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Abstract— We present a method for synthesizing a sequence  A* search techniques, which are a form of informed
of robust control inputs for a class of hybrid systems. Our search, have been applied to the synthesis problem [5],
goal is the generation of a control sequence that drives the [6]. A* search techniques are often inefficient because they

system from a given initial state set to a pre-specified goal = :. . .
set without violating constraints on the system state, under utilize knowledge of local behaviors that do not charaeteri

the assumption that the hybrid system is exposed to bounded the global behavior well.

disturbances. We use a technique that combines dynamic ~We present a method that combines dynamic program-
programming and informed search. The control sequence ming, which captures global information, and informed

generated by our synthesis procedure is guaranteed 10 meet gaqrch which uses local information to guide the system
safety requirements. An extension to nonlinear systems is ’ . .

presented and computational time is compared to a mixed- from r_nOde to .mOde' To determine appmp“aFe mode-
integer programming approach for computing an optimal but SWItChIng behavior, we use a Bellman-Ford algorlthm. The
non-robust solution to the problem. solution given by the Bellman-Ford algorithm is used to

| INTRODUGTION guide an informed search within each of the modes [5], [6].
' The goal of the informed search in each mode is to find a

We present a technique for synthesizing sequences @dih to the next mode, where the next mode is specified by
control inputs for discrete-time hybrid systems, whichause the Bellman-Ford Solution.
combination of dynamic programming and informed search. oyr informed search employs branch and bound ideas
At the mode-switching level, dynamic programming is use1 2], we use local vector field information in order to
to determine the best mode-switching sequence that satisfigstimate the cost function for a best first search of the set of
constraints on the system behavior. Within each mode, locgj| control sequences. Branch and bound is applied to prune
vector field behavior W'th'_” a mode is used to guide amne search tree of failing sequences. We employ ellipsoidal
informed search [13] to find a safe sequence of contrebachability concepts to conservatively estimate the et o
inputs that attempts to follow the dynamic programmingegschable states for a given input sequence [10].
solution. Examples of systems that would benefit from this \ye 3150 present a method for applying our technique to
type of control sequence synthesis include air traffic @dntr yopjinear systems. The technique is performed on a piece-
systems and chemical processes with safety constrairits [1¢ise affine approximation of the nonlinear dynamics, where

(3. the error incurred by the approximation is compensated for

Discrete-time synthesis techniques that formulate thg, adding an uncertain input term to the system dynamics.
problem as a mixed integer quadratic program (MIQP)

have been examined [3]. These techniques use a numerical Il. PRELIMINARIES
solution of the MIQP problem in a model predictive control We consider the following class of switched-mode sys-
(MPC) feedback loop. This technique does not accontems.
modate uncertainties, however, and solving the MIQP is Definition 2.1: A discrete-time switched-mode system
computationally expensive. (DSS) is a tupleS = (I, X,U, D, X,), where:

Dynamic programming has been applied to the controller _ 1 js the finite set ofnodes

synthesis problem [1]. The accuracy of the solution found _ 5 _ {X:}icr is a partition of the state spad&® (i.e.,
by dynamic programming depends on the resolution that Uie; Xi =R™ and X; N X; = 0 for i # j);

is used to partition the state space of the system. The ey ; ; i i
sed 10 p e Space ( ystem. - U = {U;}jes, is the collection of input disturbance
partitioning of the state space is prohibitive for systents w sets for each mode, where edchis a compact set in
a large number of state variables. R™-
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1701 and F33615-02-C-4029, US Army Research Office (ARO)raoht - X, C R" is the set of initial conditions
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contract no. CCR-0121547, and the Institute of Control Begiing and € assume the continuous dynamics o e S are
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such thatf;(z,u) = A;x + B;u. The input set/ is used Ill. SAFE SYNTHESIS PROCEDURE
to represent a discrete set of inputs with bounded additive Our method for solving the safe synthesis problem uses
noise, that is, ifu € R™ is a discrete input andt c R™

: i informed search guided by local vector field information.
is a bounded input set, thdh € U/, where

