡pre p−1

o Lo
s′′. Thus, for the two operators Ω1A and

Ω1B, the claim follows immediately from

st ∈ Ω1A(M) ⇔ (st ∈ pre L and (∃σ ∈ Σuo)[stσ ∈ M]) ,

st ∈ Ω1B(M) ⇔ (st ∈ pre L and (∃σ ∈ Σuc)[stσ ∈ M]) .

We turn to Ω1C and use that, for all s ∈ Σ∗ and all σ ∈ Σo,

po sσ ∈ pre Lo ⇔ sσ ∈ pre p−1
o Lo

to obtain

st ∈ Ω1C(M) ⇔ (st ∈ pre L and
(∀ σ ∈ Σo)[stσ ∈ pre p−1

o Lo ⇒ stσ ∈ M]) .

This implies that s′t ∈ Ω1C(M) if and only if s′′t ∈ Ω1C(M).
Regarding Ω

∗D, we use that, for all s ∈ Σ∗ and all u ∈ Σ∗o,

(po su ∈ Lo ⇒ (s p−1
o pre u) ∩ M , ∅)

⇔ (∃ v ∈ pre p−1
o u)[su ∈ p−1

o Lo ⇒ sv ∈ M] ,

to obtain for all t ∈ Σ∗ that

st ∈ Ω∗D(M) ⇔ (st ∈ pre L and
(∀ u ∈ Σ∗o)(∃ v ∈ pre p−1

o u)[stu ∈ p−1
o Lo ⇒ stv ∈ M]) .

Hence, s′t ∈ Ω
∗D(M) if and only if s′′t ∈ Ω

∗D(M). �

Given finite automata realisations of L and M, well-known
procedures for the product composition, the projection and
the inverse projection can be used to set up a finite automaton
G with associated equivalence relation ≡G on Σ∗ that is at
least as fine as the equivalences associated with the languages
L, p−1

o Lo and M; i.e., for all s′, s′′ ∈ Σ∗ we may assume that

s′ ≡G s′′ ⇒ s′ ≡L s′′ , s′ ≡p−1
o Lo

s′′ and s′ ≡M s′′ .

Then, each of the languages L, pre L, p−1
o Lo, pre p−1

o Lo and
M can be represented by an automaton H which matches G
except for the set of marked states; i.e., each of the above
languages can be effectively represented by a set of marked
states and the transition relation of G.

By the above proposition, the same is true for the re-
sulting languages Ω1A(M), Ω1B(M), Ω1C(M) and Ω

∗D(M),
and an implementation of either operator can be obtained by
identifying the respective set of marked states. For Ω1A(M)
and Ω1B(M), this can be done by traversing the state set
of G and testing for the existence of a transition with an
event from Σuo and Σuc, respectively, to a successor state
that is marked for M. Regarding Ω1C(M), we obtain the
corresponding set of marked states by testing whether all
observable events enabled for pre p−1

o Lo have a successor
state that is marked for M. Regarding Ω

∗D(M), we refer to
the following characterisation:

(∀ u ∈ Σ∗o)[po su ∈ Lo ⇒ (s p−1
o pre u) ∩ M , ∅]

⇔ Lo ∩ (po sΣ∗o) ⊆ Lo ∩ po((sΣ∗) ∩ M)Σ∗o .

Applying the inverse projection on both sides, each term can
be evaluated referring to a copy G and represented by a set
of marked states. Note that the defining condition of Ω

∗D(M)
is a variation of the observer property for a restriction of G.
Thus, the methodology proposed in [1] is expected to be
applicable to obtain a more efficient verification procedure.

All described procedures are of polynomial order in the
state count of G. Thus, provided that the projection at
hand does reduce the state count in the abstraction, the
operators can be evaluated efficiently. If, on the other hand,
the projection at hand does not reduce the state count, the
operators are of limited interest anyway.

Implementations of Ω∞
∗ABC(M) and Ω∞

∗ABCD(M) as itera-
tions of Ω

∗ABC and Ω
∗ABCD, respectively, can be terminated

when a fixpoint is attained. Here, the following proposition
guarantees finite termination.

