
Annual Reviews in Control 41 (2016) 159–169

Contents lists available at ScienceDirect

Annual Reviews in Control

journal homepage: www.elsevier.com/locate/arcontrol

A discussion of fault-tolerant supervisory control in terms of formal

languages

Thomas Moor

Lehrstuhl für Regelungstechnik, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

a r t i c l e i n f o

Article history:

Received 29 October 2015

Revised 20 January 2016

Accepted 4 February 2016

Available online 4 May 2016

Keywords:

Discrete-event systems

Supervisory control

Fault-tolerant control

Passive fault-tolerant control

Active fault-tolerant control

Post-fault recovery

Fault-hiding approach

a b s t r a c t

A system is fault tolerant if it remains functional after the occurrence of a fault. Given a plant subject to

a fault, fault-tolerant control requires the controller to form a fault-tolerant closed-loop system. For the

systematic design of a fault-tolerant controller, typical input data consists of the plant dynamics includ-

ing the effect of the faults under consideration and a formal performance requirement with a possible

allowance for degraded performance after the fault. For its obvious practical relevance, the synthesis of

fault-tolerant controllers has received extensive attention in the literature, however, with a particular fo-

cus on continuous-variable systems. The present paper addresses discrete-event systems and provides an

overview on fault-tolerant supervisory control. The discussion is held in terms of formal languages to uni-

formly present approaches to passive fault-tolerance, active fault-tolerance, post-fault recovery and fault

hiding.

© 2016 The Authors. Published by Elsevier Ltd on behalf of International Federation of Automatic

Control.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

s

p

f

r

s

m

i

d

r

i

c

t

p

s

c

t

t

t

c

B

c

a

t

t

t

f

b

n

M

p

o

m

c

p

v

f

t

w

b

h

1

l

. Introduction

A fault is considered a sudden change in the behaviour of a

ystem with potentially undesired consequences. In technical ap-

lications, the overall effect of a single faulty component can range

rom degraded performance up to total breakdown, including envi-

onmental damage or human operator injury. By a fault-tolerant de-

ign one seeks to avoid such negative consequences in a systematic

anner and up to a prescribed degree. Here, a common approach

s to relate the reliability of individual components and the depen-

encies among different components with the overall functionality

egarding safety and performance; see e.g. Dubrova (2013) for an

ntroduction to fault-tolerant design from this perspective.

When it comes to control, the system consists of a plant and a

ontroller where the latter is interpreted as a degree of freedom in

he design of the overall closed-loop behaviour. Assuming that the

lant is subject to a fault, one requires the controller to compen-

ate the fault to some degree in order to maintain an operational

losed loop with a well defined overall performance that complies

o relevant safety requirements. Such a controller is termed fault

olerant , with fault-tolerant control as a particular approach to fault-

olerant design. For its obvious practical relevance, fault-tolerant
E-mail address: lrt@fau.de

p

a

ttp://dx.doi.org/10.1016/j.arcontrol.2016.04.001

367-5788/© 2016 The Authors. Published by Elsevier Ltd on behalf of International Feder

icense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ontrol has received extensive attention in the literature; see e.g.

lanke, Kinnaert, Lunze, Staroswiecki, and Schröder (2006) for a

omprehensive study.

Given the nominal plant behaviour in the absence of the fault

nd the degraded plant behaviour after the occurrence of the fault,

he literature proposes two alternative strategies to achieve a fault-

olerant closed-loop system. First, one may design a single con-

roller that can handle both plant models satisfactory. This is re-

erred to as passive fault-tolerant control and is closely related to ro-

ust control. In contrast to plain robust control, however, attention

eeds to be paid to the transient behaviour when the fault occurs.

oreover, depending on the system classes under consideration,

assive fault-tolerant control may impose unacceptable limitations

n the nominal closed-loop behaviour. As a second strategy, one

ay refer to methods related to adaptive control and design one

ontroller for the nominal plant, one controller for the degraded

lant and a diagnoser to detect the fault. The latter is used to acti-

ate the appropriate controller. This strategy is referred to as active

ault-tolerant control . In contrast to the common setting in adap-

ive control, the particular challenge again is the switching, now

ith three modes of operation: (a) no fault, (b) fault has occurred

ut is not yet diagnosed, and (c) fault present and diagnosed. In

articular during (b) the degraded plant is under nominal control

nd may fail to satisfy even elementary requirements like stability.
ation of Automatic Control. This is an open access article under the CC BY-NC-ND

http://dx.doi.org/10.1016/j.arcontrol.2016.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/arcontrol
http://crossmark.crossref.org/dialog/?doi=10.1016/j.arcontrol.2016.04.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lrt@fau.de
http://dx.doi.org/10.1016/j.arcontrol.2016.04.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

160 T. Moor / Annual Reviews in Control 41 (2016) 159–169

j

w

(

p

t

d

p

w

c

i

f

t

s

w

S

o

f

o

n

q

a

c

c

p

C

M

2

l

d

s

T

N

s

s

d

s

p

p

n

I

w

b

s

G

d

T

c

�

u

g

i

t

p

L

a

i

c

L
A comparative study of active and passive fault-tolerant control is

given by Jiang and Yu (2012) .

As a further variation of active fault-tolerant control, a so-called

reconfiguration block can be used to adapt the nominal controller

to the faulty plant by hiding the effect of the fault. To further il-

lustrate the fault-hiding approach , consider the situation of a sen-

sor failure. Here, one can implement an observer with the recon-

figuration block that, together with the faulty plant, mimics the

nominal plant behaviour. With this approach, the nominal con-

troller remains active even when the fault occurs and, hence, the

closed-loop performance may benefit from advanced tuning strate-

gies used for the nominal case. Virtual sensors and likewise virtual

actuators are discussed by Blanke et al. (2006) , for more general

forms of fault-hiding see Steffen (2005) and Richter (2011) .

The references provided so far focus attention on continuous-

signal plant models represented by ordinary differential equations.

In contrast, the present paper discusses the synthesis of fault-

tolerant control for discrete-event systems that are adequately rep-

resentable by regular languages. As a general framework for the

control of this system class we refer to supervisory control as pro-

posed by Ramadge and Wonham (1987,1989) and demonstrate in

a concise and homogeneous notation how the above strategies for

fault tolerance can be applied.

A preliminary observation for the system class under considera-

tion is that passive fault-tolerant control plays a special role: since

discrete-event systems model sudden changes of behaviour seam-

lessly, any switching scheme introduced to achieve fault-tolerance

can be alternatively interpreted as passive fault-tolerant control.

Moreover, an ordinary event can be used to represent the occur-

rence of the fault. Thus, a fault-accommodating model that sum-

marises the nominal plant behaviour and the degraded plant be-

haviour still belongs to the same system class as the nominal plant

and solutions to the synthesis problem for passive fault-tolerant

control can be obtained by the very same established procedures

known from the nominal synthesis problem. We refer to this per-

spective as naive fault-tolerant control . In general, we expect that

alternative control architectures motivated by additional control

objectives or specific design strategies also comply with the naive

setting.

In this paper, we discuss approaches to the synthesis of fault-

tolerant supervisory control provided by the literature. We make

use of a homogeneous notation in order to demonstrate how the

approaches relate to the naive approach as a common technical

base. Observing applicable constraints and conducting the discus-

sion up to a relevant level of detail, we focus attention to active

fault-tolerant control (Paoli, Sartini, & Lafortune, 2008,2011) and

fault hiding (Wittmann, 2014; Wittmann, Richter, & Moor, 2013)

for specific control architectures, as well as variants of post-fault

recovery (Sülek & Schmidt, 2014; Wen, Kumar, & Huang, 2008a,

2014; Wen, Kumar, Huang, & Liu, 2008b) for additional control ob-

jectives.

To complement the references further discussed in the body of

this paper, we account for related work, that does not fit the lan-

guage based framework. Park and Lim (1998) propose a notion of

fault tolerance in terms of reachability of marked states. The dis-

cussion includes a characterisation of the existence of a fault tol-

erant controller that in addition exhibits a robustness property.

Rohloff (2005) addresses the specific situation of faulty sensors and

proposes to represent the effect of a fault by an according variation

of the projection operator chosen for observations. The cited refer-

ence gives detailed account on modelling and provides a procedure

to test for fault-tolerance, as well as an outline of possible syn-

thesis procedures. Girault and Rutten (2009) adapt methods from

supervisory control for the synthesis of fault-tolerant programs. A

particular focus here is on the systematic generation of models for

certain classes of faults and for certain classes of components sub-
ect to a fault. The cited work uses labelled transitions systems

ith guards and actions as a modelling framework. Nke and Lunze

2011a,2011b) discuss fault-tolerant control for automata with in-

uts and outputs. The contributions include a systematic approach

o model sensor and actuator faults as well as a synthesis proce-

ure for reconfiguration to achieve fault tolerance w.r.t. prescribed

erformance objectives. Sülek and Schmidt (2013) consider faults

ith the effect that certain events can no longer occur. The dis-

ussion includes a synthesis procedure to achieve fault tolerance

n the closed-loop configuration. Moor and Schmidt (2015) address

ault-tolerance in a hierarchical control architecture and discuss

he option to pass on undesired post-fault behaviour for compen-

ation further up in the hierarchy.

The paper is organised as follows. A language based frame-

ork for the control of discrete-event systems is introduced in

ections 2 and 3 , as a variation of supervisory control under partial

bservation originally proposed by Lin and Wonham (1988) and re-

erring to Ramadge and Wonham (1987) . As a further development

f Wittmann, Richter, and Moor (2012) , Section 4 elaborates the

aive approach to fault-tolerant control to motivate closed-loop re-

uirements relevant for fault tolerance. The subsequent discussion

ddresses active fault-tolerant control in Section 5 , post-fault re-

overy in Section 6 and the fault-hiding approach in Section 7 . We

onclude with a summary. The paper is an extended transcript of a

lenary talk held at the 5th International Workshop on Dependable

ontrol of Discrete-Event Systems (5th IFAC DCDS 2015), Mexico ; see

oor (2015) for the corresponding conference contribution.

. Preliminaries and notation

This section provides notation and elementary facts on formal

anguages as relevant for the present paper. For a general intro-

uction see Hopcroft and Ullman (1979) , and, for a discrete-event

ystems perspective, Cassandras and Lafortune (2008) .