Since local vector field behavior in one mode is not indica-
tive of the vector field behavior in other modes, a second
U= U {u+ o} technique, dynamic programming, is used to establish a
veV desired mode switching sequence. This two level approach
Note that the class of DSS systems include piecewidé described as follows:

linearizations of nonlinear systems. « Construct a graph that represents the approximate time
Definition 2.2: A sequence(zougziuiza,...) IS arun needed to go from mode to mode with each control,
of a DSSS if for all k£ > 0, if x, € X, thenz,, = and find the best mode switching path using dynamic
filxg, ug). programming;
Given a DSSS, a setX C R”, and a sequence = « In each mode, starting from the mode that contains the
(joji---Jx), Where eacly; € J, Reach(X, ) is given by initial condition set, use an informed search to compute
a path to the next mode, where the next mode is given
Reach(X,7) = {z|z = zx41 for some run ofS by the dynamic programming solution.

(zoug . .. Tk+1), Where
zo € X, and eachy; € Uy,
for 0 <i < k}.

A. The dynamic programming step

The dynamic programming step constructs a graph, where
the vertices represent the modes and the edges are labelled
] ) ) ] with estimates of the amount of time it takes to travel from

We are interested in solving the following problem.  n4e to mode. While the safe synthesis problem has no

Definition 2.3: Given a DSSS, a fail set/” C R", and a  gptimization concept, the minimum time criterion is used
goal setG C R", the safe synthesis problefa to compute g that the dynamic program finds a useful solution.

an input sequence such that the following holds: Definition 3.1: Given a DSSS, a fail setF ¢ R", and
e Reach(Xy,m) C G; a goal setG C R", adynamic programming grapfDPG)
« for every prefixit of m, Reach(Xy,7) N F = (. is a tupleG = (M, 9), where

In applications, the sef” represents some region of « M = {M;};c;: a set of vertices, one for each mode
the state space that the system must never enter, such as in S;

a temperature limit in a chemical process or a collision « §: M x J — M x R: if input setU; takes the system

condition in an air traffic control system. The sgtis a from statea to stateb with an estimated cost af, we
region of the state space that the system must reach, such write §(M,, j) = (My,c).
as a safe shutdown condition in a nuclear reactor. Costs for each mode-to-mode transition are computed by

We use the following notation in our procedure to comperforming simulations from the center points of the modes,
pute the reachable states. BForC R™, U C R™, andi € I, once for each input. The first mode that the simulation
enters determines the destination of the arc in the DPG
Post;(X,U) £ {a'|2' = f;(x,u) for somez € X and the number of simulation steps it takes determines
andu € U}. the weight. This is similar to techniques used in the dy-
namic programming literature for discretizing continuous
Note that thePost; operator applies the dynamics for modeoptimization problems [11].
i to all states inX and inputs inU, even if these sets Once the DPG has been constructed, a Bellman-Ford
include states and inputs that are not defined for mode algorithm is performed on it to produce a functien M —
This freedom will be used to compute over-approximationd/, wheres(m) = m’ means thatn’ is the mode reachable
to the reachable sets for the DSS. from modem with the lowest estimated cost-to-go.
An ellipsoid £(z., Q) C R™ is defined as B. The informed search step
E(x.,Q) = {z|(x —2)TQ Hz —z.) <1}, Starting from the mode that contains the initial condition
set, thes function provides aubgoalto a Search Procedure,
wherez. € R" and@ € R" x R" is a symmetric, positive where the subgoal is an intermediate goal that is to be
definite matrix. Sincef(z., Q) is a closed convex set, it reached before the overall goal is reached. In each mode, the

can be described by its support function subgoal is the optimal next mode as given by the function
S.
pUlE(e Q) = sup T Definition 3.2: Given a DSS S, a DSS automaton
ITE (@e.@) (DSSA) for S is a tuple,
= Uz, +/I1TQl D=(Q,%,E,\px,pu), Where



Q - a finite set of states;

Y - a finite set of symbols;

E C Q x Q - a set of transitions;
string to each transition;

R™ to each state Q). Cr~» denotes the set of compact
connected subsets &";

R™ to each symbol ir.

px : Q — 2" - a function that assigns regions in

merit value is based on an estimate of the minimum time
it will take for the reachable set will enter the goal region,
which is in turn based on a notion of distance between sets

A: E — ¥* - alabelling function that assigns an inputof points. The state with the highest merit value is expanded

by the informed search.
The updateDPS(D,G) function takes the updated

'DSSA and performs an update of the DPG and the function

s. Updates of the DPG ang are useful when a state that

pu + X — Cgn - @ function that assigns a region inp . j;st been added to the DSSA is inside a mode that has

not been reached previously, in which case it is helpful to

During the Search Procedure, a DSS automaton will Bcompute the cost estimates from the new mode using a
constructed whose purpose is to represent thg portiong of tBoint inside the region associated with the new sgasince
state space that have been explored and the input sequUenggs cost estimate will be more accurate than the original

by which they were reached.

one, which was computed using the center of the mode.