Proposition V.2. Given a regular plant L ⊆ Σ∗, denote the
plant abstraction Lo := po L. Then, for any regular target set
M ⊆ pre L, the iterations Ω∞

∗ABC(M) and Ω∞
∗ABCD(M), defined

by Proposition IV.4, reach a fixpoint after finitely many
iterations.
Proof. Let Ω∗ denote either one of the operators Ω∞

∗ABC or
Ω∞
∗ABCD. Recall that N ⊆ Ω∗(N) for all N ⊆ pre L. Thus,

the sequence (Mi)i∈N defined by M0 := M, Mi+1 := Ω∗(Mi), is
monotonously increasing and bounded by pre L. Pick any
s′, s′′ ∈ Σ∗ with s′ ≡L s′′, s′ ≡p−1

o Lo
s′′ and s′ ≡M s′′. By

Proposition V.1, we have s′ ≡Mi+1 s′′ if s′ ≡Mi s′′. This implies
s′ ≡Mi s′′ for all i. In particular, there is a finite upper bound

for the minimal number of states required to realise any
iterate Mi. Thus, the sequence (Mi)i∈N takes only finitely
many different values. By monotonicity, a fixpoint must be
attained after a finite number of iterations. �

CONCLUSION
We have developed an alternative condition to guarantee
that an abstraction-based controller design yields a valid
solution for the actual plant. As with known conditions for
this purpose, our result refers to the particular plant at hand
and accounts for any subsequent abstraction-based controller
design. In our study, we consider abstractions that are ob-
tained by natural projections to a high-level alphabet. The
control objectives under consideration include the common
controllability condition as well as two liveness properties.
The latter are addressed by a reachability analysis where
the controller is interpreted as an unknown parameter. We
demonstrate by example that our condition can be satisfied
for projections that fail to be natural observers, and, we show
that any natural observer satisfies our alternative condition.

REFERENCES

[1] L. Feng and W. M. Wonham. On the computation of natural
observers in discrete-event systems. Discrete Event Dynamic
Systems, 20:63–102, 2010.

[2] L. Feng and W.M. Wonham. Supervisory control architecture
for discrete-event systems. IEEE Transactions on Automatic
Control, 53(6):1449–1461, 2008.

[3] R. Kumar, V. Garg, and S. I. Marcus. On supervisory control
of sequential behaviors. IEEE Transactions on Automatic
Control, 37:1978–1985, 1992.

[4] R. Malik, H. Flordal, and P. Pena. Conflicts and projections.
1st IFAC Workshop on Dependable Control of Discrete Systems
(DCDS), pages 63–68, 2007.

[5] S. Mohajerani, R. Malik, S. Ware, and M. Fabian. On the use
of observation equivalence in synthesis abstraction. 3rd Int.
Workshop on Dependable Control of Discrete Systems, 2011.

[6] T. Moor, Ch. Baier, T.-S. Yoo, F. Lin, and S. Lafortune. On the
computation of supremal sublanguages relevant to supervisory
control. Workshop on Discrete Event Systems (WODES), pages
175–180, 2012.

[7] P. J. Ramadge. Some tractable supervisory control problems
for discrete-event systems modeled by büchi automata. IEEE
Transactions on Automatic Control, 34:10–19, 1989.

[8] P. J. Ramadge and W. M. Wonham. Supervisory control of
a class of discrete event processes. SIAM J. Control and
Optimization, 25:206–230, 1987.

[9] P. J. Ramadge and W. M. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77:81–98, 1989.

[10] K. Schmidt and C. Breindl. Maximally permissive hierar-
chical control of decentralized discrete event systems. IEEE
Transactions on Automatic Control, 56(4):723–737, 2011.

[11] K. Schmidt, T. Moor, and S. Perk. Nonblocking hierarchical
control of decentralized discrete event systems. IEEE Trans-
actions on Automatic Control, 53(10):2252–2265, 2008.

[12] K. C. Wong. On the complexity of projections of discrete-
event systems. In In IEE Workshop on Discrete Event Systems,
pages 201–208, 1998.

[13] K. C. Wong and W. M. Wonham. Hierarchical control of
discrete-event systems. Discrete Event Dynamic Systems,
6:241–306, 1996.

[14] H. Zhong and W. M. Wonham. On the consistency of
hierarchical supervision in discrete-event systems. IEEE
Transactions on Automatic Control, 35:1125–1134, 1990.