Let � be a finite alphabet , i.e., a finite set of symbols σ ∈ �.

he Kleene-closure �∗ is the set of finite strings s = σ1 σ2 . . . σn , n ∈
 , σi ∈ �, and the empty string ε ∈ �∗, ε �∈ �. The length of a

tring s ∈ �∗ is denoted | s | ∈ N 0 , with | ε| = 0 . Given two strings

 = σ1 σ2 . . . σn ∈ �∗ and t = τ1 τ2 . . . τm

∈ �∗, the concatenation is

efined st := σ1 σ2 . . . σn τ1 τ2 . . . τm

∈ �∗ with sε = s = εs . If, for two

trings s, r ∈ �∗, there exists t ∈ �∗ such that s = rt, we say r is a

refix of s , and write r ≤ s ; if in addition r � = s , we say r is a strict

refix of s and write r < s . The prefix of s ∈ �∗ with length n ∈ N 0 ,

 ≤ | s |, is denoted pre n s . In particular, pre 0 s = ε and pre | s | s = s .

f, for two strings s, t ∈ �∗, there exists r ∈ �∗ such that s = rt,

e say t is a suffix of s . The suffix of a string s ∈ �∗ obtained

y deleting the prefix of length n, n ≤ | s |, is denoted suf n s ; i.e.,

 = (pre n s)(suf n s) .

A ∗-language (or short a language) over � is a subset L ⊆�∗.

iven a language L ⊆�∗, the equivalence relation [≡L] on �∗ is

efined by s ′ [≡L] s
′ ′ if and only if (∀ t ∈ �∗)[s ′ t ∈ L ↔ s ′ ′ t ∈ L].

he language L is regular if [≡L] has only finitely many equivalence

lasses, and, thus is accepted by a finite automaton.

The prefix of a language L ⊆�∗ is defined by pre L := { r ∈
∗ | ∃ s ∈ L : r ≤ s } . The prefix operator distributes over arbitrary

nions of languages. However, for the intersection of two lan-

uages L and K , we have pre (L ∩ K) ⊆ (pre L) ∩ (pre K) . If equal-

ty holds, L and K are said to be non-conflicting . This is trivially

he case for K ⊆L . The prefix operator is also referred to as the

refix-closure , and, a language L is prefix-closed (or short closed) if

 = pre L . A language K is relatively prefix-closed w.r.t. L (or short rel-

tively closed w.r.t. L), if K = (pre K) ∩ L . The intersection (pre K) ∩ L

s always relatively closed w.r.t. L . If a language K is relatively

losed w.r.t. a closed language, then K itself is closed.

For two languages L , M ⊆�∗, the concatenation is defined

M := { st | s ∈ L, t ∈ M} . The concatenation of closed languages is

T. Moor / Annual Reviews in Control 41 (2016) 159–169 161

c

s

L

t

t

c

i

s

t

e

K

G

i

t

�

�

T

�

t

o

g

t

�

w

t

c

s

�

p

�

p

n

i

i

r

c

o

t

u

3

c

c

b

n

3

r

t

t

c

a

c

o

r

a

p

w

t

p

p

g

r

3

c

e

p

w

b

c

o

e

h

t

K

t

c

d

b

I

f

c

s

t

c

i

p

M

w

t

p

i

F

t

s

s

w

g

a

a

r

u

p

R

c

t

o

m

a

t

c

c
losed. The relative suffix or quotient is defined L/M := { t | ∃ s ∈ M :

t ∈ L } . Note that (pre L) /M = pre (L/M) and, if L is closed, so is

 / M .

For two languages K , M ⊆�∗, K is said to converge asymptotically

o M , denoted by M ← K , if for each s ∈ K , there exists an i such

hat suf i s ∈ M. This is equivalent to K ⊆�∗M . Moreover, K is said to

onverge finitely to M , denoted by M ⇐ K , if there is a non-negative

nteger n such that for each s ∈ K , there exists i ≤ n such that

uf i s ∈ M. If M ⇐ K , the least possible n is called the convergence

ime ; see also Willner and Heymann (1995) . Finite convergence is

quivalent to the existence of a non-negative integer n such that

 ⊆(∪ i ≤ n �
i) M . The latter inclusion is also proposed by Kumar,

arg, and Marcus (1993) to define the notion of language stabil-

ty . Given three languages K , M , N ⊆�∗, K is said to converge finitely

o M after N if M ⇐ K / N .

For the observable events �o ⊆�, the natural projection p o :
∗ → �∗

o is defined iteratively: (1) let p o ε := ε; (2) for s ∈ �∗, σ ∈
, let p o (sσ) := (p o s) σ if σ ∈ �o , or, if σ �∈ �o , let p o (sσ) := p o s .

he set-valued inverse p

−1
o of p o is defined by p

−1
o (r) := { s ∈

∗ | p o (s) = r } for r ∈ �∗
o . When applied to languages, the projec-

ion distributes over unions, and the inverse projection distributes

ver unions and intersections. The prefix operator as well as lan-

uage concatenation commute with projection and inverse projec-

ion.

The synchronous composition of two languages L 1 and L 2 over

1 and �2 , respectively, is defined by L 1 ‖ L 2 := (p

−1
1

L 1) ∩ (p

−1
2

L 2) ,

here p 1 and p 2 denote the natural projections from (�1 ∪ �2)
∗

o �∗
1 and �∗

2 , respectively. Here, L 1 and L 2 are said to be non-

onflicting , if pre (L 1 ‖ L 2) = (pre L 1) ‖ (pre L 2) . For �1 = �2 the

ynchronous composition amounts to language intersection. For

1 ∩ �2 = ∅ the synchronous composition is also called the shuffle

roduct . In this case, L 1 and L 2 are non-conflicting.

Given two languages L , K ⊆�∗, and a set of uncontrollable events

uc ⊆�, we say K is controllable w.r.t. L , if (pre K)�uc ∩ (pre L) ⊆
re K. With �o ⊆� the set of observable events, we say K is prefix-

ormal w.r.t. L (or short normal w.r.t. L), if pre K = (p

−1
o p o pre K) ∩

(pre L) . A language K ⊆�∗ is complete , if for all s ∈ pre K there ex-

sts σ ∈ � such that sσ ∈ pre K. Each of the properties controllabil-

ty, normality, completeness, closedness and relative closedness is

etained under arbitrary union. Note that closedness and relative

losedness are also retained under arbitrary intersection. Unless

therwise noted, the alphabets �, �c , �uc , �o and �uo refer to

he common partitioning � = �c ˙ ∪ �uc = �o ˙ ∪ �uo in controllable,

ncontrollable, observable and unobservable events, respectively.

. Supervisory control

We revisit the basic control problem studied in supervisory

ontrol theory as introduced by Ramadge and Wonham (1987) , in-

luding the further development to account for partial observation

y Lin and Wonham (1988) , in a variation that turns out conve-

ient for the present paper.

.1. Modelling

Consider a processes that, by assumption, can be adequately

epresented with a discrete state set and piece-wise constant state

rajectories. Changes in the value of the state variable are referred

o as transitions . While the state is regarded internal to the pro-

ess, individual transitions are labelled with events from a finite

lphabet � to be externally visible. We restrict attention to pro-

esses where the physical timing is regarded irrelevant and where

nly the order of events shall be represented by the model. The

esulting abstract notion of time is referred to as logic time . Then,

n observation of the process for some arbitrarily long but finite

hysical duration can be represented as a string s ∈ �∗ interpreted
.r.t. logic time. To this end, the set L ⊆�∗ of all possible observa-

ions is regarded a discrete-event system that models the physical

rocess under consideration. Note that, by definition, s ∈ L implies

re s ⊆ L, i.e., the models considered so far are prefix-closed lan-

uages. We emphasise this fact by denoting the model pre L, also

eferred to as the local behaviour .

.2. Elementary properties

Informally, a process exhibits a safety property if “something bad

annot happen”. In the proposed modelling framework this can be

xpressed as a set inclusion

re L ⊆ E, (1)

ith E ⊆�∗ the complement of the “bad strings”. Since the local

ehaviour on the left-hand side of the inclusion is prefix-closed, E

an be substituted by its supremal prefix-closed sublanguage with-

ut affecting the imposed constraint. Therefore any safety prop-

rty can be represented by a closed upper bound on the local be-

aviour.

In contrast to safety, a liveness property requires that “some-

hing good will happen”; see Manna and Pnueli (1990) , Baier and

wiatkowska (20 0 0) for a detailed classification. For the purpose of

he present paper, we recall two liveness properties commonly dis-

ussed in the context of ∗-languages. A local behaviour pre L ⊆ �∗

oes not deadlock , if any generated event sequence can be extended

y one more event i.e., if L is complete

(∀ s ∈ pre L)(∃ σ ∈ �)[sσ ∈ pre L] . (2)

n order to obtain a liveness property in the intended sense, the

ormal requirement Eq. (2) imposed on the model needs to be ac-

ompanied by an additional assumption regarding the process it-

elf: if, at any physical time, the process can generate one more event

hen the process will generate one more event . Then, a non-empty lo-

al behaviour that does not deadlock models a process that within

nfinite physical time generates an infinite number of events. Such

rocesses are also referred to as non-terminating processes .

The second liveness property we recall is parametrised by a set

 ⊆�∗ of strings to indicate positively distinguished configurations

ith task completion as a common interpretation. Here, we refer

o M as the accepted behaviour . We say that the local behaviour

re L ⊆ �∗ does not livelock w.r.t. the accepted behaviour M , if

(∀ s ∈ pre L)(∃ t ∈ �∗)[st ∈ M ∩ pre L] , (3)

.e., if there is the persistent possibility to attain an accepted string.

or a liveness property in the sense of the intended interpreta-

ion we assume that: if, at any physical time when no accepted

tring is generated, the process has the chance to generate an accepted

tring, then it will eventually do so . A process that does not livelock

.r.t. an accepted behaviour can be represented as a single lan-

uage L ⊆�∗ with associated local behaviour pre L and associated

ccepted behaviour L . This corresponds to the generated language

nd the marked language of a non-blocking automaton realisation,

espectively. To indicate this interpretation of a language we will

se the terminology of a discrete-event system L ⊆�∗. This is the

erspective we take for the remainder of this paper.

emark 1. For processes that do deadlock or livelock, the locking

an be made explicit by adding a distinguished event and by ex-

ending the local behaviour to generate this event in the situation

f a lock. With this transformation, the process can again be for-

ally modelled as a discrete-event system L ⊆�∗. In subsequent

nalysis tasks and synthesis tasks, the distinguished event needs

o be considered accordingly; e.g., for controller synthesis, as dis-

ussed in the following sections, the blocking event is flagged un-

ontrollable and a language inclusion specification must be put in

162 T. Moor / Annual Reviews in Control 41 (2016) 159–169

Fig. 1. Closed-loop configuration.