The Search Procedure is shown in Fig. 1. The procedure

assumes that a DSS, a fail region F ¢ R™ and a goal
regionG C R™ are given, and a DP@ and a functions

are provided. Also, we assume that the initial condition seN

Xy is an ellipsoid&y.

/* Search Procedure */

queue 1= qo
stillworking := 1
While stillworking
/* Find best candidate */
For all ¢ € queue
best :=0
mode := determinemode(D, q)
subgoal := s(mode)
If merit(q, D, subgoal,G) > best
best := merit(q, D, subgoal, G)
bestq := q
/* Expand best g and remove it from the queue
Removebestq from queue
Forall je X
Add §; to queue
Add g; to Q
Add (q,q;) to E
(px(d;),m) := prop(px(a),J)

3((g,4) == N = NU Posti(€,U)
(G,s) := ypdateDPS(Qg) If £€C X,VE € N for somei
If px(q;) € G N = bound(N)
stillworking := 0 work := 1
break
If —work
Fig. 1. Informed Search Procedure. N:=0
=3
The Search Procedure requires four functions: Forall £ e N

determinemode, merit, update DPS, andprop.
The functiondeterminemode(D, q) returns an identifier

for the mode that; occupies. This mode is then used to

determine the next subgoal.
The merit(q, D, subgoal,G) function assigns a merit
value to the state given the subgoal associated withThe

The prop(N, j) function computes a conservative esti-
mate of the reachable set computed from the set of regions
using the inpuy. Fig. 2 presents therop procedure. The
function first attempts to identify an input string wherern
is a string ofj’s of lengthk and1 < k < iter,,q., SUch that
the estimate ofReach (&, ), for eachE € N, is completely
within one mode. If such a string does not exist, theprop
returns a conservative estimate of the reachable set efstat
from the regions in\" given any input from the sdt/;.

The function Post;(X,U) computes an estimate of
Post;(X,U) such thatPost;(X,U) C Post;(X,U). As-
suming all regions are eIIipsoiddi’,osti(X, U) can be com-
puted using the ellipsoidal technique detailed by Kurzkans
[10]. The bound(N) function uses a numerical method,
involving the solution of a linear matrix inequality [4], to
produce one ellipsoid that contains all of the ellipsoids in

N.

[* Procedureprop */
work := 0
N =N
Ti=10
For iter = 1 : itermas

mi=m-j

For all £ e N

For all ¢ such that N X; # 0

For all i such thatt N X; # 0
/\/: := N U Post;(€,U)
Return N and

Fig. 2. Procedure to compute propagation of regions.



IV. SWITCHED-MODE APPROXIMATIONS OF NONLINEAR X,
SYSTEMS winning path
s a a\ a C
A DSS can be used to approximate a continuous-time, + et ORI SO, - S R -
nonlinear system such that the behaviors of the former Uyt "
contain the behaviors of the latter. Our synthesis tecteiqu 2 b c
can then be performed on the approximate system to com- Lo, u, .
) . e . G
pute safe control sequences for nonlinear systems wité stat Xq ha\
constraints. 1 il |
. . . . e a a dY| |Y2 |a
The approximation is performed by first partitioning the v
nonlinear system’s state space. Then an affine approxima- T A’—search,/
tion of each mode is computed by taking the first two terms ‘ path 1 1
of a Taylor series approximation of the nonlinear vectodfiel 1 2 3 4 x,

about the center point of each partition element.