Fig. 2. Closed-loop behaviour as language intersection.

c

t

K

q

c

p

f

g

T

c

q

a

b

m

t

c

c

b

s

a

t

t

h

t

T

a

q

K

i

e

T

�

m

[
place to require that the controller implicitly prevents any occur-

rence of the blocking event.

3.3. System composition

When a process is composed from multiple components, one

seeks to systematically construct an overall model from individ-

ual component models. For discrete-event systems, it is common to

consider the composition by synchronisation of shared events; i.e.,

an event can only occur at an instance of physical time if it com-

plies with the local behaviour of each individual component. Thus,

when considering local behaviours pre L 1 ⊆ �∗
1

and pre L 2 ⊆ �∗
2
,

the parallel composition

L loc := (pre L 1) ‖ (pre L 2) (4)

is an adequate representation of the local behaviour of the over-

all process. Applying the same formula to the accepted behaviours

L 1 ⊆ �∗
1

and L 2 ⊆ �∗
2
,

L := L 1 ‖ L 2 , (5)

the composition amounts to the requirement that accepted config-

urations are attained simultaneously by both components. If both

accepted behaviours are non-conflicting, we obtain pre L = L loc and,

hence, the discrete-event system L is again an adequate model of

the composition. If, on the other hand, the accepted behaviours

fail to be non-conflicting, we appeal to Remark 1 and propose to

merge accepted and local behaviour by an explicit blocking event.

For non-terminating processes, a common alternative to simulta-

neous acceptance is to require that an infinite string is generated

with infinitely many prefixes accepted for either one component.

3.4. Closed-loop configuration

For the purpose of control, the alphabet is composed as a dis-

joint union of controllable events and uncontrollable events . To this

end, we consider the plant to be given as a discrete-event sys-

tem and we assume that the underlying process is equipped with

some interface to disable any controllable event at any time. A

supervisor is then defined as causal feedback that maps the past

event sequence to a so called control-pattern and thereby indicates

which events are enabled. This basic setting is extended to account

for the situation of partial observation by distinguishing observable

events and unobservable events . Then, the supervisor shall apply

consistent control patterns after the generation of event sequences

that cannot be distinguished by observation.

In this paper, we restrict attention to the special case where

the controller cannot disable unobservable events and represent

the causal feedback map as a language H to interpret supervi-

sion as a form of system composition. Technically, { σ | s σ ∈ H } ⊆�

corresponds to the control pattern applied after the generation of

s ∈ pre L from the local plant behaviour; see Fig. 1 . To parallel the

setting of non-blocking supervisory control under partial observation

in Lin and Wonham (1988) , we impose the following technical con-

ditions on the controller H .

Definition 2. Given an alphabet with the common partition � =
�c ˙ ∪ �uc = �o ˙ ∪ �uo in controllable, uncontrollable, observable

and unobservable events, respectively, a language H ⊆�∗ is an ad-

missible controller for the plant L ⊆�∗, if
[H0] H is prefix-closed,

[H1] (pre H)�uc ⊆ pre H,

[H2] pre H = p

−1
o p o pre H,

[H3] (pre L) ∩ (pre H) is complete, and

[H4] L and H are non-conflicting.

In the above setting, K loc := (pre L) ‖ (pre H) represents the lo-

al closed-loop behaviour and, by [H0] and [H2], amounts to K loc =
(pre L) ∩ H. This intersection is illustrated in Fig. 2 , with pre L as

he light green region, H the light red region, and the intersection

 loc appearing in orange by overlay. The generation of an event se-

uence always starts with the empty string ε for successive con-

atenation of further events with the progress of logic time, i.e., a

oint in the diagram represents the event sequence generated so

ar. Event sequences generated by the plant remain in pre L (light

reen) and eventually attain an accepted string in L (solid green).

he example sequence s ∈ L happens to be also compliant with the

ontroller H , i.e., we have s ∈ K loc . Continuing on the indicated se-

uence up to t ∈ K loc , s < t , the illustration renders the event c ∈ �

s a possible successor that is compliant to the plant but disabled

y the controller. To satisfy the controllability requirement [H1], c

ust be a controllable event.

In analogy with the local closed-loop behaviour K loc we ob-

ain K := L ‖ H = L ∩ H as the accepted closed-loop behaviour. Here,

ondition [H4] requires that any string compliant with the local

losed loop K loc must allow for an extension that continues to

e compliant with K loc while becoming accepted by the plant. In-

pecting again the example given by Fig. 2 , disabling the event c

s an immediate successor of t is consistent with [H4] since r ∈ L,

 < r , still demonstrates the existence of the required extension for

 . Technically, we obtain K loc = pre K, i.e., the local closed-loop be-

aviour does not livelock w.r.t. K and K is a discrete-event system

hat models the synchronous composition of plant and controller.

he completeness requirement [H3] then requires that K represents

 non-terminating process. Referring to the example Fig. 2 , [H3] re-

uires the existence of a proper extension of r that complies with

 loc .

The following theorem relates the slightly different setting used

n the present paper to results by Lin and Wonham (1988) , and

stablishes a characterisation of achievable closed-loop behaviours.

heorem 3. Consider an alphabet with the common partition � =
c ˙ ∪ �uc = �o ˙ ∪ �uo with �c ⊆�o . For a plant L ⊆�∗ and an ad-

issible controller H ⊆�∗ let K = L ∩ H. Then

[K0] K is relatively prefix-closed w.r.t. L ,

[K1] K is controllable w.r.t. L ,

[K2] K prefix-normal w.r.t. L, and

[K3] K is complete.

Moreover, if L � = ∅ � = H, then K � = ∅ . Vice versa, if K satisfies [K0]–

K3], then there exists an admissible controller H such that K = L ∩ H.

T. Moor / Annual Reviews in Control 41 (2016) 159–169 163

P

i

H

P

t

[

“

H

e

i

p

t

3

s

e

c

e

a

n

n

b

l

s

t

p

d

r

v

M

a

u

4

d

c

t

l

o

d

t

t

s

t

i

t

i

H

c

f

�

t

r

L

w

L

a

t

Fig. 3. Fault-accommodating model as a union composition.

m

p

t

t

t

a

s

c

b

n

q

w

t

F

s

P

a

fi

L

L

P

r

i

e

a

a

n

c

u

a

s

i

T

a

u

p

E

roof-Outline . Part 1, “trivial cases”. H = ∅ implies K = ∅ , which

n turn satisfies [K0]–[K3]. Likewise, for K = ∅ we can choose

 = ∅ to satisfy [H0]–[H4]. Exclude trivial cases from now on.

art 2, “[H ∗] ⇒ [K ∗]”. [K0] is a consequence of [H0]. [H4] amounts

o pre K = (pre L) ∩ (pre H) . This can be used to establish [K1],

K2] and [K3] from [H1], [H2] and [H3], respectively. Part 3,

[K ∗] ⇒ [H ∗]”, is established constructively with the candidate

 := p

−1
o p o ((pre K)�∗

uc) , which is observed to satisfy [H0]–[H2] by

lementary properties of the relevant operators. The crucial step

s to refer to [K1] and [K2] in order to obtain (pre L) ∩ (pre H) =
re K. Then, [K0] implies L ∩ H = K. The last two equations are used

o obtain [H3] from [K3] and, finally, [H4]. �

.5. Controller synthesis

Given a plant L ⊆�∗ and an upper-bound language-inclusion

pecification E ⊆L , the common controller synthesis problem is to

stablish an admissible controller H ⊆�∗ such that K = L ∩ H ⊆ E. A

ore observation from the literature is that the closed-loop prop-

rties [K0]–[K3] are retained under arbitrary union; e.g. Ramadge

nd Wonham (1989) for controllability, Lin and Wonham (1988) for

ormality, and Kumar, Garg, and Marcus (1992) for complete-

ess. Thus, there exists a unique supremal achievable closed-loop

ehaviour K

↑ that satisfies all of the above properties and the

anguage-inclusion specification K

↑ ⊆E ⊆L . Clearly, if and only if the

upremum K

↑ is non-empty, we can extract a corresponding con-

roller H

↑
n � = ∅ with a non-empty closed-loop behaviour. Thus, for

ractical applications the synthesis problem is solved by proce-

ures that compute a finite representation of K

↑ . For regular pa-

ameters and for specific combinations of closed-loop properties,

arious such procedures have been proposed; see e.g. Cho and

arcus (1989) , Brandt et al. (1990) , Kumar et al. (1992) as well

s Moor, Baier, Yoo, Lin, and Lafortune (2012) for the particular sit-

ation of the present paper.

. Naive fault-tolerant control

Compliant with Blanke et al. (2006) , a fault is considered a sud-

en change in the behaviour of the plant with potentially negative

onsequences for the overall performance. A particular feature of

he class of discrete-event systems under consideration is to seam-

essly model such sudden changes. Referring to the introduction

f the present paper, a possible strategy to achieve a fault-tolerant

esign is to first construct an overall model that accommodates for

he fault and then to apply established methods for controller syn-

hesis as presented in the previous section. We are now in the po-

ition to further elaborate this naive approach to fault-tolerant con-

rol proposed by Wittmann et al. (2012) .

We begin with a nominal closed-loop configuration, consist-

ng of a nominal alphabet denoted �n with the common par-

itioning, a nominal plant model L n ⊆ �∗
n , a nominal language-

nclusion specification E n ⊆L n , and an admissible nominal controller

 n ⊆ �∗
n according to the requirements [H0]–[H4] with resulting

losed-loop behaviour K n := L n ∩ H n ⊆ E n . To accommodate for the

ault, the alphabet is extended by a distinguished event f �∈ �n ,

f := �n ˙ ∪ { f} , and we define the degraded plant behaviour L d ⊆ �∗
f

o specify all possible pasts that may trigger the fault and the cor-

esponding post-fault behaviour. In particular, we may assume that

 d ⊆ (pre L n) f�
∗
f , (6)

ith the disjoint union

 f = L n ˙ ∪ L d (7)

s the overall fault-accommodating model . This construct is illus-

rated in Fig. 3 . There, the nominal model L n and the degraded
odel L d are given in solid green and solid red, respectively. The

refixes are given in the corresponding light colour, with the in-

ersection in orange. The process starts with the empty string ε
o generate events that assemble a monotone sequence within

he prefix of the fault-accommodating model and to eventually

ttain an accepted configuration. Since ε ∈ (pre L n) ∩ (pre L d) , the

equence initially evolves within this intersection. If no fault oc-

urs, the generated sequence remains within the local nominal

ehaviour and eventually attains a configuration accepted by the

ominal model; see t ∈ L n in Fig. 3 . If the fault occurs, the se-

uence leaves the intersection by the fault event f to continue

ithin the local degraded behaviour pre L d and to eventually at-

ain a configuration accepted by the degraded model; see s ∈ L d in

ig. 3 .

The following proposition states immediate consequences of As-

umption (6) .

roposition 4. With �f = �n ˙ ∪ { f} , consider two languages L n ⊆ �∗
n

nd L d ⊆ �∗
f

compliant with Assumption (6) . Then, L f = L n ∪ L d satis-

es:

 d ∩ �∗
n = ∅ , (8)

(pre L d) ∩ �∗
n ⊆ pre L n , (9)

 f ∩ �∗
n = L n , (10)

(pre L f) ∩ �∗
n = pre L n . (11)

roof-Outline . The claim follows by elementary properties of the

elevant operators; see also Section 2 . �

As a consequence of Eqs. (10) and (11) , we obtain

(pre L f) ∩ �∗
n = pre (L f ∩ �∗

n) , (12)

.e., L f and �∗
n are non-conflicting. In other words: liveness prop-

rties encoded in the fault-accommodating model by construction

re consistent with the hypothesis that the fault may not occur

t all. This observation suggests some further considerations. Tech-

ically, the local behaviour of a discrete-event system may ac-

ount for event sequences that imply the occurrence of a partic-

lar event, either as an immediate successor or in attaining an

ccepted string. Regarding the fault, however, it is a sensible as-

umption that its occurrence under no circumstances becomes an

nevitable consequence of the event sequence generated so far.

his is expressed by the following conditions imposed in the fault-

ccommodating model:

(∀ s)(∃ t ∈ �∗
n)[s ∈ pre L f ⇒ st ∈ L f] , (13)

(∀ s)(∃ σ ∈ �n)[s f ∈ pre L f ⇒ sσ ∈ pre L f] . (14)

A fault-accommodating language-inclusion specification can be set

p following the same pattern as for the plant model; i.e., we

arametrise an upper bound by the union composition

 = E n ˙ ∪ E , (15)
f d

164 T. Moor / Annual Reviews in Control 41 (2016) 159–169

t

c

g

w

�

p

i

t

b

t

i

H

t

t

L

H

e

a

t

f

t

f

c

H

l

t

a

a

a

f

t

T

s

c

v

t

i

s

h

t

i

K

T

n

P

[

P

b

c

t

e
subject to the assumption pre E d ⊆ (pre E n) f�
∗
f

obtained by uni-

form substitution in Eq. (6) , and with consequences as given

by Proposition 4 . In particular, we have E f ∩ �∗
n = E n , i.e., up to

the occurrence of the fault the fault-accommodating specification

matches the nominal specification. Here, the intention of E d is to

relax E n after the occurrence of the fault.

Once fault-accommodating models of plant and specification

are provided, options are to test whether an existing controller

(e.g. the nominal controller) is fault tolerant or to synthesise

a fault-tolerant controller from scratch. Both problems can be

addressed by the same procedures as used for the nominal control

problem, but now applied to the fault-accommodating models

as input data with the fault event regarded as uncontrollable. In

general, the fault event is also regarded unobservable, however,

depending on the level of abstraction one also encounters ap-

plications where the plant instantly reports the fault by built-in

diagnosis.

Depending on the particular application at hand, an adaption of

the desired closed-loop properties [K0]–[K3] to the interpretation

of the fault event regarding liveness properties may be required.

In analogy to Conditions (13) and (14) , one may ask the controller

not to provoke the fault by disabling all alternative events in the

closed-loop system, i.e., one may impose the additional closed-loop

requirements

[K4] (∀ s)(∃ t ∈ �∗
n)[s ∈ pre K f ⇒ st ∈ K f] ,

[K5] (∀ s)(∃ σ ∈ �n)[s f ∈ pre K f ⇒ sσ ∈ pre K f] ,

with K f := L f ∩ H f the closed-loop behaviour formed by the fault

accommodating plant L f and an admissible controller H f . As with

[K0]–[K3], the closed-loop properties [K4] and [K5] are retained

under arbitrary union.

Proposition 5. Consider an alphabet �f = �n ˙ ∪ { f} and a family of

languages (K a) a ∈ A , K a ⊆ �∗
f

with union K := ∪ a ∈ A K a . If, for all a ∈ A,

K a possesses [K4] or [K5], then K exhibits [K4] and [K5], respectively.

Proof. To establish [K4] or [K5] for K , pick s or s f in pre K, respec-

tively. Since the prefix operator commutes with arbitrary unions,

we can pick a ∈ A such that s ∈ pre K a or s f ∈ pre K a , respectively.

Referring to the respective property for K a , we obtain the existence

of t ∈ �∗
n or σ ∈ �n , such that st ∈ K a ⊆K or sσ ∈ pre K a ⊆ pre K,

respectively. �

Thus, given the fault-accommodating model and a language-

inclusion specification, there exists a unique supremal closed-loop

behaviour that possesses the properties [K0]–[K5] and that sat-

isfies the specification. For regular parameters a synthesis pro-

cedure can be obtained by the framework presented in Moor

et al. (2012) , with a separate discussion regarding [K4]. Refer-

ring to Theorem 3 and [K0]–[K3], one then extracts an admissi-

ble controller to implement the supremal achievable closed-loop

behaviour. In particular, the resulting controller enforces the speci-

fication and the additional closed-loop requirements [K4] and [K5].

By the following theorem the latter two properties ensure that the

controller remains admissible under the optional hypothesis, that

the fault does not occur at all.

Theorem 6. Consider an alphabet with the common partition �f =
�n ˙ ∪ { f} = �c ˙ ∪ �uc = �o ˙ ∪ �uo and a plant L f ⊆ �∗

f
. If a controller

H f is admissible to L f and if the closed loop K f = L f ∩ H f satisfies [K0]–

[K5], then H f is also admissible to L f ∩ �∗
n .

Proof. Inspecting Definition 2 , admissibility of H f to L f and to L f ∩
�∗

n is equivalent to admissibility of H f to L f and the following two

additional properties:

[H5] (pre L f) ∩ (pre H f) ∩ �∗
n is complete, and

∗
[H6] L f ∩ �n and H f are non-conflicting. (
As a second preliminary observation, note that [K4] implies

hat K f and �∗
n are non-conflicting, and, that [K5] together with

ompleteness [K3] implies that (pre K f) ∩ �∗
n is complete. Re-

arding [H5], we obtain with [H4] that (pre L f) ∩ (pre H f) ∩ �∗
n =

(pre K f) ∩ �∗
n , which is complete. Regarding [H6], we obtain

ith [H4] that (pre (L f ∩ �∗
n)) ∩ (pre H f) ⊆ (pre L f) ∩ (pre H f) ∩

∗
n = (pre (L f ∩ H f)) ∩ �∗

n = (pre K f) ∩ �∗
n = pre (K f ∩ �∗

n) =

re (L f ∩ �∗
n ∩ H f) , to establish non-conflictingness. �

To compare the resulting fault-tolerant control with the nom-

nal case, consider controllers H f and H n obtained for the respec-

ive input data. Observe that the above theorem implies admissi-

ility of H f ∩ �∗
n to L f ∩ �∗

n . With Assumption (6) in place for both

he fault-accommodating plant and the fault-accommodating spec-

fication, and referring to Proposition 4 , we obtain admissibility of

 f ∩ �∗
n to L n and L n ∩ (H f ∩ �∗

n) ⊆ E n . In particular, H f ∩ �∗
n solves

he nominal control problem. Thus, assuming H n minimally restric-

ive, we obtain

 f ∩ H f ∩ �∗
n ⊆ L n ∩ H n . (16)

owever, even if we assume H f minimally restrictive, we cannot

xpect equality in the above inclusion. This is because a fault-

ccommodating plant implies that a fault-tolerant controller avoids

hose pre-fault configurations, from which, in the case of the

ault, the post-fault requirements cannot be achieved. Obviously,

he nominal controller is not subject to this constraint and there-

ore leads to a potentially less restrictive pre-fault behaviour. This

an be regarded inadequate depending on the application at hand.

owever, such a situation must not be considered a fundamental

imitation of the presented naive approach to fault-tolerant con-

rol, but a consequence of the respective input data at hand. Moor

nd Schmidt (2015) address this situation by proposing a system-

tic relaxation of the fault-accommodating specification in order to

chieve equality in Eq. (16) .

The interpretation of the presented naive approach as passive

ault-tolerant control is obvious. In general, there is the potential

o produce practical solutions even if the fault is not diagnosable.

his is expected to be the case if those causes of a fault (in the

ense of pre-fault behaviours), that by their post-fault behaviour

onflict with applicable conditions for diagnosability, can be pre-

ented by a more restrictive control of the pre-fault behaviour. On

he other hand, and provided that one achieves equality in (16) , an

nterpretation as active fault-tolerant control is obtained by con-

idering any deviation of the fault-tolerant controller from the be-

aviour of the nominal controller as a post-fault switching of con-

rollers.

We conclude this section with a discussion of persistent faults ,

.e., faults that can only occur once, technically characterised by

 f ⊆ L f ⊆ �∗
n { ε, f} �∗

n . (17)

hen, [K4] and [K5] can be equivalently stated as completeness and

on-conflictingness properties.

roposition 7. For a complete closed-loop model K f ⊆ �∗
n { ε, f} �∗

n ,

K4] and [K5] are satisfied if and only if

[K4’] K f and �∗
n are non-conflicting, and

[K5’] (pre K f) ∩ �∗
n is complete.

roof-Outline . Each of the four individual implications can

e established by elementary transformation of the respective

ondition. �

The above characterisation allows for the following interpreta-

ion of fault-tolerant control in the context of robust control; see

.g. Cury and Krogh (1999) and Bourdon, Lawford, and Wonham

2005) .

T. Moor / Annual Reviews in Control 41 (2016) 159–169 165

Fig. 4. Active fault-tolerant control with explicit diagnosis.