Consider a nonlinear vector field(x(¢),u(t)) and a Fig. 3. Example illustrating the need for mode switching guoizia
partition of the state spac& = {x};. Let x; € R" be
the center point of partition element and f; ((t), u(t))
be the affine approximation of the nonlinear vector ﬁelthoughd, where
around the point;. The affine approximation of the vector

field is converted to a discrete-time, affine update equation A=Ay =A. =Ay = 1
2r+1 = fi(xg, ux) using an Euler approximation. B, = I
The maximum error incurred in approximating the non- 1 =1
linear dynamics is accounted for by adding an uncertainty By, = 0 0 ]
term to the update equation.g¢fxy, u(t), T) is the solution 0 0
to the differential equatioti(t) = g(x(t), u(t)) with initial B. = 1 }
condition o and u(t) = uy for 0 < ¢t < T, fi(xo,u) u
is the update equation for partition elementx, is in B, = 0 0 ]
elementi, and ||(zo,u(t),T) — fi(zo,us)| < e, then |11
¢(xo,u(t),T) € fi(xo,u) + V, whereV = £(0, e**I). The inputs aré/ = {u,us}, whereu; = (1,0) anduy =
From the Fundamental Inequality Theorem [9], a boundo, 1), and the initial condition set i, = {(1.5,1.5)}.
on [|¢(xo, u(t), T) — fi(zo,ur)|| is given by From X, u; takes the system t@.5, 1.5) while u, takes

the system to(0.5,1.5). The point(2.5,1.5) is selected
to be expanded because it has a high merit value since
e, LT it is heading directly towards the target mode. The point
9 t 7T - Ji ) S . -1 ) 1 . .. . .
(@0, u(®), T) = fulao, ui)| L (e ) @) (0.5, 1.5) has a low merit value because it is moving directly
. _ . _ . away from the goal mode. Frof2.5,1.5) both inputs take
where L is the Lipschitz constant o in the region of the system to(2.5,0.5), which has a higher merit value

interest, anck is given by than (0.5,1.5) since the former is moving away from the
goal region at a slower rate than the latter. Fr@, 0.5)
ef = max max |g(z,u) — fi(z,u), both inputs take the system back ({@5,1.5). The search
el e X ueu then continues to oscillate betweéh5,1.5) and(2.5,0.5)
indefinitely.
where This search, which is performed without the benefit of
the dynamic programming solution, does not discover that
X, = {z|z = ¢(z',u(r),1),0 <t < T,2" € X3, the target mode can be reached from pdias, 1.5) by
u(r) EUVO < T <t} applying the input sequende:s, u1, u1,u1,u;). Dynamic

programming finds the mode switching sequence that drives
DSSD from the initial mode to the target mode.
V. EXAMPLES As an application, we introduce a conventionally steered
vehicle as an example. Fig. 4 shows the configuration of the
The following example illustrates the reason that theehicle. The variables:; and z, describe the coordinates
dynamic programming stage of the technique is usefubf the rear axis of the vehicle in an inertial frar®,, X»)
Consider a DSSD, wheren = 2 and the state space isand @ is the heading angle measured with respect to the
partitioned as shown in Fig. 3. The target mode is labelledorizontal axis. The control inputs are given by the velpcit
with a G and the dynamics for each mode are givenaby v of the vehicle and by the steering angle The constant
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Fig. 4. Conventionally steered vehicle Xz 02 »@/@@U 8 05
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The nonlinear continuous dynamics of the vehicle are

0253 0.2 0.6 02 5s 0z o0z 06 1

1 = wcosf X X,
Ty = wvsind ) (c) (d)
. v tan 6 ] ] ] ) )
0 = Fig. 5. First conventionally steered vehicle example sysithprocedure
L results: (a and b) all ellipsoidal regions that were seafchmjected

Using the approximation technique described in Sec. 1V, theto (a) the (ﬁrSt gndC; Shecond ginglenSionsf and (b) Ithe SECQ”F“Mﬁ t

. : . imensions; (c and d) the reachable set of points along thaimgrpat
SW”Ched'dee _SyStem representgt_lon. of the coqventpna@nd a simulation trace of the winning path from the center efitiitial
steered vehicle is obtained by partitioning the 3-dimemesio condition set projected onto (c) the first and second dimessind (d)
state space into boxes of side-lengtd in each direction the second and third dimensions.

and identifying each partition element with a discrete mode

The dynamics are converted to discrete-time using a s 1 . L
pling period of0.1 seconds. 06 06