T

�

d

b

w

P

T

t

L

i

i

[

t

[

[

w

[

n

5

i

n

i

d

c

T

o

h

t

p

t

l

t

t

fi

S

(

e

w

c

a

h

l

s

H

i

t

p

t

n

s

n

e

Fig. 5. Diagnosis conditions D and T .

i

s

t

p

c

E

t

d

c

e

g

g

d

(

D

D

D

K

t

K

I

T

t

b

g

t

a

a

h

t

f

f

f

m

i

p

t

f

o

c

p

t

heorem 8. Consider an alphabet with the common partition �f =
n ˙ ∪ { f} = �c ˙ ∪ �uc = �o ˙ ∪ �uo and a plant L f ⊆ �∗

n { ε, f} �∗
n that

oes not conflict with �∗
n . Then, if and only if a candidate closed-loop

ehaviour K f satisfies conditions [K0]–[K5], there exists a controller H f

ith K f = L f ∩ H f that is admissible to both L f and L f ∩ �∗
n .

roof. First assume that K f satisfies [K0]–[K5]. Referring to

heorem 3 and [K0]–[K3], there exists a controller H f admissible

o L f with K f = L f ∩ H f . Admissibility of the same controller to

 f ∩ �∗
n is then a consequence of Theorem 6 . For the converse

mplication, choose H f with K f = L f ∩ H f and assume admissibil-

ty to both L f and L f ∩ �∗
n . Referring to Theorem 3 we obtain

K0]–[K3]. Regarding [K4] and [K5], we refer to the charac-

erisation [K4’] and [K5’] provided by Proposition 7 and to

H5] and [H6] as consequences of admissibility to L f ∩ �∗
n . For

K4’], we refer to non-conflictingness of L f and �∗
n together

ith [H6] to obtain (pre K f) ∩ �∗
n = (pre L f) ∩ (pre H f) ∩ �∗

n =
(pre (L f ∩ �∗

n)) ∩ (pre H f) = pre (L f ∩ �∗
n ∩ H f) = pre (K f ∩ �∗

n) . For

K5’], we refer to the first of the above equalities obtain complete-

ess by [H5]. �

. Active fault-tolerant control

Referring to Blanke et al. (2006) , active fault-tolerant control

s achieved by two measures applied in the context of the nomi-

al closed-loop configuration: first, a diagnosis mechanism is used

n order to detect the fault; and, second, after the fault has been

etected, the nominal controller is deactivated and an alternative

ontroller is activated to continue to operate the plant; see Fig. 4 .

he general benefit of this approach is that the pre-fault behaviour

f the closed loop exactly matches the nominal closed-loop be-

aviour, including heuristic optimisations not formally captured by

he nominal control objectives. The crucial challenge of this ap-

roach is to detect the fault early enough in order have the chance

o achieve prescribed post-fault performance objectives. In the fol-

owing we report on an adaption of active fault-tolerant control

o discrete-event systems originally developed in Paoli and Lafor-

une (2005) and Paoli et al. (2008,2011) and resemble a simpli-

ed variant for interpretation in the context of the naive approach,

ection 4 .

The discussion is organised in three stages. At the first stage

A), a fault-accommodating plant model with persistent fault is op-

rated under nominal control. In the reading of the present paper,

e represent the plant by L f ⊆ �∗
n { ε, f} �∗

n obtained by the union

onstruction from the previous section subject to Assumption (6) ,

nd, in particular, with L n = L f ∩ �∗
n as the associated nominal be-

aviour. To form a closed loop with the nominal controller, the

atter is formally interpreted w.r.t. the full alphabet �f . In the

ubsequent discussion, we refer to this construction by denoting

 n ⊆ �∗
f

the extended nominal controller with H n ∩ �∗
n the orig-

nal nominal controller. Technically, the construction amounts to

he additional property H n = p

−1
n p n H n with the natural projection

 n : �∗
f

→ �∗
n . In particular, H n ∩ �∗

n is assumed to be admissible

o L n . This implies that H n itself satisfies [H0]–[H2]. For a concise

otation, the local closed-loop behaviour K loc = (pre L f) ∩ H n is as-

umed not to deadlock, which amounts to [H3]. This assumption is

ot restrictive: if K loc does deadlock, this can be accounted for by

xtending locking strings by a distinguished event and by regard-
ng this event as a forbidden string in the subsequent discussion of

afe diagnosability.

The authors require a diagnoser to report any fault before

he system violates a prescribed post-fault safety specification,

arametrised as a set of forbidden substrings � ⊆ �∗
f

. More pre-

isely, the post-fault specification amounts to the upper bound

 phi := �∗
f − �∗

n f�
∗
f ��∗

f (18)

o which the local behaviour K loc must comply until the fault is

etected. The existence of a diagnoser suitable for this task is dis-

ussed in Paoli and Lafortune (2005) and characterised by a prop-

rty called safe diagnosability , derived as an extension from the

eneral study of discrete-event system diagnosis by Sampath, Sen-

upeta, Lafortune, and Sinnamohideen (1995) ; for an overview on

iscrete-event systems diagnosis see also Zaytoon and Lafortune

2013) .

efinition 9. Consider a local closed-loop behaviour K loc =
(pre L f) ∩ H n that does not deadlock. With the diagnosis condition

 defined by

 := { s ∈ �∗
f | K loc ∩ (p

−1
o p o s) ⊆ �∗

n f�
∗
f } , (19)

 loc is diagnosable if there exists a non-negative integer k such

hat

 loc ∩ (�∗
n f�

k
f) ⊆ D . (20)

f in addition

 := { s ∈ K loc | (pre s) ∩ D = s } ⊆ E phi , (21)

hen K loc is safe diagnosable .

The above conditions are illustrated by Fig. 5 . There, the local

ehaviour K loc is given as a nominal component (pre L n) ∩ H n (light

reen) and a degraded component (pre L d) ∩ H n (light red) with

he intersection in orange. If no fault occurs, the process generates

n event sequence that evolves within (pre L n) ∩ H n to eventually

ttain an accepted configuration within the nominal accepted be-

aviour L n . The latter is always possible because the nominal con-

roller and the nominal plant are by design non-conflicting. If a

ault occurs, the sequence enters (pre L d) ∩ H n (light red) by the

ault event f . Diagnosability Eq. (20) then guarantees that a uni-

ormly bounded amount of logic time after the fault the sequence

ust enter D . By construction Eq. (19) , the diagnosis condition s ∈ D

s true if and only if every string that complies to the observation

 o s and the local behaviour K loc includes the fault f . Thus, with

he first generation of a string in K loc ∩ D , the past occurrence of the

ault becomes unambiguous. The set T , defined by Eq. (21) , consists

f precisely those strings that first enter D . In particular, the in-

lusion in (21) required for safe diagnosability guarantees that the

ost-fault behaviour does not contain a forbidden substring before

he fault becomes unambiguous.

166 T. Moor / Annual Reviews in Control 41 (2016) 159–169

Fig. 6. Effect of post-fault-detection controller.

a

d

q

i

t

[

s

t

S

m

T

C

a

H

S

i

t

c

T

�

p

t

K

f

o

a

t

L

P

f

T

s

s

W

e

p

b

s

s

C

a

r

i

o

H

i

l

c

t

s

r
Note that diagnosability is stated in terms of the local be-

haviour which cannot incorporate liveness properties other than

not to deadlock. This technically justifies the requirement of a uni-

form upper bound until the fault must be detected. As with lan-

guage convergence discussed in the following section, the uniform

bound in diagnosis may turn out restrictive in certain applications,

e.g., for plants that are composed from independent components

that possess independent liveness properties. For such situations,

a notion of eventual fault detection that drops the bound by refer-

ring to the associated ω-languages could turn out more appropri-

ate. However, the author of the present paper is not aware of liter-

ature in this regard.

At the second stage (B), addressing the time after the fault has

been diagnosed, the closed loop K loc shall continue to comply with

E phi . In contrast to the situation before the fault was diagnosed,

stage (B) allows for a further restriction K loc by control for this par-

ticular purpose. The existence of an appropriate control scheme is

characterised by a property called safe controllability , proposed in

Paoli et al. (2008) . Note that, safe controllability technically gives

priority to stopping the plant in order to avoid illegal substrings,

even if this causes a deadlock. This can be accounted for in the

subsequent design stage.

For the final stage (C), post-fault-detection controllers are syn-

thesised to take over the plant after the diagnosis of the fault, i.e.,

after the generation of a string in T . The synthesis of these con-

trollers is performed on a strategically constructed formal plant

model such that the switching to one of the post-fault-detection

controllers is consistent with the observations available to both,

the switching mechanism and the respective controllers. The orig-

inal literature includes a general discussion of design stage (C) to

address common control objectives regarding controllability, safety,

liveness, and observability. In the reading of the present paper

and, in particular, under the assumption that �c ⊆�o , one may

accumulate the post-fault detection controllers to a formal lan-

guage H d ⊆ �∗
f

that is capable to take over the plant from H n once

the local behaviour generates a string from T . The composition of

the post-fault-detection behaviour L f ∩ (T �∗
f
) with the controller

H d must satisfy the common admissibility criteria from supervi-

sory control. In addition, H d shall enforce some application spe-

cific upper-bound specification E d ⊆ �∗
f

. Here we may assume that

E d does not impose any restrictions until the fault has been de-

tected and that E d implies the avoidance of forbidden strings after

the fault, i.e.,

(pre T) ∩ (�∗
n f�

∗
f) ⊆ E d ⊆ E phi . (22)

Referring back to Fig. 5 , the effect of the post-fault-detection con-

troller is indicated by the grey region in Fig. 6 . The figure indicates

the avoidance of livelocks as well as the capability of H d to take

over the plant no matter which particular sequence from T reveals

the fault. In summary, we impose the following conditions on the

post-fault-detection controller:
[A1] H d is admissible to L f ∩ (T �∗
f
) ,

[A2] L f ∩ (T �∗
f
) ∩ H d ⊆ E d , and

[A3] T ⊆ (pre L f) ∩ (T �∗
f
) ∩ H d .

A minimally restrictive controller H

↑
d

that complies with [A1]

nd [A2] can be synthesised by the procedures used for a nominal

esign applied to the input data L f ∩ (T �∗
f
) and E d , with a subse-

uent test regarding [A3]. If the test fails, one concludes that E d
mplies a restriction of the local plant behaviour before the detec-

ion of the fault and one may consider to relax E d . If the test of

A3] fails even for E d = E phi , one concludes that either one of the

afe controllability or safe diagnosability conditions are violated.

In order to interpret the proposed scheme of active fault-

olerant control in the context of the naive approach from

ection 4 , we compose an overall fault-tolerant controller H f to

imic the switching from H n to H d after detection of the fault.

echnically, we use

 := (D ∩ H n ∩ H d)�
∗
f (23)

s the switching condition and define

 f := { ε} ∪ { sσ ∈ H n | s �∈ C} ∪ { sσ ∈ H d | s ∈ C} . (24)

ince D ∩ �∗
n = ∅ , we have H f ∩ �∗

n = H n and, hence, equality

n (16) , as a specific feature of active fault-tolerant control. By

he following theorem, the overall controller is consistent with the

onsiderations from the previous Section 4 .

heorem 10. Consider an alphabet with the common partition �f =
n ˙ ∪ { f} = �c ˙ ∪ �uc = �o ˙ ∪ �uo and a plant L f ⊆ �∗

n { ε, f} �∗
n with

ersistent fault that does not conflict with �∗
n . For a nominal con-

roller H n admissible w.r.t. L f ∩ �∗
n , assume that the local closed loop

 loc := (pre L f) ∩ H n is diagnosable and does not deadlock. If a post-

ault-detection controller H d satisfies conditions [A1]–[A3], then the

verall controller H f defined by equation (24) is admissible to both L f
nd L f ∩ �∗

n . Provided that the degraded specification E d satisfies (22) ,

he closed loop satisfies the bounds

 n ∩ H n ⊆ L f ∩ H f ⊆ (L n ∩ H n) ∪ E d .

roof. Regarding the switching condition Eq. (23) , we make the

ollowing preliminary observations. Let s, t ∈ �∗
f

and σ ∈ �f .

hen:

 ∈ C ⇒ st ∈ C , (25)

 �∈ C, sσ ∈ C ⇒ sσ ∈ C ∩ H n ∩ H d , (26)

p o s = p o t ⇒ (s ∈ C ↔ t ∈ C) , (27)

p o s = ε ⇒ s �∈ C . (28)

ith (25) –(28) in place, each of the conditions [H0]–[H2] can be

stablished for H f as a consequence of the respective property

resent for H n and, via [A1], for H d . Regarding the relationship

etween T and C , we observe with [A3] that for any s ∈ (pre L f) ∩
(pre H f) :

 ∈ C ⇔ s ∈ T �∗
f , (29)

 �∈ C ⇒ s ∈ K loc . (30)

ondition [H3] for admissibility of H f to L f can then be established

s a consequence of the above two implications; for [H4] we also

efer to diagnosability and [A3]. Admissibility of H f to the nom-

nal plant L n := L f ∩ �∗
n follows by H f ∩ �∗

n = H n and admissibility

f H n to L n . Regarding the lower closed-loop bound, observe L n ∩
 n = L f ∩ �∗

n ∩ H n = L f ∩ �∗
n ∩ H f ⊆ L f ∩ H f , where the second equal-

ty refers to the discussion below Eq. (24) . For the upper closed-

oop bounds pick an arbitrary s ∈ L f ∩ H f . [Case 1] If s ∈ �∗
n , we

onclude s �∈ C, and, hence, s ∈ L n ∩ H n . [Case 2] If s �∈ �∗
n , we dis-

inguish two further cases. [Case 2a] If the fault was detected, i.e.

 ∈ T �∗
f
, we conclude s ∈ C and, hence, s ∈ H d . Therefore, refer-

ing to [A2], s ∈ E . [Case 2b] If, on the other hand, the fault was
d

T. Moor / Annual Reviews in Control 41 (2016) 159–169 167

Fig. 7. Fault tolerant behaviour in the sense of Definition 11 .

n

a

K

c

t

t

p

t

6

d

fi

p

b

n

d

a

t

e

(

i

e

D

w

i

s

t

K

p

n

c

n

(

l

fi

w

c

o

t

t

t

E

K

a

a

K

o

r

t

(

c

K

D

l

c

a

c

t

g

t

a

t

p

[

T

(

t

i

c

a

i

c

a

c

w

t

e

s

S

q

p

t

s

D

n

e

K

E

t

a

c

r

[

[
ot detected, i.e. s �∈ C, we have s ∈ H n and, thus, s ∈ K loc . By di-

gnosability and liveness of K loc , we extend s by t such that st ∈
 loc ∩ T . With (22) we conclude that s ∈ E d , to establish the upper

losed-loop bound. �

An alternative approach to design this over-all control scheme is

o use the nominal closed-loop behaviour as the nominal specifica-

ion; i.e., E n = L n ∩ H n . Then, H f is obtained by solving the synthesis

roblem with input data L f and E f = E n ˙ ∪ E d , with subsequent ex-

raction of H d in compliance with the switching Eq. (24) .

. Post-fault recovery

The fault-tolerant controller design strategies presented so far

o recover after the fault in that their post-fault behaviour satis-

es a prescribed language-inclusion specification. More explicit ap-

roaches to recovery have been proposed by relating the long-term

ehaviour after the fault with either the nominal behaviour or the

ominal specification. In the following we report on a framework

eveloped in Wen et al. (2008a,2014) ; Wen et al. (2008b) which

ddresses recovery in terms of language convergence and varia-

ions thereof (Kumar et al., 1993; Willner & Heymann, 1995).

We begin our discussion with an adaption of weak fault tol-

rance , a closed-loop property originally defined by Wen et al.

2008b) . For a presentation in the setting of the present paper and

n contrast to the referenced literature, we use an explicit fault

vent and refer to Remark 1 for a formally non-blocking model.

efinition 11. A complete fault-accommodating behaviour K f ⊆ �∗
f

ith nominal part K n := K f ∩ �∗
n is weakly fault tolerant , if there ex-

sts a non-negative integer k , such that for all s, t ∈ �∗
f
, | t | ≥ k , with

 ∈ pre K f ∩ �∗
n f�

∗
f , st ∈ pre K f , (31)

here exists u ∈ pre K n and v ≤ t , | v | ≤ k , such that

 f /s v ⊆ K f /u . (32)

The above definition requires that after a bounded delay any

ost-fault event sequence is consistent with some past from the

ominal behaviour. For the illustration by Fig. 7 , we use the union

omposition proposed in Section 4 with K f = K n ˙ ∪ K d and K n the

ominal component (solid green), K d the degraded component

solid red), and with the corresponding prefixes in the respective

ight colour. The degraded sequence s , by Definition 11 , with suf-

ciently long future t is seen to pass a configuration sv < st from

hich on the possible future K f / sv (triangular region right of sv)

omplies with the possible future K f / u (triangular region right of u)

f some nominal sequence u . As indicated by the sketch, the sys-

em may after recovery again be subject to the fault. Thus, this no-

ion of fault tolerance also applies to recurrent faults , i.e., to faults

hat can occur arbitrarily often.

On the other hand, for persistent faults K f ⊆ �∗
n { ε, f} �∗

n ,

q. (32) is equivalent to
 f /s v ⊆ K n /u , (33)

nd, referring to Wen et al. (2008b) , Theorem 3, weak fault toler-

nce implies

 n / �
∗
n ⇐ K f / (�

∗
n f) . (34)

By Inclusion (32) , weak fault tolerance imposes an upper bound

n the post-fault behaviour and, in this sense, is interpreted as the

ecovery of safety properties. For the recovery of liveness proper-

ies in the reading of the present paper, Wen, Kumar, and Huang

2014) propose a stronger notion of fault tolerance by replacing In-

lusion (32) by equality:

 f /s v = K f /u . (35)

For an overall design, fault tolerance in the sense of

efinition 11 and its variations is required as an additional closed-

oop property. In Wen et al. (2008b) , the authors present pro-

edures to test whether a closed-loop candidate is fault tolerant

nd whether there exists a supervisor that achieves the candidate

losed-loop behaviour. For the weak variant with Inclusion (32) ,

he procedures are based on a characterisation in terms of lan-

uage convergence. For the stronger variant, Eq. (35) is observed

o be equivalent to s v [≡K f
] u . In consequence and interpreted for

 minimal realisation, the condition can be conveniently charac-

erised by a state attraction property. In the reading of the present

aper, the discussion addresses all of the admissibility conditions

H0]–[H6] except for the completeness properties [H3] and [H5].

he synthesis of fault-tolerant controllers is treated in Wen et al.

2014) under the additional assumption that all events including

he fault are observable. Regarding optimality, a nearby objective

s to maximise the pre-fault behaviour and to minimise the re-

overy time. However, the authors demonstrate by example that

 maximal achievable pre-fault behaviour in general does not ex-

st. This observation is closely related to the fact that language

onvergence due to the convergence bound is not retained under

rbitrary union. For this reason, the cited literature further dis-

usses the synthesis problem in terms of automata representations,

here, beginning with a realisation of the relevant behaviours and

he language-inclusion specification, only subautomata are consid-

red. In this setting, a procedure for the computation of an optimal

olution is established.

An alternative approach for recovery is proposed by Sülek and

chmidt (2014) , where the authors impose three closed-loop re-

uirements, one for the pre-fault behaviour, one for a transitional

hase after the fault, and a language convergence specification for

he long-term post-fault behaviour. A problem statement in the

etting here is given as follows.

efinition 12. Given a fault-accommodating plant L f ⊆ �∗
f
, with

ominal part L n = L f ∩ �∗
n , an admissible controller H f is fault tol-

rant if it guarantees the following properties for the closed loop

 f = L f ∩ H f with specification parameters E n ⊆ �∗
n , E d ⊆ �∗

f
and

 f ⊆ �∗
f

:

[P1] K f ∩ �∗
n ⊆ E n ,

[P2] for all s ∈ K f ∩ �∗
n f�

∗
n there exists a partition

s = u 1 v 1 u 2 v 2 . . . u k v k ft such that

u = u 1 u 2 . . . u k ∈ pre E n and

v = v 1 v 2 . . . v k t ∈ E d ,

[P3] E f ⇐ K f / (�
∗
n f) .