The input set is given by {(v,¢)|(v,p) € o) To

{0.1,06,1.0} x {-2m, —37,0,2x, 27}}, and the % ] 8 o2

maximum error due to the linearization is bound 02 -02

e* = 0.0102. The input added in order to account for tl F .

error is given byV — 5((07 0)7 6*21). 86 -0z o2 ) 06 1 14 ©-06 -02 o.i 06 1
In the first example we consider the situation shown ' ’

Fig. 5. The initial set isX, = £((0,0,0),10~*) and the (@) (b)

goal (G) and fail (F) regions are hyperboxes as showkig. 6. Second conventionally steered vehicle example sgighproce-
in Figs. 5-(a) and 5-(c). The mode size is 0.4 in eacfc® {CTEE (CE 7} (8 ot S e aner ofthial
direction and the origin of the the state space partition igondition set projected onto (a) the first and second dimessimd (b)
(—=1,-1,-1). The region[—1 1.8] x [—1 1.8] x [—1 2.2]  the second and third dimensions.

is considered, which corresponds to 392 partition elements

resulting in a DPGG with 392 vertices.

Figs. 5-(a) and 5-(b) show the complete DSSA whichreturns a set of ellipsoids that intersect more than one mode
was created during the Search Procedure until a goas in the case shown in Fig. 5-(a) where some ellipsoids
path to the goal region was found. The mode-switchinghtersect modes on either side of the = 0.2 plane.
sequence proposed by the DPS is indicated by the arrows.Figs. 5-(c) and 5-(d) show the reachable set given by
The first subgoal lies to the right of the, = 0.2 plane. the input sequence found using the Search Procedure along
The search is guided successfully towards the first subgoalith a simulation of the original continuous-time nonlinea
and switches into the mode that lies on the other side afystem using the same input sequence starting from the
the z; = 0.2 plane (see Fig. 5-(a)). After that, the DPGcenter of the initial condition set. The points represest th
proposes proceeding along thedirection before entering state of the nonlinear system at the sample instants.
the goal region by crossing the plame = 0.2. For the second example, shown in Fig. 6, the goal region

The fact that no ellipsoid intersects the plame = is placed further away from the initial region and failure
0.2 indicates that, theprop procedure (see Fig. 2) was regions are placed such that the vehicle must move around
successful in identifying an input sequence such that tithem to reach the goal.
reachable set landed completely inside the second mode ofThe third example, shown in Fig. 7, extends the second
the given mode sequence. Note that it is not always possitgégample in that the goal region is now even further away
to identify such an input sequence, in which casep from the initial region.
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Fig. 7. Third conventionally steered vehicle example sysithprocedure
results: (a and b) the reachable set of points along the ngnpath and a
simulation trace of the winning path from the center of th&ahcondition
set projected onto (a) the first and second dimensions andhébdecond
and third dimensions.

0.6 1

Table | provides the results of all of the experiments

There are differences in the nature of the solutions found
using our technique and the MIQP technique. The solution
found using the MIQP technique enters the target region
and avoids the fail region given one initial condition, vehil
our solution is valid for a range of initial conditions.
Furthermore, the MIQP solution does not account for the
error incurred due to the approximation of the vector field.
If applied to the original system, the input sequence found
using the MIQP technique is not guaranteed to avoid the fail
region or to drive the system into the target region. Thigis i
contrast to our technique, which accounts for approxinmatio
error and which can account for uncertainty in the input.

VI. DISCUSSION

We have demonstrated a new technique for synthesizing
safe input sequences for hybrid systems, which uses a

The experiments were performed on a Pentium 4, 2.8 GHsbmbination of dynamic programming and informed search.

machine, with 512 Meg of RAM, running Windows XP. All
times are given in seconds.

TABLE |
RESULTS OF SYNTHESIS FOR CAR EXAMPLE

convt. vehicle total length DPG  search total
example ellipsoids of comp. time comp.
no. searched  solution time time
1 53 5 68.6 24.6 93.2
2 82 9 84.0 61.5 145.5
3 144 13 90.1 112.0 2021

An issue that we are currently addressing deals with
the prop function. The complexity of the search procedure
increases when therop function is unable to identify
control sequences that propagate a reachable set of points
completely across a switching surface. When this happens,
the number of ellipsoids that must be propagated to continue
the search increases. We are currently developing more
efficient methods for propagating reachable regions across
switching surfaces.
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