The second condition requires that if the fault happens at all,

hen some fraction of the pre-fault string can be reinterpreted

ccording to the specification E d , while the remaining fraction

omplies with E n . Here, E d is used to require application specific

e-initialisation for post-fault operation. Note that both, [P1] and

P2], can be represented as a language-inclusion specification while

P3] relates the approach to weak fault tolerance in the sense of

168 T. Moor / Annual Reviews in Control 41 (2016) 159–169

Fig. 8. Fault-hiding control architecture.

o

i

r

a

�

A

f

i

t

f

r

m

t

t

a

d

m

c

v

e

i

t

[

a

t

a

n

t

b

P

t

m

t

c

b

b

s

r

c

e

D

t

m

H

o

t

w

W
Definition 11 . For the case that all events are observable, Sülek and

Schmidt (2014) give a complete and sound algorithm for the syn-

thesise of admissible controllers that are fault-tolerant in the sense

of Definition 12 . It is also demonstrated how the algorithm can be

used for a subsequent repair procedure to retain the nominal spec-

ification and to address recurrent faults.

Remark 13. As a general comment on the concept of language

convergence and the above variations, recall that they impose a

bound on the number of events allowed until satisfactory be-

haviour is attained. This can be restrictive, e.g., when the plant is

composed from multiple components which possess independent

liveness properties. Here, a healthy component my generate an un-

bounded number of events to eventually complete a task which in

turn is required to attain a recovery state. However, when dropping

the bound, convergence of ∗-languages becomes in general a too

weak requirement; e.g., without the bound, any ∗-language L ⊆�∗

converges to M = N

∗, N ⊆�∗, since �∗M = �∗. Considering non-

terminating processes, an alternative here is to model the plant

by the corresponding ω-language L = lim L, i.e., the set of infinite

strings with infinitely many prefixes in L . In this setting, the re-

quirement of eventual convergence can be conveniently expressed

as a language-inclusion specification

lim L ⊆ lim (�∗M) . (36)

The corresponding synthesis problem is studied by Thistle and

Wonham (1994) and Thistle and Lamouchi (2009) .

7. Fault-hiding approach

With the design strategy of fault hiding , one begins with a given

fault-accommodating model and a nominal controller. One then

seeks a reconfiguration mechanism, that, once the fault occurred,

re-interprets the control action executed by the nominal controller

to operate the actual plant. In turn, the feedback provided by the

actual plant is re-interpreted to generate feedback accepted by the

nominal controller; see Fig. 8 . The reconfiguration mechanism is

meant to pretend nominal plant behaviour to the nominal con-

troller while imposing fault-tolerant control on the actual plant.

In particular, the nominal controller remains permanently active

in the overall closed-loop configuration. This addresses situations

where the nominal controller not only satisfies a formal control

objective but also has been optimised by heuristic methods and/or

human expertise. This approach is well developed within the con-

text of continuous control; see e.g. Richter (2011) ; Steffen (2005) .

For discrete-event systems, a fault-hiding approach is provided by

Wittmann et al. (2013) .

At the first stage, the nominal controller H n ⊆ �∗
n and the plant

L f ⊆ �∗
f

need to be decoupled. Since in our modelling framework

shared events are synchronised, this requires a uniform renaming

of events. However, renaming all events would limit the discussion

on how the reconfiguration mechanism should affect the nominal

controller by providing virtual feedback. We therefore distinguish

internal events �in and external events �ex , i.e., �n = �in ˙ ∪ �ex .

Internal events are shared between plant and nominal controller,

while external events are exclusively processed by the controller.

Then, decoupling amounts to the renaming of internal events and

is represented by a map h : �∗
n → �∗

ex ∪ �∗
vr that encodes a bijec-

tive translation from internal events �in to newly introduced dis-

tinct virtual events in �vr , �vr ∩ � = ∅ . Technically, the behaviour
f
f the virtualised nominal controller composed with the plant

s the shuffle product L f ‖ h (H n). For the design of the reconfigu-

ation mechanism R ⊆(�in ∪ �vr)
∗ the latter composition is given,

nd, hence is formally considered the plant, with �in ∩ �c and

vr ∩ �uc as controllable events and �vr ˙ ∪ �in as observable events.

 key feature of the proposed event renaming scheme is that the

ault-accommodating specification E f ⊆(�f ∪ �vr)
∗ still relates orig-

nal plant events to external events and thereby ensures the in-

ended semantics. Note that we may either assume E f = p

−1
f

p f E f
or the natural projection p f : (�f ∪ �vr) ∗ → �∗

f
, or encode specific

equirements regarding the virtual events in E f . Such requirements

ay express that R must pass on events one-by-one as their vir-

ual counterpart unless the fault occurred. This is referred to as

he inactivity condition .

The synthesis of R can be carried out according to the common

dmissibility criteria as presented in Section 3 applying the proce-

ures from the nominal case. With an admissible reconfiguration

echanism R , an overall fault-accommodating controller H f ⊆ �∗
f

an be obtained by projecting h (H n) ‖ R to �∗
n with subsequent in-

erse projection for a formal interpretation w.r.t. �∗
f

. The cited lit-

rature includes a discussion on the admissibility of H f and thereby

nterprets the result in the context of the naive approach to fault-

olerant control. Note that, if E f encodes the inactivity condition,

H5] and [H6] are satisfied by construction and do not need to be

ddressed by a specific synthesis algorithm.

The particular challenge addressed by Wittmann et al. (2013) is

he design of a reconfiguration mechanism that satisfies relevant

dmissibility criteria universally for any solution of the nomi-

al control problem. This is of interest for applications in which

he nominal controller is not known in terms of a formal model

ut only in terms of a verbal specification and/or hand-written

LC code. Technically, a solution to this synthesis problem needs

o somehow eliminate the universal quantification over infinitely

any formal plants parameterised by admissible nominal con-

rollers. This is achieved by a tailored form of abstraction-based

ontrol. Referring to the minimally restrictive nominal closed-loop

ehaviour, universal quantification can be expressed by an upper

ound in conjunction with the structural properties [K0]–[K3] pos-

essed by any nominal closed-loop behaviour. We state the core

esult of this discussion for prefix-closed plant models in form of

onditions [M1]–[M7]; see Wittmann (2014) for additional consid-

rations that address not necessarily prefix-closed plant models.

efinition 14. Given the models L f ⊆ �∗
f

and L n = L f ∩ �∗
n and

he specifications E f ⊆ �∗
f

and E n = E f ∩ �∗
n , construct the supre-

al nominal controller H

↑ ⊆ �∗
n and denote its virtualisation by

↑
v := h (H

↑) ⊆ (�ex ∪ �vr) ∗. The following conditions are imposed

n the a candidate closed loop K ⊆ L f || H

↑
v :

[M1] K is controllable w.r.t. L f ‖ H

↑
v and the uncontrollable events

�ex ∪ h (�c) ∪ �uc ∪ { f} .
[M2] K is prefix-normal w.r.t. pre (L f ‖ H

↑
v) and the observable

events �vr ∪ �in .

[M3] K is relatively closed w.r.t. L f ‖ H

↑
v

[M4] K is (�f − �ex) -complete, i.e.,

(∀ s ∈ pre K ∃ σ / ∈ �ex , t ∈ �∗
ex)[stσ ∈ pre K] .

[M5] K is weakly sensor-event consistent, i.e.,

(∀ s ∈ pre K)[(p vr s) h (�uc) ∩ (pre h (L n)) � = ∅
⇒ s (� − h (�c)))

∗
h (�uc) ∩ pre K � = ∅]

[M6] K operates H

↑
v within h (L n), i.e., p vr K ⊆ p vr pre h (L n) .

[M7] K satisfies the inclusion specification K ⊆E f .

If conditions [M1]–[M7] are satisfied, then the reconfigura-

ion dynamics can be extracted from K by R := p

−1
o p o ((pre K)�∗

uc)

ith event attributes as indicated above. Results reported by

ittmann et al. (2013) include admissibility of any formal overall

T. Moor / Annual Reviews in Control 41 (2016) 159–169 169

f

a

t

i

i

S

d

a

t

D

c

i

d

t

f

r

r

t

v

v

b

p

f

c

g

f

S

a

n

b

R

B

B

B

B

C

C

C

D
G

H

J

K

K

L

M

M

M

M

N

N

P

P

P

P

R

R

R

R

S

S

S

S

S

T

T

W

W

W

W

W

W

W

Z

T

t

l

t

R

r

h

t

D

t

e

c

ault-accommodating controller H f obtained from R || h (H n) with an

rbitrary solution H n to the nominal control problem. All proper-

ies [M1]–[M7] are retained under arbitrary union and an accord-

ng synthesis procedure based on Moor et al. (2012) is elaborated

n Wittmann (2014) .

ummary

This paper provides a technical overview on fault tolerance for

iscrete-event systems in a language based framework. Individual

pproaches have been selected to cover active and passive fault-

olerant control, as well as post-fault recovery and fault hiding.

efinitions from the original literature have been restated in a

oncise and homogeneous notation, for a common interpretation

n the context of the naive approach, where fault-tolerance is ad-

ressed by additional closed-loop requirements imposed on top of

he common conditions of controllability and observability. Except

or post-fault recovery, the properties discussed in this paper are

etained under arbitrary union and the synthesis of a minimally

estrictive controller can be implemented as a variation of the es-

ablished procedures for supervisory control under partial obser-

ation. For post-fault recovery, stated in terms of language con-

ergence or variations thereof, a supremal achievable closed-loop

ehaviour does not exist in general. Here, the referenced literature

rovides sound and complete procedures for the computation of a

ault-tolerant controller under the assumption that all events in-

luding the fault are observable. Future research could address the

eneral case of partial observation, where the synthesis problem

or a related state attraction property has been recently solved by

chmidt and Breindl (2014) . Additional insight could be gained by

ddressing fault-tolerance for languages of infinite strings, with a

otion of eventual convergence that can be expressed as an upper-

ound language-inclusion specification.

eferences

aier, C. , & Kwiatkowska, M. Z. (20 0 0). On topological hierarchies of temporal prop-

erties. Fundamenta Informaticae, 41 , 259–294 .
lanke, M. , Kinnaert, M. , Lunze, J. , Staroswiecki, M. , & Schröder, J. (2006). Diagnosis

and Fault-Tolerant Control. Springer .
ourdon, E. , Lawford, M. , & Wonham, W. M. (2005). Robust nonblocking supervi-

sory control of discrete-event systems. IEEE Transactions on Automatic Control,

50 , 2015–2021 .
randt, R. D. , Garg, V. , Kumar, R. , Lin, F. , Marcus, S. I. , & Wonham, W. M. (1990). For-

mulas for calculating supremal controllable and normal sublanguages. Systems
and Control Letters, 15 , 111–117 .

assandras, C. G. , & Lafortune, S. (2008). Introduction to Discrete Event Systems
(2nd ed.). Springer .

ho, H. , & Marcus, S. I. (1989). On supremal languages of classes of sublanguages

that arise in supervisor synthesis problems with partial observation. Mathemat-
ics of Control, Signals & Systems, 2 , 47–69 .

ury, J. , & Krogh, B. (1999). Robustness of supervisors for discrete-event systems.
IEEE Transactions on Automatic Control, 44 , 376–379 .

ubrova, E. (2013). Fault-Tolerant Design. Springer .
irault, A. , & Rutten, R. (2009). Automating the addition of fault tolerance with dis-

crete controller synthesis. Formal Methods in System Design, 35 (2), 190–225 .

opcroft, J. E. , & Ullman, J. D. (1979). Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, Reading .

iang, J. , & Yu, X. (2012). Fault-tolerant control systems: A comparative study be-
tween active and passive approaches. Annual Reviews in Control, 36 , 60–72 .

umar, R. , Garg, V. , & Marcus, S. I. (1992). On supervisory control of sequential be-
haviors. IEEE Transactions on Automatic Control, 37 , 1978–1985 .

umar, R. , Garg, V. , & Marcus, S. I. (1993). Language stability and stabilizability of

discrete event dynamical systems. SIAM Journal on Control and Optimization, 31 ,
1294–1320 .

in, F. , & Wonham, W. M. (1988). On observability of discrete-event systems. Infor-
mation Sciences, 44 , 173–198 .

anna, Z. , & Pnueli, A. (1990). A hierarchy of temporal properties. In Proceedings of
the 9th ACM symposium on principles of distributed computing (pp. 377–408) .

oor, T. (2015). Fault-tolerant supervisory control. In Proceedings of the 5th
IFAC workshop on dependable control of discrete systems (DCDS) . http://www.

sciencedirect.com/science/article/pii/S2405896315007223 (accessed: 2016-01-

05).
oor, T. , Baier, C. , Yoo, T.-S. , Lin, F. , & Lafortune, S. (2012). On the computation
of supremal sublanguages relevant to supervisory control. In Proceedings of the

11th International workshop on Discrete Event Systems (WODES) (pp. 175–180) .
oor, T. , & Schmidt, K. W. (2015). Fault-tolerant control of discrete-event systems

with lower-bound specifications. In Proceedings of the 5th IFAC workshop on de-
pendable control of discrete systems (DCDS) .

ke, Y. , & Lunze, J. (2011a). A fault modeling approach for input/output automata.
In Proceedings of the 18th IFAC world congress (pp. 8657–8662) .

ke, Y. , & Lunze, J. (2011b). Online control reconfiguration for a faulty manufac-

turing process. In Proceedings of the 3rd IFAC workshop on dependable control of
discrete systems (DCDS) (pp. 19–24) .

aoli, A. , & Lafortune, S. (2005). Safe diagnosability for fault-tolerant supervision of
discrete-event systems. Automatica, 41 (8), 1335–1347 .

aoli, A. , Sartini, M. , & Lafortune, S. (2008). A fault tolerant architecture for super-
visory control of discrete event systems. In Proceedings of the 17th IFAC world

congress (pp. 6542–6547) .

aoli, A. , Sartini, M. , & Lafortune, S. (2011). Active fault tolerant control of discrete
event systems using online diagnostics. Automatica, 47 (4), 639–649 .

ark, S. J. , & Lim, J. T. (1998). Robust and fault-tolerant supervisory control of dis-
crete event systems with partial observation and model uncertainty. Interna-

tional Journal of Systems Science, 29 , 953–957 .
amadge, P. J. , & Wonham, W. M. (1987). Supervisory control of a class of discrete

event processes. SIAM Journal on Control and Optimization, 25 , 206–230 .

amadge, P. J. , & Wonham, W. M. (1989). The control of discrete event systems.
Proceedings of the IEEE, 77 , 81–98 .

ichter, J. H. (2011). Reconfigurable control of nonlinear dynamical systems: Fault
hiding approach. LNCIS 408 . Springer-Verlag .

ohloff, K. R. (2005). Sensor failure tolerant supervisory control. In Proceedings of
the 44th IEEE international conference on decision and control (pp. 3493–3498) .

ampath, M. , Sengupeta, R. , Lafortune, S. , & Sinnamohideen, K. (1995). Diagnos-

ability of discrete-event systems. IEEE Transactions on Automatic Control, 40 (9),
1555–1575 .

chmidt, K. W. , & Breindl, C. (2014). A framework for state attraction of discrete
event systems under partial observation. Information Sciences, 281 , 265–280 .

teffen, T. (2005). Control reconfiguration of dynamical systems: Linear approaches
and structural tests. LNCIS 320 . Springer-Verlag .

ülek, A. N. , & Schmidt, K. W. (2013). Computation of fault-tolerant supervisors for

discrete event systems. In Proceedings of the 4th IFAC workshop on dependable
control of discrete systems (DCDS) (pp. 115–120) .

ülek, A. N. , & Schmidt, K. W. (2014). Computation of supervisors for fault-recovery
and repair for discrete event systems. In Proceedings of the 12th International

workshop on discrete event systems (WODES) (pp. 428–438) .
histle, J. G. , & Lamouchi, H. M. (2009). Effective control synthesis for partially

observed discrete-event systems. SIAM Journal on Control and Optimization, 48 ,

1858–1887 .
histle, J. G. , & Wonham, W. M. (1994). Supervision of infinite behavior of discrete

event systems. SIAM Journal on Control and Optimization, 32 , 1098–1113 .
en, Q. , Kumar, R. , & Huang, J. (2008a). Synthesis of optimal fault-tolerant supervi-

sor for discrete event systems. In Proceedings of the American control conference
(pp. 1172–1177) .

en, Q. , Kumar, R. , & Huang, J. (2014). Framework for optimal fault-tolerant control
synthesis: maximize prefault while minimize post-fault behaviors for discrete

event systems. IEEE Transactions on Systems, Man and Cybernetics: Systems, 44 ,

1056–1066 .
en, Q. , Kumar, R. , Huang, J. , & Liu, H. (2008b). A framework for fault-tolerant

control for discrete event systems. IEEE Transactions on Automatic Control, 53 ,
1839–1849 .

illner, Y. M. , & Heymann, M. (1995). Language convergence in controlled dis-
crete-event systems. IEEE Transactions on Automatic Control, 40 (4), 616–627 .

ittmann, T. (2014). Zur Methodik und Anwendung fehlerverdeckender

Steuerungsrekonfiguration für eine Klasse ereignisdiskreter Systeme, (Disserta-
tion) . Friedrich-Alexander Universität Erlangen-Nürnberg .

ittmann, T. , Richter, J. , & Moor, T. (2012). Fault-tolerant control of discrete event
systems based on fault-accommodating models. In Proceedings of the 8th IFAC

symposium on fault detection, supervision and safety of technical processes (SAFE-
PROCESS) (pp. 854–859) .

ittmann, T. , Richter, J. , & Moor, T. (2013). Fault-hiding control reconfiguration for

a class of discrete-event systems. In Proceedings of the 4th IFAC workshop on
dependable control of discrete systems (DCDS) .

aytoon, J. , & Lafortune, S. (2013). Overview of fault diagnosis methods for discrete
event systems. Annual Reviews in Control, 37 , 308–320 .

homas Moor received his PhD degree (Dr.-Ing.) in 1999 from the University of
he Federal Armed Forces Hamburg. From 20 0 0 to 2003 he was a research fel-

ow with the Research School of Information Sciences and Engineering at the Aus-

ralian National University. Since 2003, he holds a professorship at the Lehrstuhl für
egelungstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. His

esearch interests include the control of discrete-event systems and hybrid systems,
ierarchical and/or modular control systems, control system abstraction and fault-

olerant control. He serves on the Editorial Board of the Journal of Discrete Event
ynamic Systems and co-chaired the Workshop on Discrete Event Systems when it

ook place in Berlin 2010. He is maintainer and principle developer of the discrete-
vent systems software library libFAUDES, with a particular focus on supervisory

ontrol in an industrial application context.

http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0001
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0001
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0001
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0001
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0002
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0002
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0002
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0002
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0002
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0002
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0002
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0003
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0003
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0003
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0003
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0003
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0004
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0004
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0004
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0004
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0004
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0004
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0004
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0004
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0005
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0005
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0005
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0005
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0006
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0006
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0006
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0006
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0007
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0007
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0007
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0007
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0008
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0008
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0009
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0009
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0009
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0009
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0010
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0010
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0010
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0010
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0011
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0011
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0011
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0011
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0012
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0012
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0012
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0012
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0012
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0013
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0013
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0013
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0013
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0013
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0014
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0014
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0014
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0014
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0015
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0015
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0015
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0015
http://www.sciencedirect.com/science/article/pii/S2405896315007223
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0017
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0017
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0017
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0017
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0017
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0017
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0017
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0018
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0018
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0018
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0018
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0019
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0019
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0019
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0019
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0020
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0020
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0020
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0020
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0021
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0021
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0021
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0021
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0022
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0022
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0022
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0022
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0022
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0023
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0023
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0023
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0023
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0023
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0024
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0024
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0024
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0024
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0025
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0025
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0025
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0025
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0026
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0026
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0026
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0026
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0027
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0027
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0028
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0028
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0029
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0029
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0029
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0029
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0029
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0029
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0030
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0030
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0030
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0030
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0031
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0031
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0032
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0032
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0032
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0032
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0033
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0033
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0033
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0033
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0034
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0034
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0034
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0034
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0035
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0035
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0035
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0035
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0036
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0036
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0036
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0036
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0036
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0037
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0037
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0037
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0037
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0037
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0038
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0038
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0038
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0038
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0038
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0038
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0039
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0039
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0039
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0039
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0040
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0040
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0041
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0041
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0041
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0041
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0041
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0042
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0042
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0042
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0042
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0042
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0043
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0043
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0043
http://refhub.elsevier.com/S1367-5788(16)30004-9/sbref0043

	A discussion of fault-tolerant supervisory control in terms of formal languages
	1 Introduction
	2 Preliminaries and notation
	3 Supervisory control
	3.1 Modelling
	3.2 Elementary properties
	3.3 System composition
	3.4 Closed-loop configuration
	3.5 Controller synthesis

	4 Naive fault-tolerant control
	5 Active fault-tolerant control
	6 Post-fault recovery
	7 Fault-hiding approach
	 Summary
	 References

